Aguilar, F.J., Augera, F., Aguilar, M.A. and Carvajal, F. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy, Photogram. Eng. Rem. S., 2005; 71: 805-816.
Allbed, A. and Kumar, L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. ARS. 2013; 2: 373-385.
Asadzadeh, F., Akbarzadeh, A., Zolfaghari, A.A., Taghizadeh Mehrjerdi, R., Mehrabanian, M., RahimiLake, H. and Sabeti Amirhandeh, M.A. Study and comparison of some geostatistical methods for mapping cation exchange capacity in soils of northern Iran, Int. J. Eng. Educ., Fascicule. 2012; ISSN 1584 -2665.
Banaei, M.H., Moemeni, A., Bybordi, M. and Malakoti, M.G. The soils of Iran. Sana Press, Iran. 2004; 200 P. (In Persian)
Bijanzadeh, E., Mokarram, M. and Naderi, R. applying spatial geostatistical analysis models for evaluating variability of soil properties in eastern Shiraz, Iran. Iran Agr. Res., 2014; 33(2): 35-46.
Bilgili, A.V. Spatial assessment of soil salinity in the Harran Plain using multiple krigingtechniques. Environ. Monit. Assess., 2013; 185: 777-795.
Bucence, L.C. and Zimback, C.R.L. Comparison of methods of interpolation and spatial analysis of pH data in Botucatu, SP. Irriga. 2003; 8(1): 21-28.
Castrignano, A. and Buttafuoco, G. Geostatistical stochastic simulation of soil water content in a forested area of South Italy. Biosyst. Eng., 2004; 87: 257-266.
Cruz-Cardenas, G. Lopez-Mata, L., Ortiz-Solorio, C.A., Villasenor, J.L., Oritz, E., Silva, J.T. and Estrada-Godoy, F. Interpolation of Mexican soil properties at a scale of 1:1000000. Geoderma. 2014; 213: 29-35.
Dalal, R.C. and Mayer, R.J. Long term trends in fertility of soil under continuous cultivation and cereal cropping in southern Queensland. I. Overall changes in soil properties and trends in winter cereal yields. Soil Res., 1986; 24(2): 265-279.
Ding, J. and Danlin, Y. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma. 2014; 235: 316-322.
Esri. ArcGIS geostatistical analyst: Statistical tools for data exploration, modelling, and advanced surface generation (white paper). USA. 2001; 23 P.
FAO (Food and Agriculture Organization of the United Nations). Guidelines for soil description. 4th edition, Rome. 2006; 71 P.
Farifte, J., Farshad A. and George, R.J. Assessing salt- affected soils using remote sensing, solute modeling,and geophysics. Geoderma. 2005; 130: 191-206.
Ghassemi, F., Jakeman, A.J. and Nix H.A. Salinization of land and water resources: human causes, extent, management and case studies. Canberra, Australia: The Australian National University, Wallingford, Oxon, CAB International. 1995; 150 P.
Goovaerts, P. Geostatistical tools for characterizing the spatial variability microbiological and physico‐chemical soil properties. Biol. Fert. Soils. 1998; 27: 315-334.
Gozdowski, D., Stepien, M., Samborski, S., Dobers, E.S., Szatylowicz, J. and Chormanski, J. Prediction accuracy of selected spatial interpolation methods for soil texture a farm field scale. J. Soil Sci. Plant Nutr., 2015; 15(3): 57-69.
Juang, K.W. Lee, D.Y. and Ellsworth, T.R. Using rank-order geostatistics for spatial interpolation of highly skewed data in a heavymetal contaminated site, J. Environ. Qual., 2001; 30: 894-903.
Karydas, C.G., Gitas, I.Z., Koutsogiannaki, E., Lydakis-Simantiris, N. and Silleos, G.N. Evaluation of spatial interpolation techniques for mapping agriculture topsoil properties in Crete. EARSeLe Proceedings. 2009; 8: 26-39.
Kazemi Poshmasari, H., Tahmasebi Sarvestani, Z., Kamkar, B., Shataei, Sh. and Sadeghi, S. Comparison of interpolation methods for estimating pH and EC in agricultural fields of Golestan province (North of Iran). Int. J. Agr. Crop Sci., 2012; 4(4): 157-167.
Krasilnikov, P., Carre, F. and Montanarekka, L. Soil geography and geostatistics: Concepts and Application. Eur. Commiss., 2008; 212 P.
Kravchenko, A.N. and Bullock, D.G. A comparative study of interpolation methods for mapping soil properties. J. Agron., 1999; 91: 393-400.
Kravchenko, A.N. Influence of spatial structure on accuracy of interpolation methods. Soil Sci. Soc. Am. J., 2003; 67: 1564-1571.
Laslett, G.M., McBratney, A.B., Pahl, P.J. and Hutchinson, M.F. Comparison of several spatial prediction methods for soil pH. J. Soil Sci., 1987; 38: 325-341.
Li, J. and Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011; 6: 228-241.
Li, J. and Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Modell. Softw. 2014; 53: 173-189.
Lybrand, R.A., Michalski, G., Graham, R.C. and Parker, D.R. The geochemical association of nitrate and naturally formed perchlorate in Mojava Desert, California, USA. Geochimica et Cosmochimica. 2013; 104: 136-147.
Mitchell, J. and Soga, K. Fundamentals of Soil Behavior. 3rd edition. Wiley Press, USA. 2005; 592 P.
Mueller, T.G., Pusuluri, N.B., Mathias, K.K., Cornelius, P.I., Barnhisel, R.I. and Shearer, S.A. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci. Soc. Am. J., 2004; 68: 2042-2047.
Munthali, M.W. and Phiri, A.T. Soil pH tester: a simple and cheap soil management decision tool in crop production for smallholder farmers in Malawi. 2013; Access online at 41.87.6.35:8080/ xmlui/handle, 24 June, 2015.
Nalder, L.A. and Wein, R.W. Spatial interpolation of climatic normals: Test of a new methods in the Canadian boreal forest. Agr. Forest Meteorol., 1998; 92: 211-225.
Natural Resource Adminastration of Hamdean Office. Karimabad Physiography Report. Hamedan, Iran. 2010; 24 P.
Pierce, F.J. and Clay, D. GIS in Agriculture. CRC press, USA. 2007; 224 P.
Qadir, M., Qureshi, A.S. and Cheraghi, S.A.M. Extent and characterization of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad. Dev., 2008; 19(2): 214-227.
Robinson, T.P. and Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric., 2006; 50: 97‐108.
Schuam, A. Principles of local polynomial interpolation. 37th IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15-17 Oct. 2008; 1-6.
Simakova, M.S. Small- Scale soil mapping. Eurasian Soil Sci., 2011; 44(9): 1036-1038.
Soil Survey Staff. Soil survey manual. Agric. Handbook No. 18. Washington (DC): U.S. Government Printing Office. 1993; 200 P.
Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. Methods of soil analysis: Chemical methods. Part3. Soil Science Society of America, Inc. 1996; 1387 P.
Steinberg, S.L. and Steinberg, S.L. GIS Research Methods: Incorporating Spatial Perspectives, Esri Press, USA. 2015;
500 P.
Su, W., YiMin, N., XiaoJie, H. and XiGang Z. Study on spatial variability of soil nutrients in Beima town of Shandong Province by using Kriging method. J. Anhui. Agric. Univ., 2004; 31(1):
76-81.
Warrick, A.W. and Nielsen, D.R. Spatial variability of soil physical properties in the field. In: Hillel, D. (Ed.). Applications of soil physics. Academic Press, New York, USA. 1980; 344 P.
Warrick, A.W. Spatial Variability In Environmental Soil Physics, Hillel, D. (Ed.). Academic Press, USA.1998; 655-675.
Webster, R. and Oliver, M. Geostatistics for environmental science. Wiley and Sons, Chichester. 2001; 271 P.
Xie, Y., Chen, T., Lei, M., Yang, J., Guo, Q., Song, B. and Zhou, X. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods, accuracy and uncertainty analysis. Chemosphere. 2011; 82: 468- 476.
Yang, D., Kanae, Sh., Oki, T., Koike, T. and Musiake, K. Global potential soil erosion with refrence to land use and climate change. Hydrol. Process., 2003;17: 2913-2928.
Yao, R.J., Yang, J.S. and Shao, H.B. Accuracy and uncertainty assessment on geostatistical simulation of soil salinity in a coastal farmland using auxiliary variable. Environ. Monit. Assess., 2013; 185: 5151-5164.
Zare-Mehrjardi, M., Taghizadeh-Mehrjardi, R. and Akbarzadeh, A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. Not. Sci. Biol., 2010; 2:92-103.
Zhu, H., Liu, S. andJia, S. Problems of the spatial interpolation of physical geographical elements. Geogr. Res., 2004; 23: 425-432. (In Chinese)