Volume 9, Issue 1 (2021)                   ECOPERSIA 2021, 9(1): 23-31 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hojjati S, Tavakoli M, Kooch Y, Tafazoli M. Soil Contamination Pattern Affected by Coal Mining Activities in a Deciduous Temperate Forest. ECOPERSIA 2021; 9 (1) :23-31
URL: http://ecopersia.modares.ac.ir/article-24-40920-en.html
1- Department of Forest Sciences and Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran , s_m_hodjati@yahoo.com
2- Department of Forest Sciences and Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3- Department of Forest Sciences and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Nur, Iran, Department of Forest Sciences and Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran. Postal Code: 48441-74111.
Abstract:   (2102 Views)
Aims: The present investigation aimed to study the effect of traditional-coal-mining on the spatial distribution pattern of soil properties in the Lavij-Forest located in the western part of the Hyrcanian area-North Iran.
Materials & Methods: After selecting a mine area, 16 plots (20×20m) were established by systematic-randomly (60×60m) in an area of 4 ha (200×200m-mine entrance placed at center) which was affected by coal-mining. An area adjacent to the mine (same site conditions) that was not affected by the mining activity considered as the control-area. In order to investigate soil Physio-chemical properties one sample was taken from the 0-10cm depth in each plot. To study the spatial-pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80×80m (the mine at the center) was considered and 80 soil samples were systematic-randomly taken (10m intervals). Geostatistical analysis was performed via Kriging method and GS+ software.
Findings: Results showed that mining had led to a significant decrease in soil moisture, pH, EC, nitrogen, and potassium level. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97±0.30, Cd: 184.47±6.26mg.Kg-1) in comparison to control-area (Pb: 9.42±0.17, Cd: 131.71±15.77mg.Kg-1). The range value calculated for variograms of cadmium and lead was 210m. The kriged maps showed that the concentration of cadmium and lead near the mine crater was considerably higher in comparison with adjacent points.
Conclusion: The findings showed that coal mining activity had negative effects on the forest soil and it is necessary to consider reclamation of contaminated soil in these areas.
Full-Text [PDF 1111 kb]   (1467 Downloads)    
Article Type: Original Research | Subject: Pollution (Soil, Water and Air)
Received: 2020/02/23 | Accepted: 2020/05/2 | Published: 2020/10/24

References
1. Kooch Y, Hosseini SM, Scharenbroch BC, Hojjati SM, Mohammadi J. Pedodiversity in the Caspian forests of Iran. Geoderma Reg. 2015;5:4-14. [Link] [DOI:10.1016/j.geodrs.2015.01.005]
2. Marvie Mohadjer MR. Silviculture. Tehran: Tehran University Press; 2005. [Link]
3. Sagheb Talebi K, Sajedi T, Pourhashemi M. Forests of Iran: A treasure from the past, a hope for the future. Berlin: Springer Science & Business Media; 2013. [Link] [DOI:10.1007/978-94-007-7371-4]
4. Haghverdi K, Kooch Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. Catena; 2019;178:335-44. [Link] [DOI:10.1016/j.catena.2019.03.041]
5. Poorzady M, Bakhtiari F. Spatial and temporal changes of Hyrcanian forest in Iran. iForest. 2009;2(5):198-206. [Link] [DOI:10.3832/ifor0515-002]
6. Tavakoli M, Hojjati SM, Kooch Y. The effect of traditional coal mining on soil physical and chemical properties and heavy metals concentrations in Lavij forest. Iran J For. 2019;11(1):81-93. [Persian] [Link]
7. Bahrami A, Emadodin I, Ranjbar Atashi M, Bork HR. Land-use change and soil degradation: A case study, north of Iran. Agric Biol J N Am. 2010;1(4):600-5. [Link]
8. De Quadros PD, Zhalnina K, Davis-Richardson AG, Drew JC, Menezes FB, Camargo FAO, et al. Coal mining practices reduce the microbial biomass, richness and diversity of soil. Appl Soil Ecol. 2016;98:195-203. [Link] [DOI:10.1016/j.apsoil.2015.10.016]
9. Pandey B, Mukherjee A, Agrawal M, Singh S. Assessment of seasonal and site specific variations in soil physical, chemical and biological properties around opencast coal mines. Pedosphere. 2017;29(5):642-55. [Link] [DOI:10.1016/S1002-0160(17)60431-4]
10. Mortazavi S, Saberinasab F. Heavy metals assessment of surface sediments in Mighan wetland using the sediment quality index. Ecopersia. 2017;5(2):1761-70. [Persian] [Link]
11. Hu Z, Wang C, Li K, Zhu X. Distribution characteristics and pollution assessment of soil heavy metals over a typical nonferrous metal mine area in Chifeng, Inner Mongolia, China. Environ Earth Sci. 2018;77:638. [Link] [DOI:10.1007/s12665-018-7771-1]
12. Singh MP, Singh JK, Mhonka R. Forest environment and biodiversity. Delhi: Daya Publishing House; 2007. [Link]
13. McLaughlin MJ, Singh BR. Cadmium in soils and plants in: Developments in plantand soil sciences. Berlin: Springer Science & Business Media; 2012. [Link]
14. Rignell-Hydbom A, Skerfving S, Lundh T, Lindh CH Elmstah S, Bjellerup P, et al. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women. Environ Res. 2009;109(8):991-6. [Link] [DOI:10.1016/j.envres.2009.08.008]
15. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 2003;50(6):775-80. [Link] [DOI:10.1016/S0045-6535(02)00232-1]
16. Worrall RC, Spain AV, Tibbett M. October. Establishment of native tree species on coal tailings-lessons from Ebenezer mine, Queensland, Australia. In Proceedings Third International Seminar on Mine Closure, 14-17 October 2008, Johannesburg, Africa. Cairns: James Cook University; 2008. [Link] [DOI:10.36487/ACG_repo/852_69]
17. Li-Qun C, Yeboah S, Cheng-Sheng S, Xiao-Dong C, Ren-Zhi Z. GIS-based assessment of arable layer pollution of copper (Cu), zinc (Zn) and lead (Pb) in Baiyin district of Gansu province. Environ Earth Sci. 2015;74:803-11. [Link] [DOI:10.1007/s12665-015-4084-5]
18. Pandey B, Agrawal M, Singh S. Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotoxicology. 2014;23(8):1474-83. [Link] [DOI:10.1007/s10646-014-1289-4]
19. Rai AK, Paul B, Singh G. Assessment of top soil quality in the vicinity of subsided area in Jharia coalfield, Dhanbad, Jharkhand. Re Opin. 2010;2(9):18-23. [Link]
20. Tapadar SA, Jha DK. Influence of open cast mining on the soil properties of Ledo Colliery of Tinsukia district of Assam, India. Int J Sci Res Publ. 2015;5:1-5. [Link]
21. Maiti SK. Bioreclamation of coalmine overburden dumps-with special empasis on micronutrients and heavy metals accumulation in tree species. Environ Monit Assess. 2007;125(1-3):111-22. [Link] [DOI:10.1007/s10661-006-9244-3]
22. Rout TK, Masto RE, Padhy PK, George J, Ram LC, Maity S. Dust fall and elemental flux in a coal mining area. J Geochem Explor. 2014;144:443-55. [Link] [DOI:10.1016/j.gexplo.2014.04.003]
23. Sadhu K, Adhikari K, Gangopadhyay A. Effect of mine spoil on native soil of Lower Gondwana coal fields: Raniganj coal mines areas, India. Agris Online Pap Econ Inf. 2012;2(3):1675-87. [Link] [DOI:10.6088/ijes.00202030052]
24. Wu Q, Xing LT, Ye CH, Liu YZ. The influences of coal mining on the large karst springs in north China. Environ Earth Sci. 2011;64:1513-23. [Link] [DOI:10.1007/s12665-009-0376-y]
25. Zang F, Wang S, Nan Z, Ma J, Zhang Q, Chen Y, et al. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma. 2017;305:188-96. [Link] [DOI:10.1016/j.geoderma.2017.06.008]
26. Dayani M, Mohammadi J. Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan, Iran. Pedosphere. 2010;20(5):568-77. [Link] [DOI:10.1016/S1002-0160(10)60046-X]
27. Rodriguez JA, Nanos N, Grau JM, Gil L, Lopez-Arias M. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere. 2008;70(6):1085-96. [Link] [DOI:10.1016/j.chemosphere.2007.07.056]
28. Basta NT, Pantone DJ, Tabatabai MA. Path analysis of heavy metal adsorption by soil. Agron J. 1993;85(5):1054-7. [Link] [DOI:10.2134/agronj1993.00021962008500050018x]
29. Buttafuoco G, Guagliardi I, Cicchella D, DE Rosa R. Assessment of lead contamination in urban soils in an area of southern Italy. In 19th Congress of Soil Science, Soil Solutions for a Changing World, 1-6- August, Brisbane, Australia. Unknown Publisher; 2010. [Link]
30. Amini M, Afyuni M, Khademi H, Abbaspour KC, Schulin R. Mapping risk of cadmium and lead contamination to human health in soils of central Iran. Sci Total Environ. 2005;347(1-3):64-77. [Link] [DOI:10.1016/j.scitotenv.2004.12.015]
31. Saby N, Arrouays D, Boulonne L, Jolivet C, Pochot A. Geostatistical assessment of Pb in soil around Paris, France. Sci Total Environ. 2006;367(1):212-21. [Link] [DOI:10.1016/j.scitotenv.2005.11.028]
32. Sayer J, Ishwaran N, Thorsell J, Sigaty T. Tropical forest biodiversity and the world heritage convention. AMBIO J Hum Environ. 2000;29(6):302-10. [Link] [DOI:10.1579/0044-7447-29.6.302]
33. Forests, Range and Watershed Management Organization of Iran. Forest management plan of Lavij forest. Tehran: Forests, Range and Watershed Management Organization of Iran; 1996. [Link]
34. Kooch Y, Hosseini SM, Zaccone C, Jalilvand H, Hojjati SM. Soil organic carbon sequestration as affected by afforestation: The Darab Kola forest north of Iran case study. J Environ Monit. 2012;14(9):2438-46. [Link] [DOI:10.1039/c2em30410d]
35. Rafeiejahed RR, Hosseini SM. The effect of natural and planted forest stands on soil fertility in the Hyrcanian region, Iran. Biodivers J Biol Divers. 2014;15(2):206-14. [Link] [DOI:10.13057/biodiv/d150213]
36. Ersoy A, Yunsel TY, Atici U. Geostatistical conditional simulation for the assessment of contaminated land by abandoned heavy metal mining. Environ Toxicol. 2008;23(1):96-109. [Link] [DOI:10.1002/tox.20314]
37. Brasher BR, Franzmeier DP, Valassis V, Davidson SE. Use of saran resin to coat natural soil clods for bulk-density and water-retention measurements. Soil Sci. 1966;101(2):108. [Link] [DOI:10.1097/00010694-196602000-00006]
38. Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington: United States Department of Agriculture; 1954. [Link]
39. Cottenie A. Soil and plant testing and analysis as a basis of fertilizer recommendation. Soils Bulletin. 1980;38:295. [Link]
40. Jackson ML. Soil chemical analysis: Advanced course. Madison: UW Madison Libraries; 2005. [Link]
41. De Benedetto D, Castrignano A, Sollitto D, Modugno F, Buttafuoco G, lo Papa G. Integrating geophysical and geostatistical techniques to map the spatial variation of clay. Geoderma. 2012;171-172:53-63. [Link] [DOI:10.1016/j.geoderma.2011.05.005]
42. Isaaks EH. An introduction to applied geostatistics. Oxford: Oxford University Press; 1989. [Link]
43. Pannatier Y. Variowin: Software for spatial data analysis in 2D. Berlin: Springer Science & Business Media; 2012. [Link]
44. Jafarian Jeloudar Z, Shabanzadeh S, Kavian A, Shokri M. Spatial variability of soil features affected by landuse type using geostatistics. Ecopersia. 2014;2(3):667-79. [Persian] [Link]
45. Ghose MK. Effect of opencast mining on soil fertility. J Environ Ind Res. 2004;63(12):1006-9. [Link]
46. Singh RP, Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008;28(2);347-58. [Link] [DOI:10.1016/j.wasman.2006.12.010]
47. Richardson JK, Shelton BK, Dicker RJ. Botanical studies of natural and planted vegetation on colliery spoil heaps landscape reclamation. IPC Press Guild ford. 1971;1:84-99. [Link]
48. Haynes RJ, Swift RS. Effects of soil acidification and subsequent leaching on levels of extractable nutrients in a soil. Plant Soil. 1986;95:327-36. [Link] [DOI:10.1007/BF02374613]
49. Wei H, Liu Y, Xiang H, Zhang J, Li S, Yang J. Soil pH responses to simulated acid rain leaching in three agricultural soils. Sustainability. 2020;12(1):280. [Link] [DOI:10.3390/su12010280]
50. Neina D. The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci. 2019:1-9. [Link] [DOI:10.1155/2019/5794869]
51. Talukdar B, Kalita HK, Basumatary S, Sarma D. Impact of coal mining on soil characteristics of Simsang river, Meghalaya India. J Fundam Renew Energy. 2016;2016:1-3. [Link] [DOI:10.4172/2155-9910.1000214]
52. Masto RE, Ram LC, George J, Selvi VA, Sinha AK, Verma SK, et al. Impacts of opencast coal mine and mine fire on the trace elements' content of the surrounding soil vis-a-vis human health risk. Toxicol Environ Chem. 2011;93(2):223-37. [Link] [DOI:10.1080/02772248.2010.510922]
53. Nan Z, Zhao C, Li J, Chen F, Sun W. Relations between soil properties and selected heavy metal concentrations in spring wheat Triticum aestivum L grown in contaminated soils. Water Air Soil Pollut. 2002;133:205-13. [Link] [DOI:10.1023/A:1012962604095]
54. Gjoka F, Felix-Henningsen P, Wegener HR, Salillari I, Beqiraj A. Heavy metals in soils from Tirana Albania. Environ Monit Assess. 2011;172(1-4):517-27. [Link] [DOI:10.1007/s10661-010-1351-5]
55. Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut. 2011;159(1):84-91. [Link] [DOI:10.1016/j.envpol.2010.09.019]
56. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M. Heavy metals in urban soils: A case study from the city of Palermo Sicily, Italy. Sci Total Environ. 2002;300(1-3):229-43. [Link] [DOI:10.1016/S0048-9697(02)00273-5]
57. Zhao L, Xu Y, Hou H, Shangguan Y, Li F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci Total Environ. 2014;468-469:654-62. [Link] [DOI:10.1016/j.scitotenv.2013.08.094]
58. Zhao XR, Nasier T, Cheng YY, Zhan JY, Yang JH. Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation. Huan Jing Ke Xue. 2014;35(6):2392-400. [Link]
59. Dayani M, Mohammadi J, Naderi KM. Geostatistical assessment of Pb and the related soil physical and chemical properties in near-surface soil around Sepahanshahr, Isfahan. Desert. 2010;15(2):139-49. [Persian] [Link]
60. Acosta JA, Faz A, Kalbitz K, Jansen B, Martinez-Martinez S. Heavy metal concentrations in particle size fractions from street dust of Murcia Spain as the basis for risk assessment. J Environ Monit. 2011;13(11):3087-96. [Link] [DOI:10.1039/c1em10364d]
61. Ljung K, Selinus O, Otabbong E, Berglund M. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl Geochem. 2006;21(9):1613-24. [Link] [DOI:10.1016/j.apgeochem.2006.05.005]
62. Wang ZL, Liu CQ. Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China. Chem Geol. 2003;202(3-4):383-96. [Link] [DOI:10.1016/j.chemgeo.2002.05.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.