1. Afrasinei GM, Melis MT, Buttau C, Bradd JM, Arras C, Ghiglieri G. Assessment of remote sensing-based classification methods for change detection of salt-affected areas (Biskra area, Algeria). J Appl Remote Sens. 2017;11(1):016025. [
Link] [
DOI:10.1117/1.JRS.11.016025]
2. Naseri MH, MotazedianM. Investigation of quickbird satellite image capability in the separation of the canopy of Zagros forest trees. Ecopersia. 2019;7(3):149-54. [
Link]
3. Thakkar AK, Desai VR, Patel A, Potdar MB. Post-classification corrections in improving the classification of land use/land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt J Remote Sens. 2017;20(1):79-89. [
Link] [
DOI:10.1016/j.ejrs.2016.11.006]
4. Hazarika N, Das AK, Borah SB. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt J Remote Sens Sp Sci. 2015;18(1):107-18. [
Link] [
DOI:10.1016/j.ejrs.2015.02.001]
5. Phukan P, Thakuriah G, Saikia R. Land use land cover change detection using remote sensing and GIS techniques: A case study of Golaghat district of Assam, India. Int Res J Earth Sci. 2013;1(1):11-5. [
Link]
6. Karan SK, Samadder SR. Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas. Environ Monit Assess. 2016;188(8):486. [
Link] [
DOI:10.1007/s10661-016-5494-x]
7. López-Granados E, Mendoza ME, González DI. Linking geomorphologic knowledge, RS and GIS techniques for analyzing land cover and land use change: A multitemporal study in the Cointzio watershed, Mexico. Rev Ambient Água. 2013;8(1):18-37. [
Link] [
DOI:10.4136/ambi-agua.956]
8. Manandhar R, Odeh IO, Ancev T. Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement. Remote Sens. 2009;1(3):330-44. [
Link] [
DOI:10.3390/rs1030330]
9. Ustuner M, Sanli FB, Dixon B. Application of support vector machines for landuse classification using high-resolution rapideye images: A sensitivity analysis. Eur J Remote Sens. 2015;48(1):403-22. [
Link] [
DOI:10.5721/EuJRS20154823]
10. Gomariz-Castillo F, Alonso-Sarría F, Cánovas-García F. Improving classification accuracy of multi-temporal Landsat Images by Assessing the Use of different algorithms, textural and ancillary information for a mediterranean semiarid area from 2000 to 2015. Remote Sens. 2017;9(10):1058. [
Link] [
DOI:10.3390/rs9101058]
11. Gheitury M, Heshmati M, Ahmadi M. Longterm land use change detection in Mahidasht watershed, Iran. Ecopersia. 2019;7(3):141-8. [
Link]
12. Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change. 2014;4(5):389-93. [
Link] [
DOI:10.1038/nclimate2196]
13. Prasad SV, Savithri TS, Krishna IV. Comparison of accuracy measures for RS image classification using SVM and ANN classifiers. Int J Electr Comput Eng. 2017;7(3): 1180-7. [
Link] [
DOI:10.11591/ijece.v7i3.pp1180-1187]
14. Senf C, Leitão PJ, Pflugmacher D, Van Der Linden S, Hostert P. Mapping land cover in complex Mediterranean landscapes using landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens Environ. 2015;156:527-536. [
Link] [
DOI:10.1016/j.rse.2014.10.018]
15. Kantakumar LN, Neelamsetti P. Multi-temporal land use classification using hybrid approach. Egypt J Remote Sens Sp Sci. 2015;18(2):289-95. [
Link] [
DOI:10.1016/j.ejrs.2015.09.003]
16. Beyer F, Jarmer T, Siegmann B, Fischer P. Improved crop classification using multitemporal RapidEye data. 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 2015 July 22-24, Annecy, France. Piscataway: IEEE; 2015. [
Link] [
DOI:10.1109/Multi-Temp.2015.7245780]
17. Alganci U, Sertel E, Ozdogan M, Ormeci C. Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in Southeastern Turkey. Photogramm Eng Remote Sens. 2013;79(11):1053-65. [
Link] [
DOI:10.14358/PERS.79.11.1053]
18. Eisavi V, Homayouni S, Yazdi AM, Alimohammadi A. Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Environ Monit Assess. 2015;187(5):291. [
Link] [
DOI:10.1007/s10661-015-4489-3]
19. Basukala AK, Oldenburg C, Schellberg J, Sultanov M, Dubovyk O. Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches. Eur J Remote Sens. 2017;50(1):187-201. [
Link] [
DOI:10.1080/22797254.2017.1308235]
20. Nguyen TT, Pham TT. Incorporating ancillary data into landsat 8 image classification process: A case study in Hoa Binh, Vietnam. Environ Earth Sci. 2016;75(5):430. [
Link] [
DOI:10.1007/s12665-016-5278-1]
21. Ildoromi A, Safari Shad M. Land use change prediction using a hybrid (CA-Markov) model. Ecopersia. 2017;5(1):1631-40. [
Link] [
DOI:10.18869/modares.ecopersia.5.1.1631]
22. Mushore TD, Mutanga O, Odindi J, DubeT. Assessing the potential of integrated landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto Int. 2017;32(8):886-99. [
Link] [
DOI:10.1080/10106049.2016.1188168]
23. Sinha S, Sharma LK, Nathawat MS. Improved land-use/land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing. Egypt J Remote Sens Sp Sci. 2015;18(2):217-33. [
Link] [
DOI:10.1016/j.ejrs.2015.09.005]
24. Sun L, Schulz K . The improvement of land cover classification by thermal remote sensing. Remote Sens. 2015;7(7):8368-90. [
Link] [
DOI:10.3390/rs70708368]
25. Barrett B, Nitze I, Green S, Cawkwell F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens Environ. 2014;152:109-24. [
Link] [
DOI:10.1016/j.rse.2014.05.018]
26. Pencue-Fierro EL, Solano-Correa YT, Corrales-Muñoz JC, Figueroa-Casas A. A semi-supervised hybrid approach for multitemporal multi-region multisensor landsat data classification. IEEE J Sel Top Appl Earth Obs Remote Sens. 2016;9(12):5424-35. [
Link] [
DOI:10.1109/JSTARS.2016.2623567]
27. Mohammady M, Amiri M, Dastorani J. Modeling land use changes of Ramin city in the Golestan province. J Spat Plan. 2016;19(4):141-58. [
Link]
28. Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, et al. The global landsat archive: Status, consolidation, and direction. Remote Sens Environ. 2016;185:271-83. [
Link] [
DOI:10.1016/j.rse.2015.11.032]
29. Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens. 2007;28(5):823-70. [
Link] [
DOI:10.1080/01431160600746456]
30. Madhura M, Venkatachala S. Comparison of supervised classification methods on remote sensed satellite data: An application in Chennai, South India. Int J Sci Res. 2015;4(2):1407-11. [
Link]
31. Castillo M, Muñoz-Salinas E. Controls on peak discharge at the lower course of Ameca River (Puerto Vallarta graben, west-central Mexico) and its relation to flooding. CATENA. 2017;151:191-201. [
Link] [
DOI:10.1016/j.catena.2016.12.019]
32. Jia K, Wei X, Gu X, Yao Y, Xie X, Li B. Land cover classification using landsat 8 operational land imager data in Beijing, China. Geocarto Int. 2014;29(8):941-51. [
Link] [
DOI:10.1080/10106049.2014.894586]
33. Namdar M, Adamowski J, Saadat H, Sharifi F, Khiri A. land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification. Int J Remote Sens. 2014;35(24):8057-73. [
Link] [
DOI:10.1080/01431161.2014.978035]
34. Chuvieco E. Fundamentals of satellite remote sensing. Boca Raton: CRC Press; 2009. [
Link] [
DOI:10.1201/b18954]
35. Zoungrana BJ, Conrad C, Amekudzi LK, Thiel M, Da ED, Forkuor G, et al. Multi-temporal landsat images and ancillary data for land use/cover change (LULCC) detection in the Southwest of Burkina Faso, West Africa. Remote Sens. 2015;7(9):12076-102. [
Link] [
DOI:10.3390/rs70912076]
36. Sesnie SE, Hagell SE, Otterstrom SM, Chambers CL, Dickson BG. SRTM-DEM and landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua. Rev Geogr Acad. 2008;2(2):53-65. [
Link]