Effect of Vegetation Change of Source Area on Dust Storms Occurrence in the West of Iran

Authors
1 Assistant Professor, Department of Watershed and Rangeland Management, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
2 M.Sc. Student of Rangeland Management, Department of Watershed and Rangeland Management, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
Abstract
There are many reports of serious problems of dust storm events in the western parts of Iran. Based on many researches, Iraq is one of the main sources of dust storms in western parts of Iran. The Radial Basis Function Network (RBFN) model has been used to assess wind erosion hazard in Iraq as a main source area of dust storms over several western cities of Iran. The percentage of vegetation is the only changeable factor of RBFN model. The wind erosion hazard map in two time periods (2003 and 2012) verified the vegetation changes over time. The results showed that the vegetation percentage index in all land use types of 2003 was higher than those of 2013. In addition to drought as a natural parameter, overgrazing, dam construction on Tigris and Euphrates Rivers (in Turkey) and high amount of water for crop production are human and policy factors causing loss of vegetation cover in source area and wind erosion exacerbation.
Keywords

Abahussain, A.A., Abdu, A.S., Al-Zubari, W.K., El-Deen, N.A. and Abdul-Raheem, M. Desertification in the Arab Region: analysis of current status and trends. J. Arid Environ., 2002; 51: 521-545.
Akhzari, D. and Aghbash, F.G. Effect of Salinity and Drought Stress on the Seedling Growth and Physiological Traits of Vetiver Grass (Vetiveria zizanioides stapf.). ECOPERSIA, 2013; 1(4): 339-352.
Al-Ansari, N.A. and Knutsson, S. Toward Prudent management of Water Resources in Iraq. J. Adv. Sci. Eng. Res., 2011; 1: 53-67.
Al-Jumaily, K.J. and Ibrahim, M.K. Analysis of Synoptic situation for dust storms in Iraq. Int. J. Energ. Environ., 2013; 4 (5): 851-858.
Al-Khalidy, K.A. Preparation of Geographical Information System for the South Jazira Irrigation Project with the aid of Remote Sensing Data, M.Sc. thesis, Mosul University. 2004.
AL-Timimi, Y.K. and AL-Jiboori, M.H. Assessment of spatial and temporal drought in Iraq during the period 1980-2010. Int. J. Energ. Environ., 2013; 4(2): 291-302.
Blott, S.J. and Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land., 2001; 26, 1237-1248.
Bou-Zeid, E. and El-Fadel, M. Climate Change and Water Resources in Lebanon and the Middle East. J. Water Res. Pl. Manage., 2002; 128 (5): 343-355.
Darvishi, A., Shaygan, M., Nabavy, O., Azizi, R., Hossainpouri, A.M., Kavousi, M. and Darvishi, B. External sources of Iran’s pervasive dust storms. In: University of Tehran RS and GIS Center (UT-RGC), Report 2012; 3: 72 P.
Doell, P. and Siebert S. Global modeling of irrigation water requirements. In: Water Res. Res., 2002; 38: 1010-38.
FAO. Improving Productivity of Dry land Areas. Committee on Agriculture (Ninth session). FAO, Rome. http://www.fao.org/docrep/meeting/011/ag415e /ag415e 04.htm#4.1, 1987; 2-10.
Fitzpatrick, E.A. Soils, Addison-Wesley-Longman, Reading, Mass. 1980; 4-8.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Van Dorland, R. Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, eds Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007; 131-217.
Gerivani, H., Lashkaripur, G. H., Ghafoori, M. and Jalili, N. The Source of Dust Storm in Iran: A Case Study based on Geological Information and Rainfall Data. Carpathian J. Earth Environ. Sci., 2011; 6 (1): 297-308.
Gillette, D.A. A wind tunnel simulation of the erosion of soil: effect of soil texture, sandblasting, wind speed and soil condition on dust production. Atmos. Environ., 1978; 12: 1735-1743.
Gillette, D.A., Adams, J., Endo, C. and Smith, D. Threshold velocities for input of soil particles into the air by desert soils. J. Geophys. Res., 1980; 85: 5621-5630.
Gillies, J.A., Etyemezian, V., Kuhns, H., Nikolic, D.  Gillette, D.A. Effect of vehicle characteristics on unpaved road dust emissions. Atmos. Environ., 2005; 39(13): 2341-2347.
Gomes, L., Arrúe, J.L., López, M.V., Sterk, G., Richard, D., Gracia, R., Sabre, M., Gaudichet, A. and Frangi, J.P. Soil aerosol production in a semi-arid agricultural area of Spain: the WELSONS project. Catena, 2003; 52 (3-4): 235-256.
Hagen, L.J. A wind erosion prediction system to meet the users’ need. J. Soil Water Conserv., 1991; 46 (2): 106-111.
Huading, S., Jiyuan, L., Dafang, Z. and Yunfeng, H. Using the RBFN model and GIS technique to assess wind erosion hazard of Inner Mongolia, China. Land Degrad. Develop. 2007; 18: 413-422.
Huete, A., Didana, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G. Overview of radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 2002; 83: 195-213.
Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman, W.T., Sandquist, D.R., Potts, D.L. and Schwinning, S. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 2004; 141: 254-268.
Karimi, N., Moridnejad, A., Golian, S., Samani, J. M. V., Karimi, D. and Javadi, S. Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Can. J. Remote Sensing, 2012; 38(5): 586-599.
Kutiel, H. and Furman, H. Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor Built Environ., 2003; 12: 419-426.
Larney, F.J., Bullock, M.S., Janzen, H.H., Ellert, B.H. and Olson, E.S. Wind erosion effects on nutrient redistribution and soil productivity. J Soil Water Conserv, 1998; 53(2): 133-140.
Linderman, M., Rowhani, P., Benz, D., Serneels, S. and Lambin, E.F. Land-cover change and vegetation dynamics across Africa. J. Geophys. Res., 2005; 4: 110-121.
Loosmore, G.A. and Hunt, J.R. Dust resuspension without saltation. J. Geophys. Res., 2000; 105(20): 663-672.
Lyles, L. Basic wind erosion processes. Agr. Ecosyst. Enuiron., 1988; 22/23: 91-101.
Lyon, D.J. and Smith, J.A. Wind Erosion and Its Control. Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture.http://www.ianrpubs.unl.edu/pages/publicationD.jsp?publicationId=130. 2010; 2-8.
Marticorena, B. and Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 1995; 16415–16430.
McTainsh, G. and Strong, C. The role of aeolian dust in ecosystems. Geomorphology, 2007; 89: 39-54.
Munson, S.M., Belnap, J. and Okin, S.G. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2011; 108(10): 3854-3859.
Myneni, R.B., Hall, F.G., Piers, J. and Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens., 1995; 33: 481-486.
Nagler, P.L., Cleverly, J., Glenna, E., Lampkin, D. and Hu, P. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens. Environ., 2005; 94: 17-30.
NASA Earth Observatory. http:// earthobservatory.nasa.gov/? eocn=topnav and  eoci= home. 2008; 1-2.
Okin, G.S. A new model of wind erosion in the presence of vegetation, J. Geophys. Res., 2008; 113: 1-11.
Parvari, S.H., Pahlavanravi, A., MoghaddamNia, A.R., Dehvari, A.H. and Parvari, P. Application of methodology for mapping environmentally sensitive areas (ESAs) to desertification in dry bed of Hamoun Wetland (Iran). Int. J. Nat. Resour. Mar. Sci., 2011; 1(1): 65-80. 
Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J. and Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol.,2005; 20 (9): 503-510.
Prospero, J., Ginoux, M., Torres, P., Nicholson, S.E. and Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys.,2002; 40: 2-31.
Sadoddin, A., Akhzari, D. and Sheikh, V. Prediction of the vegetation management impacts on reduction of wind erosion risk in the southern parts of the Varamin Plain, Iran. Desert: 2011; 16: 133-141.
Sissakian V. K., Al-Ansari N. and Knutsson S. Sand and dust storm events in Iraq. Nat. Sci., 2013; 5 (10): 1084-1094.
Solar and Wind Energy Resource Assessment (SWERA). Wind energy map of East Asia. http://maps.nrel.gov/swera?visible=swera_wind_nasa_ lo_ res and opacity=50 and extent=38.79,29.06,48.56,37.38, 2005; 1-2.
Tegen, I., Harrison, S.P., Kohfeld, K., Prentice, I.C., Coe, M.T. and Heimann, M. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. Journal of Geophysical Research, 107 (D21), AAC 14-1-AAC14-27, 4576. 2002; 14-27.
Trigo, R. M., Gouveia, C. M. and Barriopedro, D. The intense 2007-2009 drought in the Fertile Crescent: Impacts and associ- ated atmospheric circulation, Agr. Forest Meteorol, 2010; 150: 1245–1257.
Tucker, C.J., Dregne, H.E. and Newcomb, W.W. Expansion and contraction of the Sahara desert from 1980 to 1990, Science, 1991; 253: 299-301.
Yan, Y., Xu, X., Xin, X., Yang, G., Wang, X., Yan, R. and Chen, B. Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China. Catena, 2011; 87: 351-356.
Zakaria, S., Al-Ansari, N., Ezz-Aldeen, M. and Knutsson, S.  Rain Water Harvesting at Eastern Sinjar Mountain, Iraq. Geosci. Res., 2012; 3(2): 100-108.
Zhibao, D., Xunming, W. and Lianyou, L. Soil and Water Conservation Society. All rights reserved. J. Soil Water Conserv., 2000; 55(4): 439-444.
Zhu-Guo, M., Cong-Bin, F. and Dan, L. Decadal variations of arid and semi-arid boundary in China. Chinese J. Geophys.,2005; 48(4): 574-581.
Zobler, L. A world soil file for global climate modeling, Tech. Rep. NASA TM– 87802, NASA, Washington, D.C. 1986; 32 P.