Optimal Parameter Estimation for Nonlinear Muskingum Model based on Artificial Bee Colony Algorithm

Authors
1 Associate Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
2 Former M.Sc. Student, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
3 Associate Professor of Hydrology, Department of Rehabilitation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Karaj, Iran
Abstract
Parameter estimation of the nonlinear Muskingum model is a highly nonlinear optimization problem. Although various techniques have been applied to optimize the coefficients of the nonlinear Muskingum flood routing models, but an efficient method for this purpose in the calibration process is still lacking. The accuracy of artificial bee colony (ABC) algorithm is investigated in this paper to optimize the coefficients of nonlinear Muskingum model. The performance of this algorithm was compared with other optimization techniques. For evaluating the ability of the ABC algorithm, several statistical criteria such as sum of the square error, sum of the absolute error, mean absolute error and mean relative error were used in the present study. ABC is an intelligent algorithm, which can effectively overcome the prematurity and slowed convergence speed of the traditional evolution algorithms. It determines the best parameter values in terms of the sum of square residual between the observed and routed outflows. The simulation results show that the performance of ABC algorithm with the sum of the square of the deviations between the computed and observed outflows (SSQ) of 35.62 m3 s-1, the sum of the absolute value of the deviations between the computed and observed outflows coefficients (SAD) of 23.2 m3 s-1, the mean absolute errors between the routed and observed outflows (MAE) of 1.05 m3 s-1 and the mean relative errors between the routed and observed outflows (MRE) of 2.9% is comparable to those of other algorithms. Thus ABC provided an efficient way for parameter optimization of the nonlinear Muskingum model.
Keywords

Aldama, A. Least-squares parameter estimation for Muskingum flood routing, J. Hydraul. Eng., 1990; 116(4): 580-586.
Al-Humoud, J. and Esen, I. Approximate methods for the estimation of Muskingum flood routing parameters, Water Resour. Manag., 2006; 20(6): 979-990.
Barati, R. Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm, J. Hydrol. Eng., 2011; 16(11): 946-954.
Chen, J. and Yang, X. Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm, Commun Nonlinear Sci. Numer. Simul., 2007; 12(5): 849-858.
Chow, V.T., Maidment, D. and Larry, W.M. Applied Hydrology, McGraw-Hill Publishing Company, 1988; 527 P.
Chu, H.J. The Muskingum flood routing model using a neuro-fuzzy approach, KSCE J. Civ. Eng., 2009; 13(5): 371-376.
Chu, H.J. and Chang, L.C. Applying particle swarm optimization to parameter estimation of the nonlinear uskingum model, J. Hydro. Eng., 2009; 14(9): 1024-1027.
Das, A. Parameter estimation for Muskingum models, J. Irrig. Drain. Eng.-ASCE, 2004; 130(2): 140-147.
Geem, Z.W. Parameter estimation for the nonlinear Muskingum model using the BFGS technique, J. Irrig. Drain. Eng.-ASCE, 2006; 36: 353-363.
Geem, Z.W. Issues in optimal parameter estimation for the nonlinear Muskingum flood routing model, Eng. Optim., 2014; 46(3): 328-339.
Gill, M.A. Flood routing by the Muskingum method, J. Hydrol., 1978; 36: 353-363.
Karaboga, D. An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department. 2005; 10 P.
Karaboga, D. and Basturk, B.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 2007; 39(3): 459-471.
Karahan, H. Predicting Muskingum flood routing parameters using spreadsheets, Comput. Appl. Eng. Educ., 2012; 20(2): 280-286.
Karahan, H., Gurarslan, G., Geem, Z.W. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm, J. Hydrol. Eng., 2012; 18(3): 352-360.
Kim, J.H., Geem, Z.W. and Kim, E.S. Parameter estimation of the nonlinear Muskingum model using harmony search, J. Water Resour. Pl. Man.-ASCE, 2001; 37(5): 1131-1138.
Kisi, O., Ozkan, C. and Akay, B. Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm, J. Hydrol., 2012; 428-429: 94-103.
Luo, J., and Xie, J. Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm, J. Hydrol. Eng., 2010; 15(10): 844-851.
Maidment, D.R. Handbook of Hydrology, McGraw-Hill Publishing Company, 1992; 1424 P.
Mohan, L. Parameter estimation of nonlinear Muskingum models using genetic algorithm, J. Hydrau. Eng., 1997; 123(2): 137-142.
Singh, V.P. and Scarlators, P.D. Analysis of nonlinear Muskingum flood routing, J. Hydrau. Eng., 1989; 113(1): 61-79.
Tung, Y.-K. Flood routing by nonlinear Muskingum method, J. Hydrau. Eng., 1985; 111(12): 1447-1460.
Wang, W., Kang, Y. and Qiu, L. Optimal parameter estimation for Muskingum model using a modified particle swarm algorithm, Third International Joint Conference on Computational Science and Optimization (CSO) 28-31 May, 2010; 153-156.
Wang, W., Xu, Z., Qiu, L. and Xu, D. Hybrid chaotic genetic algorithms for optimal parameter estimation of Muskingum flood routing model, paper presented at International Joint Conference on Computational Sciences and Optimization (CSO), 24-26 April, 2009; 215-218.
Wilson, E.M. Engineering Hydrology, MacMillan Education Ltd., Hampshire, U.K., 1974; 182 P.
Yoon, J. and Padmanabhan, G. Parameter estimation of linear and nonlinear Muskingum models, J. Water Resour. Pl. Man.-ASCE, 1993; 119(5): 600-610.