Volume 9, Issue 1 (2021)                   ECOPERSIA 2021, 9(1): 53-59 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kamali N, Saberi M, Sadeghipour A, Tarnian F. Effect of Different Concentrations of Titanium Dioxide Nanoparticles on Germination and Early Growth of Five Desert Plant Species. ECOPERSIA. 2021; 9 (1) :53-59
URL: http://ecopersia.modares.ac.ir/article-24-38105-en.html
1- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2- Faculty of Water and Soil, University of Zabol, Zabol, Iran
3- Desert Studies Faculty, Semnan University, Semnan, Iran , a.sadeghipour@semnan.ac.ir
4- Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources, Lorestan University, Lorestan, Iran
Abstract:   (110 Views)
Aims: Studying the effects of nanoparticles on living organisms seems to be necessary, especially in plants as the first trophic level. Thus the phytotoxicity of different concentrations of nano-TiO2 on five desert plant species was investigated in the present study.
Materials & Methods: The phytotoxicity of different concentrations (0, 10, 100, 500, 1500mgl-1) of nano-TiO2 on five desert plant species of Halothamnus glaucus Botsch, Haloxylon aphyllum L., Nitraria schoberi L., Zygophyllum eurypterum Boiss. & Buhse, Halocnemum strobilaceum were investigated using seed germination percentage, radicle, and plumule elongation measurement. Experiments were conducted based on a completely randomized design with four replications.
Findings: Outcomes of the study demonstrated that the application of nano-TiO2 had no adverse effect on germination at low concentrations (up to 500mgl-1), it also increased the germination of H. aphyllum (72 to 88%). The concentration of 1500mgl-1 had a negative effect on germination and radicle growth of three species of N. schoberi (decrease in germination from 32 to 20% and radicle length from 13.85 to 10.68cm), H. aphyllum (decrease in germination from 72 to 44% and radicle length from 6.105 to 4.03cm).
Conclusion: Generally, in most plants, low concentrations of nano-Tio2 did not significantly affect germination and seedling growth, but in high concentrations (1500mgl-1) due to toxicity effect, germination and seedling growth were reduced. Therefore, in using nanoparticles, attention to dosage, which is useful and not causes toxicity, is significant.
Full-Text [PDF 713 kb]   (30 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecosystems
Received: 2019/11/7 | Accepted: 2020/03/20 | Published: 2020/10/24
* Corresponding Author Address: Desert Studies Faculty, Semnan University, Semnan, Iran

References
1. Vishwakarma V, Samal SS, Manoharan N. Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng. 2010;9(5):455-9. [Link] [DOI:10.4236/jmmce.2010.95031]
2. Nelson MA, Domann FE, Bowden GT, Hooser SB, Fernando Q, Carter DE. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health. 1993;9(4):623-30. [Link] [DOI:10.1177/074823379300900405]
3. Zhao CM, Wang WX. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem. 2011;30(4):885-92. [Link] [DOI:10.1002/etc.451]
4. Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, et al. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):170-82. [Link] [DOI:10.1152/ajplung.00167.2013]
5. FDA. Nanotechnology programs at FDA [Internet]. Washington: Food and Drug Administration; 2020 [Unknown Cited]. Available from: https://www.fda.gov/science-research/science-and-research-special-topics/nanotechnology-programs-fda [Link]
6. Unites states environmental protection agency. Safer Chemicals Research [Internet]. Washington: Unites States Environmental Protection Agency; 2020 [Unknown Cited]. Available from: epa.gov/chemical-research [Link]
7. Kole C, Kumar DS, Khodakovskaya MV. Plant nanotechnology: Principles and practices. Berlin: Springer; 2016. [Link] [DOI:10.1007/978-3-319-42154-4]
8. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39. [Link] [DOI:10.1289/ehp.7339]
9. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622-7. [Link] [DOI:10.1126/science.1114397]
10. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, et al. Safe handling of nanotechnology. Nature. 2006;444:267-9. [Link] [DOI:10.1038/444267a]
11. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, et al. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere. 2010;78(3):273-9. [Link] [DOI:10.1016/j.chemosphere.2009.10.050]
12. Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor. 2008;10(6):713-7. [Link] [DOI:10.1039/b805998e]
13. Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, et al. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fertil Sci. 2005;11:14-8. [Link]
14. Abbasi Khalaki M, Ghorbani A, Dadjou F. Influence of nano-priming on Festuca ovina seed germination and early seedling traits under drought stress, in laboratory condition. Ecopersia. 2019;7(3):133-9. [Persian] [Link]
15. Azimi R, Feizi H, Khaje Hosseini M. Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (agropyron desertorum). Not Sci Biol. 2013;5(3):325-31. [Link] [DOI:10.15835/nsb539072]
16. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol. 2006;40(14):4374-81. [Link] [DOI:10.1021/es052069i]
17. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol Vitro. 2005;19(7):975-83. [Link] [DOI:10.1016/j.tiv.2005.06.034]
18. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol. 2005;39(5):1378-83. [Link] [DOI:10.1021/es048729l]
19. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36(3):189-217. [Link] [DOI:10.1080/10408440600570233]
20. Soto KF, Carrasco A, Powell TG, Murr LE, Garza KM. Biological effects of nanoparticulate materials. Mater Sci Eng. 2006;26(8):1421-7. [Link] [DOI:10.1016/j.msec.2005.08.002]
21. Arthurs SP, Lacey LA, Bechle RW. Evaluation of spray-dried lignin formulations and adjuvant as solar protectant for granulovirus of colding moths Cydic pomonella. J Invertebr Pathol. 2006;93(2):88-95. [Link] [DOI:10.1016/j.jip.2006.04.008]
22. Lee DJ, Senseman SA, Sciumbato AS, Jung SC, Krutz LJ. The effect of titanium dioxide alumina beads on the photocatalytic degradation of picloram in water. J Agric Food Chem. 2003;51(9):2659-64. [Link] [DOI:10.1021/jf026232u]
23. Jiang J, Oberdorster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nano particle dispersions for toxicological studies. J Nanopart Res. 2008;11:77-89. [Link] [DOI:10.1007/s11051-008-9446-4]
24. OECD WPMN. Protocol for nanoparticle dispersion of niobium as a precursor for the hydrothermal preparation of cellulose acetate Nb2O5 photocatalyst. J Molecular Catalysis. 2010;237:115-9. [Link] [DOI:10.1016/j.molcata.2005.04.055]
25. US environmental protection agency. Ecological effects test guidelines (OPPTS 850.4200): Seed germination/root elongation toxicity test [Internet]. Washington: US Environmental Protection Agency; 1996 [Unknown Cited]. Available from: shorturl.at/mqHNY [Link]
26. Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;150(2):243-50. [Link] [DOI:10.1016/j.envpol.2007.01.016]
27. Wahid PA, Valiathan MS, Kamalam NV, Eapen JT, Vijayalakshmi S, Prabhu RK, et al. effect of rare earth elements on growth and nutrition of coconut palm and root competition for these elements between the palm and Calotropis gigantea. J Plant Nutr. 2000;23(3):329-38. [Link] [DOI:10.1080/01904160009382019]
28. Hong F, Wang L, Meng X, Wei Z, Zhao G. The effect of cerium (III) on the chlorophyll formation in Spinach. Biol Trace Elem Res. 2002;89(3):263-76. [Link] [DOI:10.1385/BTER:89:3:263]
29. Xie ZB, Zhu JG, Chu HY, Zhang YL, Zeng Q, Ma HL, et al. effect of lanthanum on rice production, nutrient uptake, and distribution. J Plant Nutr. 2002;25(10):2315-31. [Link] [DOI:10.1081/PLN-120014078]
30. Biswas P, Wu CY. Nanoparticles and the environment. J Air Waste Manag Assoc. 2005;55(6):708-46. [Link] [DOI:10.1080/10473289.2005.10464656]
31. Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003;21:1166-70. [Link] [DOI:10.1038/nbt875]
32. Dreher KL. Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicol Sci. 2004;77(1):3-5. [Link] [DOI:10.1093/toxsci/kfh041]
33. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P. Assessing the risks of manufactured nanomaterials. Environ Sci Technol. 2006;40(14):4336-45. [Link] [DOI:10.1021/es062726m]
34. Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 2008;42(15):5580-5. [Link] [DOI:10.1021/es800422x]
35. Feizi H, Moghaddam RP. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res. 2012;146(1):101-6. [Link] [DOI:10.1007/s12011-011-9222-7]
36. Calabrese EJ, Baldwin LA. Defining hormesis. Hum Exp Toxicol. 2002;21(2):91-7. [Link] [DOI:10.1191/0960327102ht217oa]
37. Oprisan MU, Focanici E, Creanga D, Caltun OF. Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol. 2011;10(36):7092-8. [Link]
38. Mahajan P, Dhoke SK, Khanna AS. Effect of nano-ZnO particle suspension on growth of Mung (Vigna radiata) and Gram (Ccicer arietinum) seedling using plant agar method. J Nanotechnol. 2011;1(1):1-7. [Link] [DOI:10.1155/2011/696535]
39. Young L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005;158(2):122-32. [Link] [DOI:10.1016/j.toxlet.2005.03.003]
40. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221-7 [Link] [DOI:10.1021/nn900887m]
41. Ruffini CM, Cremonini R. Nanoparticles and higher plants. Caryologia. 2009;62(2):161-5. [Link] [DOI:10.1080/00087114.2004.10589681]
42. Zheng L, Hong F, Lu S, Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach. Biol Trace Elem Res. 2005;104(1):83-92. [Link] [DOI:10.1385/BTER:104:1:083]
43. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, et al. effect of nano-TiO2 on photochemical reaction of chloroplasts of Spinach. Biol Trace Elem Res. 2005;105(1-3):269-79. [Link] [DOI:10.1385/BTER:105:1-3:269]
44. Yang F, Hong F, You W, Liu C, Gao F, Cheng W, et al. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing Spinach. Biol Trace Elem Res. 2006;110(2):179-90. [Link] [DOI:10.1385/BTER:110:2:179]
45. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, et al. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase?. Biometals. 2008;21(2):211-7. [Link] [DOI:10.1007/s10534-007-9110-y]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author