Volume 8, Issue 3 (2020)                   ECOPERSIA 2020, 8(3): 181-190 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nourozifard P, Mortazavi S, Asad S, Hassanzadeh N. Using Saccostrea cucullata as a biomonitor of heavy metals (Cu, Pb, Zn, Cd, Ni, and Cr) in water and sediments of Qeshm Island, Persian Gulf. ECOPERSIA 2020; 8 (3) :181-190
URL: http://ecopersia.modares.ac.ir/article-24-37106-en.html
1- Environmental Department, Faculty of Natural Recourses & Environmental Science, Malayer University, Malayer, Iran
2- Environmental Department, Faculty of Natural Recourses & Environmental Science, Malayer University, Malayer, Iran , mortazavi.s@gmail.com
3- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
Abstract:   (2421 Views)
Aims: The current study investigated the concentration of Cu, Pb, Zn, Cd, Ni, and Cr in shell and soft tissue of Saccostrea cucullata, water, and sediments of seven stations in Qeshm Island of Persian Gulf.
Materials & Methods: The samples were digested by a combination of nitric acid and perchloric acid and the concentration of elements was measured by atomic absorption spectroscopy.
Findings: The results indicated that the concentrations of Cu and Zn in all samples, Ni in the sediment and Cd in oyster were the highest bio-water accumulation factor were significantly higher than those of bio-sediment accumulation factor. Also, these factors in the soft tissue were higher than in the shell. Furthermore, the macro-concentrators of soft tissue were Cd, Cu, and Zn, while the macro-concentrator of shell was Cd.
Conclusion: The shell can be an appropriate monitoring tool for evaluating Cu and Zn in water and Cu in sediments. Also, the soft tissue can be practical for monitoring Cu and Zn in sediments.
Full-Text [PDF 475 kb]   (1048 Downloads)    
Article Type: Original Research | Subject: Pollution (Soil, Water and Air)
Received: 2019/10/6 | Accepted: 2020/02/18 | Published: 2020/09/20
* Corresponding Author Address: Faculty of Natural Recourses & Environmental Science, Malayer University, Km 4 of Malayer-Arak Road, Malayer, Iran. Postal Cod: 9586365719.

1. Sayadi M, Rezaei M, Afsari K, PoorMollaeib N. Natural and concentration factor distribution of heavy metals in sediments of Chah Nimeh reservoirs of Sistan, Iran. Ecopersia. 2015;3(2):1003-12. [Link]
2. Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S. Effect of toxic metals on human health. Open Nutraceuticals J. 2010;3(1):94-9. https://doi.org/10.2174/1876396001003010094 [Link] [DOI:10.2174/18763960010030100094]
3. Mortazavi S, Attaeian B, Abdolkarimi S. Risk assessment and environmental geochemistry of Pb, Cu and Fe in surface sediments (case study: Hashilan wetland, Kermanshah, Iran). Ecopersia. 2016;4(2):1411-24. [Link] [DOI:10.18869/modares.ecopersia.4.2.1411]
4. Shakouri A, Gheytasi H. Bioaccumulation of heavy metals in oyster (Saccostrea cucullata) from Chabahar bay coast in Oman Sea: Regional, seasonal and size-dependent variations. Mar Pollut Bull. 2018;126:323-9. [Link] [DOI:10.1016/j.marpolbul.2017.11.012]
5. Mortazavi S, Saberinasab F. Heavy metals assessment of surface sediments in Mighan wetland using the sediment quality index. Ecopersia. 2017;5(2):1761-70. [Link]
6. Rodriguez-Iruretagoiena A, Rementeria A, Zaldibar B, De Vallejuelo SF, Gredilla A, Arana G, et al. Is there a direct relationship between stress biomarkers in oysters and the amount of metals in the sediments where they inhabit?. Mar Pollut Bull. 2016;111(1-2):95-105. [Link] [DOI:10.1016/j.marpolbul.2016.07.025]
7. Wang XN, Gu YG, Wang ZH, Ke CL, Mo MS. Biological risk assessment of heavy metals in sediments and health risk assessment in bivalve mollusks from Kaozhouyang Bay, South China. Mar Pollut Bull. 2018;133:312-9. [Link] [DOI:10.1016/j.marpolbul.2018.05.059]
8. Mohammad Karami A, Riyahi Bakhtiari A, Kazemi A, Kheirabadi K. Assessment of Toxic metals concentration using pearl oyster,‎ Pinctada radiate, as bioindicator on the coast of Persian Gulf, Iran‎. Iran J Toxicol. 2014;7(23):956-61. [Link]
9. Leitão A, Al-Shaikh I, Hassan H, Hamadou RB, Bach S. First genotoxicity assessment of marine environment in Qatar using the local Pearl oyster Pinctada radiata. Reg Stud Mar Sci. 2017;11:23-31. [Link] [DOI:10.1016/j.rsma.2017.02.001]
10. Aghajan Pour F, Shokri MR, Abtahi B. Visitor impact on rocky shore communities of Qeshm Island, the Persian Gulf, Iran. Environ Monit Assess. 2013;185:1859-71. [Link] [DOI:10.1007/s10661-012-2673-2]
11. UNESCO. Qeshm Island (tentative lists). In: Centre UWH, editor. Paris: UNESCO; 2016. [Link]
12. Kumar R, Rani M, Gupta H, Gupta B. Trace metal fractionation in water and sediments of an urban river stretch. Chem Speciat Bioavailab. 2014;26(4):200-9. [Link] [DOI:10.3184/095422914X14142369069568]
13. Yap CK, Ismail A, Tan SG, Omar H. Correlations between speciation of Cd, Cu, Pb and Zn in sediment and their concentrations in total soft tissue of green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia. Environ Int. 2002;28(1-2):117-26. [Link] [DOI:10.1016/S0160-4120(02)00015-6]
14. Giarratano E, Duarte CA, Amin OA. Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel. Ecotoxicol Environ Saf. 2010;73(3):270-9. [Link] [DOI:10.1016/j.ecoenv.2009.10.009]
15. Yap CK, Ismail A, Tan SG, Rahim IA. Can the shell of the green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb and Zn?. Estuar Coast Shelf Sci. 2003;57(4):623-30. [Link] [DOI:10.1016/S0272-7714(02)00401-8]
16. ASTM D1886-03. Standard test methods for nickel in water. West Conshohocken: ASTM International; 2003. [Link]
17. Yap CK, Pang BH. Assessment of Cu, Pb, and Zn contamination in sediment of north western Peninsular Malaysia by using sediment quality values and different geochemical indices. Environ Monit Assess. 2011;183(1-4):23-39. [Link] [DOI:10.1007/s10661-011-1903-3]
18. Huanxin W, Lejun Z, Presley BJ. Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell. Environ Geol. 2000;39(11):1216-26. [Link] [DOI:10.1007/s002540000110]
19. Usero J, Morillo J, Gracia I. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere. 2005;59(8):1175-81. [Link] [DOI:10.1016/j.chemosphere.2004.11.089]
20. Shirneshan G, Riyahi Bakhtiari A. Accumulation and distribution of Cd, Cu, Pb and Zn in the soft tissue and shell of oysters collected from the northern coast of Qeshm Island, Persian Gulf, Iran. Chem Speciat Bioavailab. 2012;24(3):129-38. [Link] [DOI:10.3184/095422912X13394368814321]
21. Cravo A, Bebianno MJ, Foster P. Partitioning of trace metals between soft tissues and shells of Patella aspera. Environ Int. 2004;30(1):87-98. [Link] [DOI:10.1016/S0160-4120(03)00154-5]
22. Ranjbar Jafarabadi A, Bakhtiyari AR, Toosi AS, Jadot C. Spatial distribution, ecological and health risk assessment of heavy metals in marine superficial sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere. 2017;185:1090-111. [Link] [DOI:10.1016/j.chemosphere.2017.07.110]
23. Samara F, Elsayed Y, Soghomonian B, Knuteson SL. Chemical and biological assessment of sediments and water of Khalid Khor, Sharjah, United Arab Emirates. Mar Pollut Bull. 2016;111(1-2):268-76. [Link] [DOI:10.1016/j.marpolbul.2016.06.107]
24. Ghasemi S, Siavash Moghaddam S, Rahimi A, Damalas CA, Naji A. Ecological risk assessment of coastal ecosystems: The case of mangrove forests in Hormozgan Province, Iran. Chemosphere. 2018;191:417-26. [Link] [DOI:10.1016/j.chemosphere.2017.10.047]
25. Mohammadizadeh M, Bastami KD, Ehsanpour M, Afkhami M, Mohammadizadeh F, Esmaeilzadeh M. Heavy metal accumulation in tissues of two sea cucumbers, Holothuria leucospilota and Holothuria scabra in the northern part of Qeshm Island, Persian Gulf. Mar Pollut Bull. 2016;103(1-2):354-9. [Link] [DOI:10.1016/j.marpolbul.2015.12.033]
26. Yap CK, Noorhaidah A, Azlan A, Azwady AN, Ismail A, Ismail AR, et al. Telescopium telescopium as potential biomonitors of Cu, Zn, and Pb for the tropical intertidal area. Ecotoxicol Environ Saf. 2009;72(2):496-506. [Link] [DOI:10.1016/j.ecoenv.2007.12.005]
27. Apeti DA, Johnson E, Robinson L. A model for bioaccumulation of metals in Crassostrea virginica from Apalachicola Bay, Florida. Am J Environ Sci. 2005;1(3):239-48. [Link] [DOI:10.3844/ajessp.2005.239.248]
28. Waykar B, Petare R. Studies on monitoring the heavy metal contents in water, sediment and snail species in Latipada reservoir. J Environ Biol. 2016;37(4):585-9. [Link]
29. Gawad SS. Concentrations of heavy metals in water, sediment and mollusk gastropod, Lanistes carinatus from Lake Manzala, Egypt. Egypt J Aquat Res. 2018;44(2):77-82. [Link] [DOI:10.1016/j.ejar.2018.05.001]
30. Wang WX, Yang Y, Guo X, He M, Guo F, Ke C. Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environ Toxicol Chem. 2011;30(8):1767-74. [Link] [DOI:10.1002/etc.571]
31. Chan CY, Wang WX. Seasonal and spatial variations of biomarker responses of rock oysters in a coastal environment influenced by large estuary input. Environ Pollut. 2018;242(Part B):1253-65. [Link] [DOI:10.1016/j.envpol.2018.08.013]
32. Alavian Petroody SS, Hamidian AH, Ashrafi S, Eagderi S, Khazaee M. Investigation of body size effect on bioaccumulation pattern of Cd, Pb and Ni in the soft tissue of rock oyster Saccostrea cucullata from Laft Port. J Persian Gulf. 2013;4(14):39-45. [Link]
33. De Mora S, Fowler SW, Wyse E, Azemard S. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull. 2004;49(5-6):410-24. [Link] [DOI:10.1016/j.marpolbul.2004.02.029]
34. Kazemi A, Riyahi Bakhtiari A, Kheirabadi N, Mohammad Karimi A. Distribution of Pb in sediment and shell of rocky oysters (Saccostrea cucullata) of Lengeh Port, Qeshm and Hormoz Islands in Persian Gulf, Iran. Ecopersia. 2013;1(2):191-8. [Link]
35. Bagheri Z, Reyahi Bakhtiari A, Khandan Barani H. Investigation of Saccostrea cucullata oyster as monitoring of zinc, copper, lead and cadmium in intertidal island of Hormuz, the Persian Gulf. Oceanography. 2015;5(20):71-7. [Persian] [Link]
36. Saeedi H. Availability of Venerid Clam, Amiantis umbonella as potential metal bioindicator in Bandar Abbas coast, the Persian Gulf. Egypt J Aquat Res. 2012;38(2):93-103. [Link] [DOI:10.1016/j.ejar.2012.12.003]
37. Rizo OD, Reumont SO, Fuente JV, Arado OD, Pino NL, Rodríguez KA, et al. Copper, zinc and lead enrichments in sediments from Guacanayabo Gulf, Cuba, and its bioaccumulation in oysters, Crassostrea rhizophorae. Bull Environ Contam Toxicol. 2010;84(1):136. [Link] [DOI:10.1007/s00128-009-9898-y]
38. Cole S, Codling ID, Parr W, Zabel T. Guidelines for managing water quality impacts within UK European marine sites [Report]. Swindon: WRc Swindon; 1999. [Link]
39. EPA US. National recommended water quality criteria. [Report]. Washington, D.C.: Environmental Protection Agency; 2004. [Link]
40. Long ER, MacDonald DD, Smith SL, Calder FD. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag. 1995;19(1):81-97. [Link] [DOI:10.1007/BF02472006]
41. Sundaray SK, Nayak BB, Lin S, Bhatta D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-a case study: Mahanadi basin. J Hazard Mater. 2011;186(2-3):1837-46. [Link] [DOI:10.1016/j.jhazmat.2010.12.081]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.