Volume 8, Issue 3 (2020)                   ECOPERSIA 2020, 8(3): 155-161 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kamali N, Saberi M, Tarnian F, Sadeghipour A. An Evaluation on Impacts of Different Land Uses and Land Covers on Emission of Carbon Dioxide from the Soil (Case Study: Biabanak, Semnan Province). ECOPERSIA 2020; 8 (3) :155-161
URL: http://ecopersia.modares.ac.ir/article-24-37934-en.html
1- Rangeland Research Division, Research Institute of Forests & Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2- Range & Watershed Management Department, Water & Soil Faculty, University of Zabol, Zabol, Iran
3- Range & Watershed Management Department, Agriculture & Natural Resources Faculty, Lorestan University, Lorestan, Iran
4- Arid Area’s Management Department, Desert Studies Faculty, Semnan University, Semnan, Iran , a.sadeghipour@semnan.ac.ir
Abstract:   (2143 Views)
Aims: The present study aims to monitor and assess CO2 emission from the soil of different land uses and land covers including rangelands, farmlands, mines, gravel lands, and bare lands (lands characterized with no vegetation) in monthly and annual temporal scales.
Materials & Methods: Monthly carbon emission was monitored according to the alkali-trap method in a closed static chamber from mid-March 2015 to mid-February 2016. Data on emissions and land use were analyzed in a factorial experiment in a completely randomized design with four replications. To determine the relationship between temperature and humidity factors with changes in carbon emission in each land use, Pearson correlation coefficient was used.
Findings: The highest (about 3.44g C/m2/d) and the lowest (0.13g C/m2/d) emission rate was found in mines (in July 2016) and in gravel lands (in January 2016), respectively. The results also showed a seasonal pattern (high in summer and low in winter) of CO2 emission. It was found that while carbon emission positively correlated with soil moisture, it showed a negative correlation with soil temperature in mines.
Conclusion: The results depicted that land management should include proper land use selection and improper land use changes should be avoided.
Full-Text [PDF 784 kb]   (1060 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecosystems
Received: 2019/11/1 | Accepted: 2020/02/9 | Published: 2020/09/20
* Corresponding Author Address: Desert Studies Faculty, Semnan University, Campus 1, Semnan, Iran. Postal code: 3513119111

References
1. Huang CH, Kronrad GD. The cost of sequestering carbon on private forest lands. For Policy Econ. 2001;2(2):133-42. [Link] [DOI:10.1016/S1389-9341(01)00046-6]
2. Li W, Ciais P, Peng S, Yue C, Wang Y, Thurner M, et al. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences. 2017;14:5053-67. [Link] [DOI:10.5194/bg-14-5053-2017]
3. Tan Z, Lal R. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA. Agric Ecosyst Environ. 2005;111(1-4):140-52. [Link] [DOI:10.1016/j.agee.2005.05.012]
4. Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, et al. Historical overview of climate change. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, et al, editors. Climate change 2007: The physical science basis. Cambridge: Cambridge University Press; 2007. pp. 95-122. [Link]
5. Sainju UM, Jabro JD, Stevens WB. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J Environ Qual. 2008;37(1):98-106. [Link] [DOI:10.2134/jeq2006.0392]
6. Sherrod LA, Peterson GA, Westfall DG, Ahuja LR. Cropping intensity enhances soil organic carbon and nitrogen in a no-till agroecosystem. Soil Sci Soc Am J. 2003;67(5):1533-43. [Link] [DOI:10.2136/sssaj2003.1533]
7. Pongratz J, Reick CH, Raddatz T, Claussen M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob Biogeochem Cycles. 2009;23(4):GB4001. [Link] [DOI:10.1029/2009GB003488]
8. Houghton RA, House JI, Pongratz J, Van Der Werf GR, DeFries RS, Hansen MC, et al. Carbon emissions from land use and land-cover change. Biogeosciences. 2012(12):5125-42. [Link] [DOI:10.5194/bg-9-5125-2012]
9. Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology. 2010;122(1-2):167-77. [Link] [DOI:10.1016/j.geomorph.2010.06.011]
10. Wang Z, Hoffmann T, Six J, Kaplan JO, Govers G, Doetterl S, et al. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat Clim Chang. 2017;7(5):345-9. [Link] [DOI:10.1038/nclimate3263]
11. Lal R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev. 2006;17(2):197-209. [Link] [DOI:10.1002/ldr.696]
12. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123(1-2):1-22. [Link] [DOI:10.1016/j.geoderma.2004.01.032]
13. Lal R. Soils and world food security. Soil Tillage Res. 2009;102:1-4. [Link] [DOI:10.1016/j.still.2008.08.001]
14. Luo Y, Zhou X. Soil respiration and the environment. Cambridge: Elsevier Academic Press; 2006. [Link]
15. Vickers D, Thomas C, Pettijohn C, Martin JG, Law B. Five years of carbon fluxes and inherent water-use efficiency at two semi-arid pine forests with different disturbance histories. Tellus B Chem Phys Meteorol. 2012;64(1):17159. [Link] [DOI:10.3402/tellusb.v64i0.17159]
16. Singh KP, Ghoshal N, Singh S. Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem: Influence of organic inputs of varying resource quality. Appl Soil Ecol. 2009;42(3):243-53. [Link] [DOI:10.1016/j.apsoil.2009.04.005]
17. Brar BS, Singh K, Dheri GS. Carbon sequestration and soil carbon pools in a rice-wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure. Soil Tillage Res. 2013;128:30-6. [Link] [DOI:10.1016/j.still.2012.10.001]
18. Lai L, Huang X, Yang H, Chuai X, Zhang M, Zhong T, et al. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci Adv. 2016;2(11):e1601063. [Link] [DOI:10.1126/sciadv.1601063]
19. Qin Z, Huang Y, Zhuang Q. Soil organic carbon sequestration potential of cropland in China. Glob Biogeochem Cycles. 2013;27(3):711-22. [Link] [DOI:10.1002/gbc.20068]
20. Yan X, Zhou H, Zhu QH, Wang XF, Zhang YZ, Yu XC, et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 2013;130:42-51. [Link] [DOI:10.1016/j.still.2013.01.013]
21. Sanderman J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric Ecosyst Environ. 2012;155:70-7. [Link] [DOI:10.1016/j.agee.2012.04.015]
22. Nguyen TT, Marschner P. Retention and loss of water extractable carbon in soils: Effect of clay properties. Sci Total Environ. 2014;470-471:400-6. [Link] [DOI:10.1016/j.scitotenv.2013.10.002]
23. Islam KK, Anusontpornperm S, Kheoruenromne I, Thanachit S. Relationship between carbon sequestration and physico-chemical properties of soils in salt-affected areas, Northeast Thailand. Kasetsart J Nat Sci. 2014;48:560-76. [Link]
24. Corsi S, Friedrich T, Kassam A, Pisante M, De Moraes Sà J. Soil organic carbon accumulation and greenhouse gas emission reduction from conservation agriculture. A literature review. Rome: FAO; 2012. [Link]
25. Powers JS, Corre MD, Twine TE, Veldkamp E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc Natl Acad Sci. 2011;108(15):6318-22. [Link] [DOI:10.1073/pnas.1016774108]
26. Zeeman MJ, Hiller R, Gilgen AK, Michna P, Plüss P, Buchmann N, et al. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agric For Meteorol. 2010;150(4):519-30. [Link] [DOI:10.1016/j.agrformet.2010.01.011]
27. Schmitt M, Bahn M, Wohlfahrt G, Tappeiner U, Cernusca A. Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences. 2010;7(8):2297-2309. [Link] [DOI:10.5194/bg-7-2297-2010]
28. Wohlfahrt G, Anderson-Dunn M, Bahn M, Balzarolo M, Berninger F, Campbell C, et al. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems. 2008;11(8):1338-51. [Link] [DOI:10.1007/s10021-008-9196-2]
29. Anderson JP, Page AL, Miller RH, Keeney DR. Soil respiration. In: Page AL, editor. Methods of soil analysis, part 2. 2nd Edition. Madison: American Society of Agronomy; 1982. pp. 831-71. [Link] [DOI:10.2134/agronmonogr9.2.2ed.c41]
30. Suman A, Singh KP, Singh P, Yadav RL. Carbon input, loss and storage in sub-tropical Indian Inceptisol under multi-ratooning sugarcane. Soil Tillage Res. 2009;104(2):221-6. [Link] [DOI:10.1016/j.still.2009.02.008]
31. Gupta IC, Yaduvanshi NP, Gupta SK. Standard methods for analysis of soil plant and water. Unknown publisher city: Scientific Publishers; 2012. [Link]
32. Arneth A, Sitch S, Pongratz J, Stocker BD, Ciais P, Poulter B, et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat Geosci. 2017;10(2):79-84. [Link] [DOI:10.1038/ngeo2882]
33. Schwinning S, Sala OE. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia. 2004;141(2):211-20. [Link] [DOI:10.1007/s00442-004-1520-8]
34. The National Academies of Sciences, Engineering, and Medicine. Land management practices for carbon dioxide removal and reliable sequestration. Washington, D.C.: The National Academies of Sciences, Engineering, and Medicine; 2018. [Link]
35. Peichl M, Carton O, Kiely G. Management and climate effects on carbon dioxide and energy exchanges in a maritime grassland. Agric Ecosyst Environ. 2012;158:132-46. [Link] [DOI:10.1016/j.agee.2012.06.001]
36. Jabro JD, Sainju U, Stevens WB, Evans RG. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J Environ Manag. 2008;88(4):1478-84. [Link] [DOI:10.1016/j.jenvman.2007.07.012]
37. Eamus D, Hutley LB, O'Grady AP. Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiol. 2001;21(12-13):977-88. [Link] [DOI:10.1093/treephys/21.12-13.977]
38. Gupta RD, Arora S, Gupta GD, Sumberia NM. Soil physical variability in relation to soil erodibility under different land uses in foothills of Siwaliks in NW India. Trop Ecol. 2010;51(2):183-97. [Link]
39. Bilandžija D, Zgorelec Ž, Kisić I. Influence of tillage practices and crop type on soil CO2 emissions. Sustainability. 2016;8(1):90. [Link] [DOI:10.3390/su8010090]
40. Mahowald NM, Randerson JT, Lindsay K, Munoz E, Doney SC, Lawrence P, et al. Interactions between land use change and carbon cycle feedbacks. Glob Biogeochem Cycles. 2017;31(1):96-113. [Link] [DOI:10.1002/2016GB005374]
41. Oliver V, Oliveras I, Kala J, Lever R, Teh YA. No long-term effect of land-use activities on soil carbon dynamics in tropical montane grasslands. Biogeosci Discuss. 2017:1-25. [Link] [DOI:10.5194/bg-2017-113]
42. Davies‐Barnard T, Valdes PJ, Singarayer JS, Wiltshire AJ, Jones CD. Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways. Glob Biogeochem Cycles. 2015;29(6):842-53. [Link] [DOI:10.1002/2014GB004949]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.