Assessment of Hydro-meteorological Drought Effects on Groundwater Resources in Hormozgan Region-South of Iran

Authors
1 Assistant Professor, Department of Range and Watershed Management, University of Hormozgan, Bandar Abbas, Iran
2 Former Master Student, Department of Range and Watershed Management, University of Hormozgan, Bandar Abbas, Iran
3 Assistant Professor, Department of Range and Watershed Management, Malayer University, Malayer, Iran
Abstract
The impact of meteorological and hydrological drought on groundwater resources in coastal deserts in the south of Iran was investigated during 1991-2011, using Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Groundwater Resources Index (GRI). The results indicated that wet and drought spells governed the area in the first and second decades, respectively, which was similarly reflected by the three indices; GRI had a good correlation with SPI and SRI in 48-month time scale. This correlation was simultaneously in the eastern and western coasts and with a 6 months delay in the central plains. The findings can help to provide reasonable managerial strategy in relation to water resources management in the coastal plains.
Keywords

Aghanabati, S.A. Geology of Iran, Geological Survey of Iran. Geology Organization Press, Tehran, Iran. 2004; 342 P.
Ahmadi, S.H. and Sedghamiz, A. Geostatistical analysis of spatial and temporal variations of groundwater level. Environ. Monitor. Assess., 2007; 129: 277-294.
Ajdary, K. and Kazemi, G.A. Quantifying changes in groundwater level and chemistry in Shahrood, northeastern Iran. Hydrogeol. J., 2014; 22: 469-480.
Akbari, M., Jarge, M.R. and Madani, S.H. Assessment of decreasing of groundwater-table using Geographic Information System (GIS) (Case study: Mashhad Plain Aquifer). J. Water Soil Conserv., 2009; 16: 63–78.
Alijani, R., Vafakhah, M. and Malekian, A. Spatial and temporal analysis of monthly stream flow deficit intensity in Gorganroud watershed, Iran. Ecopersia, 2016; 4(1): 1313-1330.
Alley, W.M. The Palmer Drought Severity Index: Limitations and assumptions, J. Clim. Appl. Meteorol., 1984; 23: 1100– 1109.
Almedeij, J. and Al-Ruwaih, F. Periodic behavior of groundwater level fluctuations in residential areas. J. Hydrol., 2006; 328: 677-684.
American Meteorological Society. Policy statement: Meteorological drought. Bull. Am. Meteorol. Soc., 1997; 78: 847-849.
Andresen, L.C., Bode, S., Tietema, A., Boeckx, P., Rütting, T. Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought. Soil, 2015; 1: 341-349.
Bayen P., Sop T. K., Lykke A. M., Thiombiano A. Does Jatrophacurcas L. show resistance to drought in the Sahelian zone of West Africa? A case study from Burkina Faso. Solid Earth, 2015; 6 (2): 525-531.
Bazrafshan, O., Salajegheh, A. Mahdavi, M. Bazrafshan, J. and Maraj, A.F. Hydrological drought forecasting using conceptual models and ARMA (Case study: Karkheh Basin). J. Range. Watershed, 2013; 66: 493-508, (In Persian)
Bazrafshan, O., Salajegheh, A., Bazrafshan, J. Mahdavi, M. and Fatehi Maraj, A. Hydrological drought forecasting using ARIMA models (Case Study: Karkhehasin). Ecopersia, 2015; 3(3): 1099-1117.
Bloomfield, J.P. and Marchant, B.P. Analysis of groundwater drought building on the standardized precipitation index approach. Hydrol. Earth Syst. Sci., 2013; 17: 4769-4787.
Carminati, E. and Martinelli, G. Subsidence rates in the Po Plain, northern Italy: The relative impact of natural and anthropogenic causation. Eng. Geol., 2002; 66: 241-255.
Cerda, A., Schnabel, S., Ceballos, A., Gomez-Amelia, D. Soil hydrological response under simulated rainfall in the Dehesa land system (Extremadura, SW Spain) under drought conditions. Earth Surf. Proc. Land., 1988; 23: 195-209.
Chang, P.Y., Hao, E. and Patt, Y.N. Target prediction for indirect jumps. Proceedings of the 24th Annual International Symposium on Computer Architecture, June 2-4, 1997, Denver, Colorado., 1997; 274-283.
Chen, Z., S.E. Grasby and K.G. Osadetz. Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J. Hydrol., 2004; 290: 43-62.
Eghtedarnezhad, M. Investigation of meteorological and hydrological droughts effect on quantity and quality of groundwater resources (Case study: Bam plain). M.Sc. Thesis, University of Hormozgan, Iran, 2015, 160 P. (In Persian).
Ezzine, H., Bouziane, A. and Ouazar, D. Seasonal comparisons of meteorological and agricultural drought indices in Morocco using open short time-series data. Int. J. Appl. Earth. Obs. 2014; 26: 36-48.
Farajzadeh, M., Kamangar, M. and Bahrami, F. Assessing landscape change of Minab delta morphs before and after dam construction. Nat. Environ. Change., 2015; 1: 21-29.
Fiorillo, F. and Guadagno, F.M. Karst spring discharges analysis in relation to drought periods, using the SPI. Water Resour. Manage., 2010; 24: 1867-1884.
Forootan, E., Rietbroek, R. Kusche, J. Sharifi, M.A. and Awange, J.L. Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sens. Environ., 2014; 140: 580-595.
Gudmundsson, L. and Seneviratne, S.I. European drought trends. Proc. IAHS., 2015; 369: 75-79.
Hayes, M.J., Svoboda, M.D. Wilhite, D.A. and Vanyarkho, O.V. Monitoring the 1996 drought using the Standardized Precipitation Index, Bull. Amer. Meteor. Soc., 1999; 80, 429–438.
Hedo de Santiago, J., Lucas-Borja, M.E., Wic-Baena, C., Andrés-Abellán, M. and Heras, J. Effects of thinning and induced drought on microbiological soil properties and plant species diversity at dry and semiarid locations. Land Degrad. Develop., 2015; 27(4): 1152-1162.
Hu, R.L., Yue, Z.Q. Wang, L.U. and Wang, S.J. Review on current status and challenging issues of land subsidence in China. Eng. Geol., 2004; 76: 65-77.
Jamshidzadeh, Z. and Mirbagheri, S.A. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. J. Desalination., 2011; 270: 23-30.
Jan, C.D., Chen, T.H. and Lo, W.C. Effect of rainfall intensity and distribution on groundwater level fluctuations. J. Hydrol., 2007; 332: 348-360.
Jiang, S., Ren, L. Yong, B. Singh, V.P. Yang, X. and Yuan, F. Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods. Hydrol. Pro. 2013; 25: 2492-2505.
Joodaki, G., Wahr, J. and Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models and well observations. Water Resour. Res., 2014; 50: 2679-2692.
Kahya, E. and Kalayci, S. Trend analysis of stream flow in Turkey. J. Hydrol., 2004; 289(1): 128-144.
Kendall, M.G. Rank Correlation Methods. Griffin, London. 1975; 202 P.
Keyantash, J. A. and Dracup, J. A. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res., 2004; 40(9).
Khalili, K., Ahmadi, F. Behmanesh J. and Verdinezhad, V.R. Determination of climate changes on air temperature and Shahar-Chai river in the west of Urmialake using trend and stationarity analysis. J. Irrigation Sci. Eng., 2012; 35: 97-108 (In Persian)
Khan, S., Gabriel, H.F. and Rana, T. Standard precipitation index to track drought and assess impact of rainfall on water tables in irrigation areas. Irrigation. Drain. Syst., 2008; 22: 159-177.
Kisi, O. An innovative method for trend analysis of monthly pan evaporations. J. Hydrol., 2015; 527: 1123-1129.
Larson, K.J., Basagaoglu, H. and Marino, M.A., Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman city area, California, using a calibrated numerical simulation model. J. Hydrol., 2001; 242: 79-102.
Lechner, A.M., Baumgartl, T., Matthew, P. and Glenn, V. The impact of underground longwall mining on prime agricultural land: a review and research agenda. Land Degrad. Develop., 2014; 27(6): 1650-1663.
Li, Y.J., Zheng, X.D., Lu, F. and Ma, J. Analysis of drought evolvement characteristics based on standardized precipitation index in the Huaihe River basin. Proc. Eng., 2012; 28: 434-437.
Liu, C.W., Lin, W.S. and Cheng, L.H. Estimation of land subsidence caused by loss of smectite-interlayer water in shallow aquifer systems. Hydrogeol. J., 2006; 14: 508-525.
Machowski, R., Rzetala, M.A., Rzetala, M. and Solarski, M. Geomorphological and hydrological effects of subsidence and land use change in industrial and urban areas. Land Degrad. Develop., 2016; 27(7): 1740-1752.
Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci., 2014; 4: 315-328.
Mair, A. and Fares, A. Influence of groundwater pumping and rainfall spatio-temporal variation of stream flow. J. Hydrol., 2010; 393: 287- 308.
McKee, T.B., Doesken, N.J. and Kleist, J. The relationship of drought frequency and duration to time scales.Proprints.8th Conference of Applied Climatology, 17- 22 January Aneheim. C.A., 1993; 179-184.
Mendicino, G., Senatore, A. and Versace, P.A., Groundwater resource index (GRI) for drought monitoring and forecasting in a Mediterranean climate. J. Hydrol., 2008; 310: 242-372.
Mishra, A.K. and Desai, V.R. Drought forecasting using stochastic models. Stoch. Environ. Res. Risk Assess., 2005; 19: 326-339.
Mohammadi, H. and Reihan, M.K. The effect of 1991-2001 droughts on ground water in Neishabour plain. Desert, 2008; 12: 186-197.
Motaghi, M., Djamour, Y., Walter, T.R., Wetzel, H.U., Zschau, J. and Arabi, S., Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, levelling and GPS. Geophys. J. Int., 2007; 168: 518-526.
Nalbantis, I. and Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manage., 2009; 23: 881-897.
Nohegar, A. and Hosinzade, M. Ocean dynamics and determinants of fluctuations in sea level in the northern deltas change case study: Strait of Hormuz. Geogr. Environ. Plan. J., 2003; 3: 125-142, (In Persian)
Pacheco, J., Arzate, J. Rojas, E. Arroyo, M. Yutsis, V. and Ochoa, G. Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Queretaro valley, Mexico. Eng. Geol., 2006; 84: 143-160.
Poveda, G., Jaramillo, A. Gil, M.M. Quiceno, N. and Mantilla, R.I. Seasonally in ENSO-related precipitation, river discharges, soil moisture and vegetation index in Colombia. Water Resour. Res., 2001; 37: 2169–2178.
Reuter, H.I., Nelson, A. and Jarvis, A. An evaluation of void‐filling interpolation methods for SRTM data. Int. J. Geogr. Inform. Sci., 2007; 21: 983-1008.
Shafer, B.A. and Dezman, L.E. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In Proceedings of the Western Snow Conference, Colorado State Univ, Fort Collins, USA, 1982: 164-175.
Shahid, S. and Hazarika, M.K. Groundwater drought in the northwestern districts of Bangladesh. Water Resour. Manage., 2010; 24: 1989-2006.
Shukla, S. and Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 2008; 35; 1-11.
Solaimani, K. and Sadeghi, S. Detection of ground water changes using geographic information system (A Case Study; Arak Plain, Iran). J. Appl. Sci., 2009; 9(7): 1338-1343.
Soltani, J. Khodabakhshi, F. Dadashi, M. Effect of drought on groundwater levels drop in Kermanshah Province. Int. J. Sci. Eng. Res., 2013; 4(11): 458-463.
Some'e, B.S., Ezani, A. and Tabari, H. Spatiotemporal trends and change point of precipitation in Iran. Atmos. Res., 2012; 113: 1-12.
Steinemann, A.C. and Cavalcanti, L.F.N. Developing multiple indicators and triggers for drought plans. J. Water Resour. Plant Manage., 2006; 132: 164-174.
Stiros, S.C. Subsidence of the Thessaloniki (northern Greece) coastal plain, 1960-1999. Eng. Geol., 2001; 61: 243-256.
Sun, Y., Kang, S. Li, F. and Zhang, L. Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Environ. Modell. Softw., 2009; 24(10): 1163-1170.
Tabari, H. and Talaee, P.H. Temporal variability of precipitation over Iran: 1966-2005. J. Hydrol., 2011; 396: 313-320.
Vicente-Serrano, S.M. and Lopez-Moreno, J.I. Hydrological response to different time scales of climatological drought: An evaluation of the standardized precipitation index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci. Discuss., 2005; 9: 523-533.
Waltham, A.C. Ground subsidence. Blackie Press, Glasgow. 1989, 234 P.
Wu, Z., Mao, Y. Li, X. Lu, G. Lin,Q and Xu,H. Exploring spatiotemporal relationships among meteorological, agricultural and hydrological droughts in Southwest China. Stochastic. Environ. Res. Risk. Assess., 2016; 30: 1033-1044.