Aldama, A. Least-squares parameter estimation for Muskingum flood routing, J. Hydraul. Eng., 1990; 116(4): 580-586.
Al-Humoud, J. and Esen, I. Approximate methods for the estimation of Muskingum flood routing parameters, Water Resour. Manag., 2006; 20(6): 979-990.
Barati, R. Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm, J. Hydrol. Eng., 2011; 16(11): 946-954.
Chen, J. and Yang, X. Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm, Commun Nonlinear Sci. Numer. Simul., 2007; 12(5): 849-858.
Chow, V.T., Maidment, D. and Larry, W.M. Applied Hydrology, McGraw-Hill Publishing Company, 1988; 527 P.
Chu, H.J. The Muskingum flood routing model using a neuro-fuzzy approach, KSCE J. Civ. Eng., 2009; 13(5): 371-376.
Chu, H.J. and Chang, L.C. Applying particle swarm optimization to parameter estimation of the nonlinear uskingum model, J. Hydro. Eng., 2009; 14(9): 1024-1027.
Das, A. Parameter estimation for Muskingum models, J. Irrig. Drain. Eng.-ASCE, 2004; 130(2): 140-147.
Geem, Z.W. Parameter estimation for the nonlinear Muskingum model using the BFGS technique, J. Irrig. Drain. Eng.-ASCE, 2006; 36: 353-363.
Geem, Z.W. Issues in optimal parameter estimation for the nonlinear Muskingum flood routing model, Eng. Optim., 2014; 46(3): 328-339.
Gill, M.A. Flood routing by the Muskingum method, J. Hydrol., 1978; 36: 353-363.
Karaboga, D. An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department. 2005; 10 P.
Karaboga, D. and Basturk, B.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 2007; 39(3): 459-471.
Karahan, H. Predicting Muskingum flood routing parameters using spreadsheets, Comput. Appl. Eng. Educ., 2012; 20(2): 280-286.
Karahan, H., Gurarslan, G., Geem, Z.W. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm, J. Hydrol. Eng., 2012; 18(3): 352-360.
Kim, J.H., Geem, Z.W. and Kim, E.S. Parameter estimation of the nonlinear Muskingum model using harmony search, J. Water Resour. Pl. Man.-ASCE, 2001; 37(5): 1131-1138.
Kisi, O., Ozkan, C. and Akay, B. Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm, J. Hydrol., 2012; 428-429: 94-103.
Luo, J., and Xie, J. Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm, J. Hydrol. Eng., 2010; 15(10): 844-851.
Maidment, D.R. Handbook of Hydrology, McGraw-Hill Publishing Company, 1992; 1424 P.
Mohan, L. Parameter estimation of nonlinear Muskingum models using genetic algorithm, J. Hydrau. Eng., 1997; 123(2): 137-142.
Singh, V.P. and Scarlators, P.D. Analysis of nonlinear Muskingum flood routing, J. Hydrau. Eng., 1989; 113(1): 61-79.
Tung, Y.-K. Flood routing by nonlinear Muskingum method, J. Hydrau. Eng., 1985; 111(12): 1447-1460.
Wang, W., Kang, Y. and Qiu, L. Optimal parameter estimation for Muskingum model using a modified particle swarm algorithm, Third International Joint Conference on Computational Science and Optimization (CSO) 28-31 May, 2010; 153-156.
Wang, W., Xu, Z., Qiu, L. and Xu, D. Hybrid chaotic genetic algorithms for optimal parameter estimation of Muskingum flood routing model, paper presented at International Joint Conference on Computational Sciences and Optimization (CSO), 24-26 April, 2009; 215-218.
Wilson, E.M. Engineering Hydrology, MacMillan Education Ltd., Hampshire, U.K., 1974; 182 P.
Yoon, J. and Padmanabhan, G. Parameter estimation of linear and nonlinear Muskingum models, J. Water Resour. Pl. Man.-ASCE, 1993; 119(5): 600-610.