Volume 8, Issue 2 (2020)                   ECOPERSIA 2020, 8(2): 117-124 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tongo A, Jalilvand H, Hosseininasr M, Naji H. Variation in Anatomical Properties and Hydraulic Conductivity of Persian Oak (Quercus brantii Lindl.) Trees Affected by Dieback. ECOPERSIA 2020; 8 (2) :117-124
URL: http://ecopersia.modares.ac.ir/article-24-37831-en.html
1- Sciences & Forest Engineering Department, Natural Resources Faculty, Sari Agricultural Sciences & Natural Resources University, Sari, Iran
2- Sciences & Forest Engineering Department, Natural Resources Faculty, Sari Agricultural Sciences & Natural Resources University, Sari, Iran , h.jalilvand@sanru.ac.ir
3- Forest Sciences Department, Agriculture Faculty, Ilam University, Ilam, Iran
Abstract:   (2184 Views)
Aims: The present study aimed to investigate the anatomical properties of wood and xylem functioning of Persian oak affected by crown dieback.
Materials & Methods: Affected Persian oak trees were categorized into four different classes based on the severity of crown dieback (healthy, slight, moderate, and severe trees) with three replicates. The target trees were randomly selected from three forest stands. Branch samples at the age of 4-6 years were randomly taken from the trees’ crowns and the anatomical traits such as tree ring width (TRW), vessel density (VD), average vessel size (AVS), and relative specific conductivity (RSC) were determined. One-way ANOVA and LSD comparison of means were used to analyze the data and their mean comparison.
Findings: The results showed that oak trees are using different hydraulic strategies in different habitat conditions. The effect of severity of canopy dieback on xylem anatomical traits was significant. The narrowest ring width as 257.67, 365.56, and 159.17µm was observed in trees with a severe degree of dieback (with more than 66% canopy dieback). The RSC was decreased in response to reduction in the vessel size (2905.7µm2) and density (26.09mm-2) for declining oak trees from the last site. The AVS was increased in moderate and severe degree of canopy dieback from two sites, resulting in enhanced conducting efficiency. Whoever, their resistance decreases because of the risk of cavitation.
Conclusion: Healthy oak trees showed the highest values of RSC and VD. However, the AVS was not increased. The results suggest that larger and more abundant vessels would allow for more efficient water transport. However, these larger vessels may also promote a greater risk of cavitation during a drought that illustrates the tree's incompatibility with water deficit stress.
 
Full-Text [PDF 591 kb]   (578 Downloads)    
Article Type: Original Research | Subject: Forest Ecosystems
Received: 2019/10/28 | Accepted: 2019/12/15 | Published: 2020/05/19
* Corresponding Author Address: Sari Agricultural Sciences & Natural Resources University, Sari, Mazandaran Province, Iran. Postal code: 4818168984

References
1. McLaughlin SB, Downing DJ, Blasing TJ, Cook ER, Adams HS. An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the eastern United States. Oecologia. 1987;72:487-501. [Link] [DOI:10.1007/BF00378973]
2. Colangelo M, Camarero JJ, Borghetti M, Gentilesca T, Oliva J, Redondo MA, et al. Drought and Phytophthora are associated with the decline of oak species in southern Italy. Front Plant Sci. 2018;9:1595. [Link] [DOI:10.3389/fpls.2018.01595]
3. Kabrick JM, Dey DC, Randy RG, Wallendorf M. The role of environmental factors in oak decline and mortality in the Ozark Highlands. For Ecol Manag. 2008;255(5):1409-17. [Link] [DOI:10.1016/j.foreco.2007.10.054]
4. Jafarnia Sh, Akbarinia M, Hosseinpour B, Modarres Sanavi AM, Salami A. Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iFor Biogeosci For. 2017;11(2):212-20. [Link] [DOI:10.3832/ifor2496-010]
5. Babaie S, Nosrati K, Shirazi MH. Forests and rangelands role in absorbing greenhouse gas emissions and offer ways to reduce emissions. The 3rd Regional Conference and the 1st International Conference on Climate Change, 2004 October 21-23, Isfahan, Iran. Isfahan: University of Isfahan; 2004. [Persian] [Link]
6. Zafirov N, Kostov G. Main stress factors in Coppice Oak forests in western Bulgaria. Silva Balc. 2019;20(1):37-52. [Link]
7. Dadashpour A, Shekafandeh A, Oladi R. Anatomical and morphological changes in scion of some olive grafting combinations under water deficit. Adv Hortic Sci. 2017;31(4):281-8. [Link]
8. Therios IN. Olives (crop production science in Horticulture). Wallingford: CABI Publishing; 2009. [Link]
9. Wargo PM. Consequences of environmental stress on oak: Predisposition to pathogens. Ann Sci For. 1996;53(2-3):359-68. [Link] [DOI:10.1051/forest:19960218]
10. Thomas FM, Blank R, Hartmann G. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol. 2002;32(4-5):277-307. [Link] [DOI:10.1046/j.1439-0329.2002.00291.x]
11. Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 2014;37(1):153-61. [Link] [DOI:10.1111/pce.12141]
12. Fonti P, Von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U, Gartner H. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010;185(1),42-53. [Link] [DOI:10.1111/j.1469-8137.2009.03030.x]
13. Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, et al. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol. 2013;197(4):1142-51. [Link] [DOI:10.1111/nph.12102]
14. Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytol. 1991;119(3):345-60. [Link] [DOI:10.1111/j.1469-8137.1991.tb00035.x]
15. Pitman WD, Holt C, Conrad BE, Bashaw EC. Histological differences in moisture-stressed and nonstressed kleingrass forage1. Crop Sci. 1983;23(4):793-5. [Link] [DOI:10.2135/cropsci1983.0011183X002300040046x]
16. Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main tunisian olive (olea europaea L.) cultivars. Sci Hortic. 2009;119(3):257-63. [Link] [DOI:10.1016/j.scienta.2008.08.006]
17. Tulik M. The anatomical traits of trunk wood and their relevance to oak (quercus robur L.) vitality. Eur J For Res. 2014;133(5):845-55. [Link] [DOI:10.1007/s10342-014-0801-y]
18. Colangelo M, Camarero JJ, Battipaglia G, Borghetti M, De Micco V, Gentilesca T. A multi-proxy assessment of dieback causes in a Mediterranean oak species. Tree Physiol. 2017;37(5):617-31. [Link] [DOI:10.1093/treephys/tpx002]
19. Mirzaei M, Bonyad A, Akhavan R, Naghdi R. Decline modelling of oak trees under effects of physographic factors in semi-arid forests of Iran. For Ideas. 2018;24(2):171-81. [Link]
20. Fallah A, Haidari M. Investigating the oak decline in different crown-dimensions in middle zagros forests (case study: Ilam). Ecol Iran For. 2018;6(12):9-17. [Link]
21. Eilmanna B, Webera P, Riglinga A, Ecksteinc D. Growth reactions of Pinus sylvestris L. and Quercus pubescens willd. To drought years at a xeric site in valais, switzerland. Dendrochronologia. 2006;23(3):121-32. [Link] [DOI:10.1016/j.dendro.2005.10.002]
22. Asakereh H. Temporal and spatial variations of precipitation in Iran during the last decades. Geogr Dev. 2007;5(10):145-64. [Persian] [Link]
23. Arbellay E, Fonti P, Stoffel M. Duration and extension of anatomical changes in wood structure after cambial injury. J Exp Bot. 2012;63(8):3271-7. [Link] [DOI:10.1093/jxb/ers050]
24. Nobel PS. Physicochemical and environmental plant physiology. 4th Edition. Cambridge: Academic Press; 2009. [Link]
25. Corcuera L, Camarero JJ, Gil-Pelegrin E. Effects of a severe drought on growth and wood anatomical properties of quercus faginea. Int Assoc Wood Anat J. 2004;25(2):185-204. [Link] [DOI:10.1163/22941932-90000360]
26. Corcuera L, Camarero JJ, Gil-Pelegrin E. Effects of a severe drought on Quercus ilex growth and xylem anatomy. Trees. 2004;18(1):83-92. [Link] [DOI:10.1007/s00468-003-0284-9]
27. De Micco V, Aronne G, Baas P. Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees. 2008;22(5):643-55. [Link] [DOI:10.1007/s00468-008-0222-y]
28. Limousin JM, Longepierre D, Huc R, Rambal S. Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Tree Physiol. 2010;30(8):1026-36. [Link] [DOI:10.1093/treephys/tpq062]
29. Dobrowolska D, Hein S, Oosterbaan A, Skovsgaard JP, Wagner SP. Ecology and growth of European ash (Fraxinus excelsior L.). Unknown publisher city: Valbro; 2008. [Link]
30. Levanic T, Cater M, McDowell NG. Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest. Tree Physiol. 2011;31(3):298-308. [Link] [DOI:10.1093/treephys/tpq111]
31. Kulkarni M, Schneider B, Raveh E, Tel-Zur N. Leaf anatomical characteristics and physiological responses to short-term drought in Ziziphus mauritiana (Lamk.). Sci Hortic. 2010;124(3):316-22. [Link] [DOI:10.1016/j.scienta.2010.01.005]
32. Plavcova L, Hacke UG. Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. J Exp Bot. 2012;63:6481-91. [Link] [DOI:10.1093/jxb/ers303]
33. Hilarie RS, Graves WR. Water relations, growth, and foliar traits of droughtstressed hard maples from central Iowa, eastern Iowa, and the eastern United States. In: Ecophysiology and genetic diversity of hard maples indigenous to eastern North America. Ames: Iowa State University; 1998. [Link]
34. Tyree MT, Zimmermann MH. Xylem structure and the ascent of sap. 2ndEdition. Berlin: Springer-Verlag; 2002. [Link] [DOI:10.1007/978-3-662-04931-0]
35. Cochard H, Peiffer M, Le Gall K, André G. Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L.: Impacts on water relations. J Exp Bot. 1997;48(3):655-63. [Link] [DOI:10.1093/jxb/48.3.655]
36. Sperry JS, Nichols KL, Sullivan JE, Eastlack SE. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology. 1994;75(6):1736-52. [Link] [DOI:10.2307/1939633]
37. Knigge W, Schulz H. Einfluß der Jahreswitterung 1959 auf Zellartverteilung, faserlänge und Gefäßweite verschiedener Holzarten. Holz als Roh- und Werkstoff Volume. 1961;19(8):293-303. [Link] [DOI:10.1007/BF02609688]
38. Gonzalez IG, Eckstein D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 2003;23(7):497-504. [Link] [DOI:10.1093/treephys/23.7.497]
39. Woodcock DW. Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Can J For Res. 1989;19(5):639-44. [Link] [DOI:10.1139/x89-100]
40. Sterck FJ, Zweifel R, Sass-Khaassen U, Chowdhury Q. Persisting soil drought reduces leaf specific conductivity in scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 2008;28(4):529-36. [Link] [DOI:10.1093/treephys/28.4.529]
41. Fichot R, Chamailland S, Depardieu C, Le Thiec D, Cochard H, Bariagh TS, et al. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoids × Populus nigra hybrids. J Exp Bot. 2011;62(6):2093-106. [Link] [DOI:10.1093/jxb/erq415]
42. Scoffoni C, Mckown AD, Rawls M, Sack L. Dynamics of leaf hydraulic conductance with water status: Quantification and analysis of species differences under steady state. J Exp Bot. 2012;63(2):643-58. [Link] [DOI:10.1093/jxb/err270]
43. Qaderi MM, Martel AB, Dixon SL. Environmental factors influence plant vascular system and water regulation. Plants. 2019;8(3):65. [Link] [DOI:10.3390/plants8030065]
44. Nabeshima E, Kubo T, Yasue K, Hiura T, Funada R. Changes in radial growth of earlywood in Quercus crispula between 1970 and 2004 reflect climate change. Trees. 2015;29(4):1273-81. [Link] [DOI:10.1007/s00468-015-1206-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.