Volume 9, Issue 2 (2021)                   ECOPERSIA 2021, 9(2): 95-104 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Molaei M, Ghorbani A. Effects of Ecological Factors on the Distribution of Artemisia melanolepis and Artemisia aucheri in Southeast of Sabalan, Iran. ECOPERSIA 2021; 9 (2) :95-104
URL: http://ecopersia.modares.ac.ir/article-24-40093-en.html
1- Department of Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2- Department of Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran , a_ghorbani@uma.ac.ir
Abstract:   (2042 Views)
Aims: This study aimed to assess the relationship between environmental variables (physiographic and soil) and distribution of Artemisia melanolepis and A. aucheri to find the most effective factors on the distribution of these species southeast faced slopes of Sabalan Mt., in the northwest of Iran.
Materials & Methods: 4 sites with the distribution of the genus Artemisia (site with the presence of Artemisia species) and four sites with the absence of 2 Artemisia species were selected. In each site, five transects with a length of 100m (50 one square meter plots) with random- systematically method was established, and the density of Artemisia species and land cover parameters (including percent of litter, stone and gravel, total canopy cover, and bare soil) were recorded in each plot. Seventy-two soil samples were collected from 0-15cm depth. Sampling was conducted from May to July 2015 in the pick growing stage. One-way ANOVA and Canonical Discriminate Analyses (CDA) were used for data analyses.
Finding: The ANOVA and mean comparison results showed that all selected environmental variables except total canopy cover and bare soil had significant differences (p<0.01). The results of CDA showed that two functions justified 76.6 and 23.4 percent, respectively, and 100% of the data variance. Finally, 97.3% of the grouped cases were classified correctly. The elevation, potassium, slope, aspect, stone, and gravel were primarily the most effective factors in the first function in the discrimination of the Artemisia species. Some parameters such as sand, silt, electrical conductivity, total neutralizing value, water-dispersible clay, organic matter, pH, total canopy cover, litter, and bare soil were second effective factors in the discrimination of sites and distribution of Artemisia species.
Conclusion: Although physiography and soil variables affected the establishment of Artemisia species and showed significant differences between the three discriminated groups; however, the degree of importance of physiographic parameters is more significant than soil factors.
Full-Text [PDF 745 kb]   (1137 Downloads)    
Article Type: Original Research | Subject: Ecological Science
Received: 2020/01/23 | Accepted: 2020/03/31 | Published: 2020/10/31
* Corresponding Author Address: Natural Resources Department, Agriculture & Natural Resources Faculty, University of Mohaghegh Ardabili, University Street, Ardabil, Iran. Postal Code: 5619911367.

References
1. An R, Wang HL, Feng XZ, Wu H, Wang Z, Wang Y, et al. Monitoring rangeland degradation using a novel local NPP scaling based scheme over the three-river headwaters region, hinterland of the Qinghai-Tibetan plateau. Quat Int. 2017;444:97-114. [Link] [DOI:10.1016/j.quaint.2016.07.050]
2. Feng J, Wang T, Xie C. Eco-environmental degradation in the source region of the Yellow river, northeast qinghai-Xizang plateau. Environ Monit Assess. 2006;22(1-3):125-43. [Link] [DOI:10.1007/s10661-005-9169-2]
3. Wang G, Ding Y, Wang J, Liu S. Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow rivers in recent 15 years. Acta Geogr Sin. 2004;59(2):163-73. [Link]
4. Ahmadauli V, Ghorbani A, Azimi Motem F, Asghari A, Teymorzadeh A, Badrzadeh M. Study of flora, life form, chrotype, diversity and evenness change under the effect of different grazing pressure from crises centers in southeast of Sabalan. Taxon Biosyst J. 2015;23(7):69-84. [Persian] [Link]
5. Ghafari S, Ghorbani A, Moameri M, Mostafazadeh R, Bidarlord M. Composition and structure of species along altitude gradient in Moghan-Sabalan rangelands, Iran. J Mt Sci. 2018;15(6):1209-28. [Link] [DOI:10.1007/s11629-017-4820-2]
6. Andrieu N, Josein E, Duru M. Relationships between diversity of grassland vegetation, field characteristics and land use management. Agric Ecosyst Environ. 2007;120(2-4):359-69. [Link] [DOI:10.1016/j.agee.2006.10.022]
7. Ghorbani A, Asghari A. Ecological factors affecting the distribution of Festuca ovina in south-eastern rangelands of Sabalan. Iran J Range Desert Res. 2014;21(2):368-81. [Persian] [Link]
8. Bagheri H, Ghorbani A, Zare Chahouki MA, Jafari AA, Sefidi K. Halophyte species distribution modeling with MaxEnt model in the surrounding rangelands of Meighan playa, Iran. Appl Ecol Environ Res. 2017;15(3):1473-84. [Link] [DOI:10.15666/aeer/1503_14731484]
9. Aghajanlou F, Ghorbani A, Zare Chahoki MA, Hashemi Majd K, Mostafazadeh R. The impact of environmental factors on distribution of Ferula ovina (Boiss.) Boiss. in northwest Iran. Appl Ecol Environ Res. 2018;16(2):977-92. [Link] [DOI:10.15666/aeer/1602_977992]
10. Moghaddam MR. Range and range management. Tehran: University of Tehran Press; 1998. [Persian] [Link]
11. Yilmaz H, Yilmaz OY, Akyuz YF. Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model. Ecol Evol. 2017;7(4):1112-24. [Link] [DOI:10.1002/ece3.2766]
12. Yibing Q, Zhaoninig W, Liyun Z, Qingdong S, Jin J, Lisong T. Impact of habitat heterogeneity on plant community pattern in Gurbantunggut desert. J Geogr Sci. 2008;14:447-55. [Link] [DOI:10.1007/BF02837488]
13. Aghajanlou F, Ghorbani A, Zare Chahoki MA, Mostafazadeh R, Hashemi Majd K. Ecological survey of the presence and absence of Ferula ovina (Boiss.) Boiss and Ferula persica willd. in north-western rangelands of Iran (case dtudy: Zanjan province). J Rangel Sci. 2018;8(4):352-62. [Persian] [Link]
14. Ghorbani A, Abbasi M, Asghari A, Omidi A, Zarehesari B. Compare ecological factors affecting distribution species Artemisia fragrans willd and Artemisia austriaca jacq in south-eastern rangelands of Sabalan. J Rangel. 2015;9(2):129-41. [Persian] [Link]
15. Ghorbani A, Sharifi J, Kavianpoor AH, Malekpoor B, Mirzaei Aghche Gheshlagh F. Investigation on ecological characteristics of Festuca ovina in south-eastern rangelands of Sabalan. Iran J Range Desert Res. 2013;20(2):379-96. [Persian] [Link]
16. Ghorbani A, Mohammadi Moghaddam S, Hashemi Majd K, Dadgar D. Spatial variation analysis of soil properties using spatial statistics: A case study in the region of Sabalan mountain, Iran. Eco Mont. 2018;1(1):70-80. [Link] [DOI:10.1553/eco.mont-10-1s70]
17. Zare Hesari B, Ghorbani A, Azimi Motem F, Hashemi Majd K, Asghari A. Study the effect of ecological factors on Artemisia fragrans willd distribution in southeast faced slopes of Sabalan. J Rangel. 2014;8(3):238-50. [Persian] [Link]
18. Molaei Sham Asbi M, Ghorbani A, Sefidi K, Bahrami B, Hashemi Majd K. Study the effective ecological factors on distribution of Artemisia aucheri boiss in southeast faced slopes of Sabalan. J Rangel. 2017;11(2):139-51. [Persian] [Link]
19. Sharifi J, Ghorbani A, Fayyaz M, Eshvari P. Vegetation types and life forms of plants in Alpine rangelands of Sabalan in Ardabil province. Nat Ecosyst Iran. 2016;7(2):65-75. [Persian] [Link]
20. Karamati Jabehdar S, Mirzaei Aghjeh F, Ghorbani A, Fathi Achachlouei B, Navidshad, B. Study the effect of altitude and slope characteristics on minerals content in rangelands soil, plants and sheep milk (Case study: North and southeast Sabalan in Ardabil province). J Rangel. 2014;7(4):330-43. [Persian] [Link]
21. Rechinger KH, editor. Flora Iranica. In: Rechinger KH, Hedge IC. Compositae. Graz: Akademische Druck and Verlagsanatalt; 1986. [Link]
22. Ghorbani A, Bahrami B. Study the influence environmental factors on the distribution of plant species in the southeast rangelands of Sabalan. Res Constr. 2017;30(115):15-29. [Persian] [Link]
23. Barbour MG, Burk JH, Pitts WD. Terrestrial plant ecology. San Francisco: Commings Publishing Company; 1999. [Link]
24. Curtis JT, McIntosh RP. The interrelation of certain analytic and synthetic phytosociological characters. Ecology. 1950;31(3):434-55. [Link] [DOI:10.2307/1931497]
25. Jurgen D, Lobel S, Dolnik C. Species constancy depends on plot size-a problem for vegetation classification and how it can be solved. J Veg Sci. 2009;20(4):754-66. [Link] [DOI:10.1111/j.1654-1103.2009.01073.x]
26. Jalonen J, Vanha-Majamaa I, Tonteri T. Optimal sample and plot size for inventory of field and ground layer vegetation in a mature myrtillus-type boreal spruce forest. Ann Bot Fenn. 1998;35(3):191-6. [Link]
27. Gonzalez XP, Alvarez CJ, Crecente R. Evaluation of land distributions with joint regard to plot size and shape. Agric Syst. 2004;82(1):31-43. [Link] [DOI:10.1016/j.agsy.2003.10.009]
28. Baraniyan E, Bassiri M, Bashari H. Effects of plot size and shape on sample size in vegetation cover measurements (rangeland of Fereidan in Isfahan province). J Rangel. 2014;8(1):25-36. [Persian] [Link]
29. Azarnivand H, Niko S, Ahmadi H, Jafari M, Mashhadi N. Investigation of environmental factors effecting in distribution of plant communities in Damghan (case study: Damghan Semnan province). Iran J Nat Resour J. 2007;60(1):323-41. [Persian] [Link]
30. Klute A, Dirksen C. Hydraulic conductivity of saturated soils (constant head). Madison: Agronomy, American Society of Agronomy; 1986. [Link]
31. Nelson DW, Sommers LE. Total carbon, organic carbon and organic matter. In: Page AL, Miller R, Keeney D. Methods of soil analysis: Part 2. Madison: American Society of Agronomy; 1986. [Link]
32. Gregorich E, Beare M. Physically uncomplexed organic matter. In: Carter MR, Gregorich EG. Soil sampling and methods of analysis. Boca Raton: CRC press; 2008. [Link]
33. Nelson R. Carbonate and gypsum. In: Page AL, Miller R, Keeney D. Methods of soil analysis: Part 2. 2nd Edition. Madison: American Society of Agronomy; 1986. [Link]
34. Rhoades JD. Soluble salts. In: Compbell GS, Nielsen DA, Klute A, editor. Methods of soil analysis: Part 1 Physical and Mineralogical Methods. Madison: American Society of Agronomy; 1986. [Link]
35. Beers TW, Dress PE, Wensel LC. Aspect transformation in productivity research. J For. 1966;64(10):691-2. [Link]
36. Dai Z, Li R, Muhammad N, Brookes P, Wang H, Liu X, et al. Principle component and hierarchical cluster analysis of soil properties following bio char incorporation. Soil Sci Soc Am J. 2013;78(1):205-13. [Link] [DOI:10.2136/sssaj2013.05.0199]
37. Makhdoom V. Fundamental of land-use planning. Tehran: University of Tehran Press; 2001. [Persian] [Link]
38. Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Palmiotto PA, Lafrankie JV, et al. importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecol Res. 2003;18(3):307-20. [Link] [DOI:10.1046/j.1440-1703.2003.00556.x]
39. Zhang Z, Hu G, Ni J. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China. J Mt Sci. 2013;10:95-104. [Link] [DOI:10.1007/s11629-013-2429-7]
40. Yavitt JB, Harms KE, Garcia M, Wright SJ, He F, Mirabello MJ. Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Aust J Soil Res. 2009;47(7):674-87. [Link] [DOI:10.1071/SR08258]
41. Toledo M, Pena-Claros M, Bongers F, Alarcon A, Balcazar J, Chuvina J, et al. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J Ecol. 2012;100(1):253-63. [Link] [DOI:10.1111/j.1365-2745.2011.01890.x]
42. Diaz-Zorita M, Groveand JH, Perfect E. Sieving duration and sieve loading impacts on dry soil fragment size distributions. Soil Tillage Res. 2007;94(1):15-20. [Link] [DOI:10.1016/j.still.2006.06.006]
43. Sheikhzadeh A, Matin Khah SH, Bashari H, Tarkesh M, Soleimani M. Investigation effect of environmental and management on distribution of plants in Chadghan region in Isfahan. Range. 2015;9(1):76-90. [Persian] [Link]
44. Chen C, Xu Z, Mathers N. Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci Soc Am J. 2004;68:282-91. [Link] [DOI:10.2136/sssaj2004.2820]
45. Ryals R, Kaiser M, Torn MS, Berhe AA, Silver WL. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biol Biochem. 2014;68:52-61. [Link] [DOI:10.1016/j.soilbio.2013.09.011]
46. Jayabalakrishnan RMM. Effect of amendments on problem soils with poor quality irrigation water under sugarcane crop. Am Eurasian J Sustain Agric. 2009;5(5):618-26. [Link]
47. Javidfar A, Rouhi-Moghaddam E, Ebrahimi M. Some ecological conditions of Amygdalus scoparia Spach in Nehbandan, eastern Iran. Ecopersia. 2017;5(1):1655-67. [Persian] [Link] [DOI:10.18869/modares.ecopersia.5.1.1655]
48. Salama F, Abd El-Ghani MM, El-Tayeh N. Vegetation and soil relationships in the inland wadi ecosystem of central eastern desert, Egypt. Turk J Bot. 2013;37(3):489-98. [Link]
49. Shokrollahi S, Moradi H, Dianati Tilaki GA, Atghaei M. Synecology of semi-steppe vegetation in relation to some ecological factors in polour rangelands of Mazandaran province, Iran. Ecopersia. 2014;2(1):471-83. [Link]
50. Karimi R, Hassan Salehi M, Raiesi F. The effect of degraded rangeland change to other land uses on some soil quality indicators in Safashahr, Fars province. J Sci Technol Agric Nat Resour. 2014;18(69):131-40. [Link]
51. Malakouti MJ, Homaei M. Soil fertility of arid and semiarid regoins difficults and solutions. Tehran: University of Tarbiat Modarres Publications; 2005. [Persian] [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.