Parametric and Non-Parametric Trend of Reference Evapotranspiration and its key influencing climatic variables (Case study: Southern Iran)

Authors
1 Management Center for Strategic Projects, Fars Organization Center of Jahad-e-Agriculture, Shiraz, Iran
2 Department of Civil and Environmental Engineering and Department of Biological and Agricultural Engineering, Texas A & M University, Scoates Hall, College Station, USA
Abstract
Evapotranspiration is one of the most important components of the hydrological cycle which is directly influenced by atmospheric conditions. This study investigated annual and seasonal trends in reference evapotranspiration (ET0) and its key influencing climatic variables during 1966-2005 at 10 stations in southern Iran (with centrality of Fars province). First, multivariate regression analysis was performed to identify the major meteorological variables affecting ET0. Second, annual and seasonal trends in climatic variables as well as ET0 were assessed using the Mann-Kendall test, Spearman's rho, the Pearson correlation and linear regression to evaluate their contribution to the temporal trend in ET0. Results suggested that the more effective variables for ET0 were wind speed (U2), relative humidity (RH) and sunshine hours (n). Also, the majority of trends in seasonal and annual ET0 were non-significant and after that decreasing and increasing trends had higher frequencies. In addition, distributions of relative frequencies of trend types at all considered time-scales were similar for both parametric and non-parametric techniques. Hence, the disagreement between parametric and non-parametric trend results did not depend on the degree of normality in the annual and seasonal ET0 distributions in the study area.
Keywords

Ahani, H., Kherad, M., Kousari, M.R., Rezaeian Zadeh, M., Karampoor, M.A., Ejraee, F. and Kamali, S. An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theor. Appl. Climatol., 2012; 109(3-4): 361-382.
Allen, R.G., Periera, L.S., Raes, D. and Smith, M. Crop evapotranspiration: guideline for computing crop water requirement. In: FAO Irrigation and Drainage Paper, FAO, Rome, Italy.1998; No. 56.
ASCE. The ASCE standardized reference evapotranspiration equation. The Task Committee on Standardization of Reference Evapotranspiration, Environ-mental and Water Resources Institute of the American Society of Civil Engineers, Reston, 2005; VA 171.
Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S. and Singh, R. Temporal trends in estimates of reference evapotranspiration over India. J. Hydrol. Eng., 2009; 14(5): 508-515.
Brutsaert, W. and Parlange, M.B., Hydrological cycle explains the evaporation paradox. Nature, 1998; 396: 30.
Burn, D.H. and Hesch, N.M., Trends in evaporation for the Canadian Prairies. J. Hydrol., 2007; 336: 61-73.
Busuioc, A. and Von Storch, H. Changes in the winter precipitation in Romania and its relation to the large-scale circulation. Tellus, 1996; 48A: 538-552.
Chattopadhyay, N. and Hulme, M. Evaporation and potential evapotranspiration in India under conditions of recent and future climatic change. Agric Forest Meteorol., 1997; 87 (1): 55-74.
Chen, S.B., Liu, Y.F. and Thomas, A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961-2000. Climatic Change,2006; 76: 291-319.
De Martonne, E. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorologie, 1926; 2: 449-458.
Dinpashoh, Y., Jhajharia D., Fakheri-Fard, A., Singh V.P. and Kahya, E. Trends in reference evapotranspiration over Iran. J. Hydrol., 2011; 399: 422-433.
Donohue, R.J., McVicar, T.R. and Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol., 2010; 386: 186-197.
Fontenot, R.L. An evaluation of reference evapotranspiration models in Louisiana. Master’s thesis, Louisiana State University and A&M College, Baton Rouge, LA. 2004.
Gao, G., Xu, C.Y., Chen, D. and Singh, V.P. Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch. Environ. Res. Risk. Assess., 2012; 26(5): 655-669.
Gauthier, T.D. Detecting trends using spearman's rank correlation coefficient. Environ. Forensics., 2001; 2: 359-362.
Golubev, V., Lawrimore, J., Groisman, P., Speranskaya, N., Zhuravin, S., Menne, M., Peterson, T. and Malone, R. Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett., 2001; 28 (13): 2665-2668.
Gong, L., Xu, C.-Y, Chen, D., Halldin, S. and Chen, Y.D. Sensitivity of Penman Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol., 2006; 329, 620-629.
Hobbins, M.T., Ramírez, J.A. and Brown, T.C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary?. Geophys. Res. Lett., 2004; 31: L13503. doi: 10.1029/2004-GL019846.
Huth, R. Testing for trends in data unevenly distributed in time. Theor. Appl. Climatol., 1999; 64: 151-162.
Huth, R. and Pokorná, L. Parametric versus non-parametric estimates of climatic trends. Theor. Appl. Climatol., 2004; 77: 107-112.
IPCC. Climate Change 2001: Impacts, adaptation, and vulnerability. IPCC, UNEP WMO, Arendal, Norway. 2001.
IRIMO. Iranian Meteorological Office. Data Processing Center, Tehran, Iran. 2007.
Jaagus, J. Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theor. Appl. Climatol., 2006; 83: 77-88.
Jhajharia, D., Shrivastava, S. K., Sarkar, D. and Sarkar S. Temporal characteristics of pan evaporation trends under the humid conditions of northeast India, Agric Forest Meteorol., 2009; 149: 763-770.
Jhajharia, D., Dinpashoh, Y., Kahya, E., Singh, V. P. and Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. Hydro. Process., 2012; 26(3): 421-435.
Kousari, M.R. and Ahani, H. An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran. Int. J. Climatol., 2012; 32(15): 2387–2402.
Liu, B., Xu, M., Henderson, M. and Gong, W. A spatial analysis of pan evaporation trends in China, 1955-2000. J. Geophys. Res., 2004; 109: D1516. doi: 10.1029/2004 JD004511.
Mishra, A.K. and Singh, V.P. Changes in extreme precipitation in Texas. J Geophys Res., 2010; 115: D14106. doi: 10.1029/2009JD013398.
Modarres, R. and da Silva, V.P.R. Rainfall trends in arid and semi-arid regions of Iran. J. Arid. Environ., 2007; 70: 344-355.
Nafarzadegan, A.R., Rezaeian-Zadeh, M., Kherad, M., Ahani, H., Gharehkhani, A., Karampoor, M.A. and Kousari, M.R. Drought area monitoring during the past three decades in Fars province, Iran. Quatern. Int., 2012; 250: 27-36.
Partal, T. and Kahya, E. Trend analysis in Turkish precipitation data. Hydro Process. 2006; 20: 2011-2026.
Peterson, T.C., Golubev, V.S. and Groisman, P.Y. Evaporation losing its strength. Nature, 1995; 337: 687-688.
Roderick, M.L. and Farquhar, G.D. Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol., 2004; 24(9): 1077-1090.
Roderick, M.L. and Farquhar, G.D. Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol., 2005; 25 (15): 2031-2039.
Roderick, M.L., Rotstayn, L.D., Farquhar, G.D. and Hobbins M.T. On the attribution of changing pan evaporation. Geophys. Res. Lett., 2007; 34: L17403. doi: 10.1029/2007 GL031166.
Sneyers, R. On the statistical analysis of series of observations. WMO Technical Note (143). World Meteorological Organization, Geneve, 1990; 192P.
Soufi, M. Morpho-climatic classification of gullies in Fars province, southwest of Iran. ISCO 2004 -13th International Soil Conservation Organization Conference, Brisbane. 2004.
Tabari, H. and Hosseinzadeh Talaee, P. Temporal variability of precipitation over Iran: 1966-2005. J. Hydrol., 2011; 396: 313-320.
Tabari, H. and Marofi, S. Changes of pan evaporation in the west of Iran. Water Resour. Manage., 2011; 25: 97-111.
Tabari, H., Marofi, S., Hosseinzadeh Talaee, P. and Mohammadi, K. Trend analysis of reference evapotranspiration in the western half of Iran. Agric Forest Meteorol., 2011a; 151: 128-136.
Tabari, H., Shifteh Somee, B. and Rezaeian Zadeh, M. Testing for long-term trends in climatic variables in Iran. Atmos. Res., 2011b; 100: 132-140.
Thode, H.C., Jr. Testing for normality. New York, Basel: Marcel Dekker, 2002; 479P.
Thomas, A. Spatial and temporal characteristics of potential evapotranspiration trends over China. Int. J. Climatol., 2000; 20: 381-396.
UNESCO. Map of the world distribution of arid regions. Map at scale 1:25,000,000 with explanatory note. United Nations Educational, Scientific and Cultural Organization, Paris, 1979; 54P. ISBN 92-3-101484-6.
Wang, P., Yamanaka, T. and Qiu, G.Y. Causes of decreased reference evapotranspiration and pan evaporation in the Jinghe River catchment, northern China. The Environ-mentalist, 2011; doi: 10.1007/s10669-011-9359-0.
Wang, W., Chen, X., Shi, P. and Van Gelder, P.H. A.J. M., Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China. Hydrol. Earth. Syst. Sci., 2008; 12: 207-221.
Wang, Y., Jiang, T., Bothe, O. and Fraedrich, K. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theor. Appl. Climatol., 2007; 90: 13-23.
Xu, C.-Y., Gong, L., Jiang, T., Chen, D. and Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol., 2006;327: 81-93.
Yue, S., Pilon, P. and Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol., 2002; 259 (1-4): 254-271.
Zhang, Q., Xu, C.-Y., Chen, Y.D. and Ren, L. Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China. Stoch Environ. Res. Risk Assess., 2011; 25: 139-150.
Zhang, X., Ren, Y., Yin, Z-Y., Lin, Z. and Zheng, D. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004. J. Geophys. Res., 2009; 114: D15105. doi: 10.1029/2009-JD011753.
Zhang, Y., Liu, C., Tang, Y. and Yang, Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res., 2007; 112: D12110. doi: 10.1029/2006- JD008161.