Volume 8, Issue 1 (2020)                   ECOPERSIA 2020, 8(1): 47-56 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani A, Moameri M, Dadjou F, Seyedi Kaleybar S, Pournemati A, Asghari S. Determinization of Environmental Factors Effects on Plants Production in QezelOzan-Kosar Rangelands, Ardabil Province Factors Effect on Rangelands Production. ECOPERSIA 2020; 8 (1) :47-56
URL: http://ecopersia.modares.ac.ir/article-24-36698-en.html
1- Natural Resources Department, Agriculture & Natural Resources Faculty, University of Mohaghegh Ardabili, Ardabil, Iran , a_ghorbani@uma.ac.ir
2- Natural Resources Department, Agriculture & Natural Resources Faculty, University of Mohaghegh Ardabili, Ardabil, Iran
3- Natural Resources Department, Natural Resources Faculty, Gorgan University, Gorgan, Iran
4- Soil Science Department, Agriculture & Natural Resources Faculty, University of Mohaghegh Ardabili, Ardabil, Iran
Abstract:   (3427 Views)
Aims: The aim of the present study was to determine the most important environmental factors affecting aboveground net primary production (ANPP) of plants along the altitude gradient in QezelOzan-Kosar rangelands, Iran.
Materials & Methods: Eight sites along the altitude gradient were selected, in each of which three transects parallel and perpendicular to the slope were established. Along each transect (totally 240 plots), ANPP and soil samples were measured. Using digital elevation model (DEM) map, the maps of slope, aspect, elevation, topographic index (CTI), stream power index (SPI), plan curvature (PC), precipitation and temperature were extracted. The soil parameters measured in soil laboratory. To determine the important effective factors, principal component analysis (PCA) was used. Moreover, the ANPP prediction equation was simulated using the parameter which had the greatest impact and correlation with ANPP (precipitation), using 2nd-order polynomial model and mapped further.
Findings: The results of PCA revealed that six components had the highest effect on the ANPP variations (76.35% of ANPP variations). The result of simulated equation and map indicated acceptable accuracy (R2= 0.95, RMSE= 0.73).
Conclusion: The results of the present study highlight the importance of topographic, climatic, and soil factors in ANPP variations, and can be used to manage QezelOzan-Kosar rangelands for establishing balance between biomass and carbon of the ecosystem and ecosystem supply and demand.
Full-Text [PDF 1067 kb]   (1873 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecosystems
Received: 2019/09/22 | Accepted: 2019/12/4 | Published: 2020/03/14
* Corresponding Author Address: : Natural Resources Department, Agriculture & Natural Resources Faculty, University of Mohaghegh Ardabili, University Street, Ardabil, Iran. Postal Code: 5619911367

References
1. Chen Z, Wang R, Han P, Sun H, Sun H, Li Ch, et al. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide. Sci Total Environ. 2018;619-20:401-9. [Link] [DOI:10.1016/j.scitotenv.2017.11.146]
2. Šeda M, Šíma J, Volavka T, Vondruška J. Contamination of soils with Cu, Na and Hg due to the highway and railway transport. Eurasian J Soil Sci. 2017;6(1):59-64. [Link] [DOI:10.18393/ejss.284266]
3. Wagenbrenner JW, MacDonald LH, Rough D. Effectiveness of three post‐fire rehabilitation treatments in the Colorado Front Range. Hydrol Process Int J. 2006;20(14):2989-3006. [Link] [DOI:10.1002/hyp.6146]
4. Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil. 2016;2:111-28. [Link] [DOI:10.5194/soil-2-111-2016]
5. Keesstra S, Mol G, De Leeuw J, Okx J, De Cleen M, Visser S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land. 2018;7(4):133. [Link] [DOI:10.3390/land7040133]
6. Duran Zuazo VH, Rodriguez Pleguezuelo CR. Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev. 2008;28(1):65-86. [Link] [DOI:10.1051/agro:2007062]
7. Jozefaciuk G, Czachor H. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of new method to study water stability. Geoderma. 2014;221-22:1-10. [Link] [DOI:10.1016/j.geoderma.2014.01.020]
8. Chen Z, Luo R, Huang Z, Tu W, Chen J, Li W, et al. Effects of different backfill soils on artificial soil quality for cut slope revegetation: Soil structure, soil erosion, moisture retention and soil C stock. Ecol Eng. 2015;83:5-12. [Link] [DOI:10.1016/j.ecoleng.2015.05.048]
9. Fu D, Yang H, Wang L, Yang S, Li R, Zhang W, et al. Vegetation and soil nutrient restoration of cut slopes using outside soil spray seeding in the plateau region of southwestern China. J Environ Manag. 2018;228:47-54. [Link] [DOI:10.1016/j.jenvman.2018.08.108]
10. De Ona J, Osorio F. Using waste to reduce slope erosion on road embankments. Proc Inst Civ Eng. 2006;159:15-24. [Link] [DOI:10.1680/tran.2006.159.1.15]
11. De Oña J, Ferrer A, Osorio F. Erosion and vegetation cover in road slopes hydroseeded with sewage sludge. Transp Res Part D Transp Environ. 2011;16(6):465-8. [Link] [DOI:10.1016/j.trd.2011.04.002]
12. Vallone M, Pipitone F, Alleri M, Febo P, Catania P. Hydroseeding application on degraded slopes in the southern Mediterranean area (Sicily). Appl Eng Agric. 2013;29(3):309-19. [Link] [DOI:10.13031/aea.29.9825]
13. Dodson EK, Peterson DW. Seeding and fertilization effects on plant cover and community recovery following wildfire in the Eastern Cascade Mountains, USA. For Ecol Manag. 2009;258(7):1586-93. [Link] [DOI:10.1016/j.foreco.2009.07.013]
14. Bautista S, Robichaud PR, Bladé, C. Post-fire mulching. In: Cerdá A, Robichaud PR. Fire effects on soils and restoration strategies. Boca Raton: CRC Press; 2009. pp. 353-72. [Link] [DOI:10.1201/9781439843338-c13]
15. Groen AH, Woods SW. Effectiveness of aerial seeding and straw mulch for reducing post-wildfire erosion, north-western Montana, USA. Int J Wildland Fire. 2008;17(5):559-71. [Link] [DOI:10.1071/WF07062]
16. Albaladejo Montoro J, Alvarez Rogel J, Querejeta J, Diaz E, Castillo V. Three hydro‐seeding revegetation techniques for soil erosion control on anthropic steep slopes. Land Degrad Dev. 2000;11(4):315-25. https://doi.org/10.1002/1099-145X(200007/08)11:4<315::AID-LDR394>3.0.CO;2-4 [Link] [DOI:10.1002/1099-145X(200007/08)11:43.0.CO;2-4]
17. Brofas G, Mantakas G, Tsagari K, Stefanakis M, Varelides C. Effectiveness of cellulose, straw and binding materials for mining spoils revegetation by hydro-seeding, in Central Greece. Ecol Eng. 2007;31(3):193-9. [Link] [DOI:10.1016/j.ecoleng.2007.06.002]
18. Prats SA, Malvar MC, Vieira DC, MacDonald L, Keizer JJ. Effectiveness of hydromulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degrad Dev. 2016;27(5):1319-33. [Link] [DOI:10.1002/ldr.2236]
19. Sutejo Y, Gofar N. Effect of area development on the stability of cut slopes. Procedia Eng. 2015;125:331-7. [Link] [DOI:10.1016/j.proeng.2015.11.071]
20. Zhang XC, Miller WP, Nearing MA, Norton LD. Effects of surface treatment on surface sealing, runoff, and interrill erosion. Trans Am Soc Agric Eng. 1998;41(4):989-94. [Link] [DOI:10.13031/2013.17271]
21. Parsakhoo A, Mostafa M, Pourmalekshah AA. The effects of slash and sawdust on reducing soil compaction on skid trails. Iran J For Poplar Res. 2017;25(1):172-82. [Persian] [Link]
22. Sadeghi SH, Hazbavi Z, Younesi H, Bahramifar N. Trade-off between runoff and sediments from treated erosion plots and polyacrylamide and acrylamide residues. Catena. 2016;142:213-20. [Link] [DOI:10.1016/j.catena.2016.03.013]
23. Sadeghi SHR, Hazbavi Z, Younesi H. Sustainable watershed management through applying appropriate level of soil amendments. In: Ethem Gonenc I, Wolflin JP, Russo RC, editors. Sustainable watershed management. Boca Raton: CRC Press; 2014. pp. 183-5. [Link] [DOI:10.1201/b17433-40]
24. Zohuriaan-Mehr MJ, Kabiri K. Superabsorbent polymer materials: a review. Iran Polym J. 2008;17(6):451-77. [Link]
25. ASTM. Standard D2434; Permeability of granular soils (Constant Head) [Internet]. West Conshohocken: ASTM International; 2011 [cited 2010 June 18]. Available from: https://civillabs.kashanu.ac.ir/file/download/page/1506248775-d-2434-68-r00-rdi0mzq-.pdf. [Link]
26. Kooch Y, Rostayee F, Hosseini SM. Soil quality Indices in pure and mixed forest stands of southern Caspian region. Ecopersia. 2015;3(2):987-1001. [Link]
27. Babcock DL, McLaughlin RA. Runoff water quality and vegetative establishment for groundcovers on steep slopes. J Soil Water Conserv. 2011;66(2):132-41. [Link] [DOI:10.2489/jswc.66.2.132]
28. Kemper WD, Rosenau RC. Size distribution of aggregates. In: Klute A, editor. Methods of soil analysis: Physical and mineralogical methods, part 1. 2nd Edition. Madison: American Society of Agronomy; 1986. pp. 425-42. [Link]
29. Le Bissonnais YL. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci. 1996;47(4):425-37. [Link] [DOI:10.1111/j.1365-2389.1996.tb01843.x]
30. Van Bavel CH. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci Soc Am J. 1950;14:20-3. [Link] [DOI:10.2136/sssaj1950.036159950014000C0005x]
31. Atterberg A. On the investigation of the physical properties of soils and on the plasticity of clays. Internationale Mitteilungen für Bodenkunde. 1911;1:10-43. [German] [Link]
32. Abe K, Iwamoto M. Preliminary experiment on shear in soil layers with a large-direct-shear apparatus. J Jpn For Soc. 1986;68(2):61-5. [Link]
33. Wu TH, Watson A. In situ shear tests of soil blocks with roots. Can Geotech J. 1998;35(4):579-90. [Link] [DOI:10.1139/t98-027]
34. Muzzi E, Roffi F, Sirotti M, Bagnaresi U. Revegetation techniques on clay soil slopes in northern Italy. Land Degrad Dev. 1997;8(2):127-37. https://doi.org/10.1002/(SICI)1099-145X(199706)8:2<127::AID-LDR248>3.0.CO;2-B [Link] [DOI:10.1002/(SICI)1099-145X(199706)8:23.0.CO;2-B]
35. Heidary K, Najafi Nejad A, Dekker LW, Ownegh M, Mohammadian Behbahani A. Impact of soil water repellency on hydrological and erosion processes; A review. Ecopersia. 2018;6(4):269-84. [Link]
36. Parsakhoo A, Jajouzadeh J, Rezaee Motlagh A. Effect of hydroseeding on grass yield and water use efficiency on forest road artificial soil slopes. J For Sci. 2018;64(4):157-63. [Link] [DOI:10.17221/2/2018-JFS]
37. Shahid SA, Qidwai AA, Anwar F, Ullah I, Rashid U. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly (acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules. 2012;17(8):9397-412. [Link] [DOI:10.3390/molecules17089397]
38. Yu J, Shi JG, Ma X, Dang PF, Yan YL, Mamedov AI, et al. Superabsorbent polymer properties and concentration effects on water retention under drying conditions. Soil Sci Soc Am J. 2017;81(4):889-901. [Link] [DOI:10.2136/sssaj2016.07.0231]
39. Mamedov AI, Beckmann S, Huang C, Levy GJ. Aggregate stability as affected by polyacrylamide molecular weight, soil texture, and water quality. Soil Sci Soc Am J. 2007;71(6):1909-18. [Link] [DOI:10.2136/sssaj2007.0096]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.