Volume 8, Issue 4 (2020)                   ECOPERSIA 2020, 8(4): 261-268 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sekhavati B, Sekhavati N. Chemical, Physical and Mineralogical Properties of Dust Fractions in the Kermanshah Province, Iran. ECOPERSIA. 2020; 8 (4) :261-268
URL: http://ecopersia.modares.ac.ir/article-24-34695-en.html
1- Department of Geology, Faculty of Earth Sciences, Payame Noor University, Tehran, Iran
2- Forestry & Forest Economics Department, Faculty of Agriculture and Natural Resources, University of Tehran, Tehran, Iran , neda.sekhavati@gmail.com
Abstract:   (66 Views)
Aims: Dust phenomenon is one of the natural hazards affecting the arid and semi-arid regions of Iran. It carries large amounts of particulate matter, which have dangerous impacts on human health, environment and vegetation. Therefore, dust is considered as one of the most important environmental problems that have drastically increased in recent times. Recognizing the origin and size of these particles, their chemical and physical properties and their elements are important for controlling and evaluating their effects on human health and the environment.
Materials & Methods: The Kermanshah province is located in the west of Iran and is one of the provinces that receive the most exposure to dust storms. For this investigation, four cities that are exposed to dust were selected: Sar-Pul-e-Zahab (SZ), Gilan-e-Gharb (GG), Islamabad (IA) and Kermanshah (K). For the installation of marble sediment traps in the Kermanshah province, 36 areas were selected. After collecting dust samples, particle size distribution analyses were conducted by using laser size analysis techniques. Chemical compositions were measured with the help of different techniques such as x-ray fluorescence and x-ray diffraction.
Findings: The results showed that the sizes of dust particles varied from 0.0004 to 112 microns, putting them in the range of clay and silt. The particle size in Gilan-e-Gharb was 0.04 to 0.45, Sar-Pul-e-Zahab was 0.04 to 112, Kermanshah 0.04 to 90 and Islamabad 0.0004 to 10 microns. The mineralogical composition of the dust particles mainly constituted quartz, calcite, muscovite, plagioclase feldspar, dolomite and vermiculite. X-ray spectroscopy studies on the dust particles generally showed the presence of aluminum oxide (Al2O3), silicon oxide (SiO2), calcium oxide (CaO), iron oxide (Fe2O3), strontium oxide (SrO) and zinc oxide (ZnO).
Conclusion: In total, the results of this research work show that SrO, ZnO, silicon, aluminum, calcite, iron and their mineralogical compositions are the main oxides and elements in the dust of the Kermanshah province. Furthermore, the predominance of particle sizes in the range of clay and silt suggests that particles have been transmitted from medium to far distances alongside hinting at a similarity in their sources.
Full-Text [PDF 954 kb]   (16 Downloads)    
Article Type: Original Research | Subject: Ecological Science
Received: 2019/07/11 | Accepted: 2020/02/26 | Published: 2020/09/22
* Corresponding Author Address: Forestry & Forest Economics Department, Faculty of Agriculture and Natural Resources, University of Tehran, Tehran, Iran

1. Sayadi M, Rezaei M, Rashki Ghaleno O, Afsari K, PoorMollaeib N. Natural and concentration factor distribution of heavy metals in sediments of Chah Nimeh reservoirs of Sistan, Iran. ECOPERSIA. 2015;3(2):1003-12. [Link]
2. Faiz Y, Tufail M, Tayyeb Javed M, Chaudhry MM, Naila S. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem J 2009;92(2):186-92. [Link] [DOI:10.1016/j.microc.2009.03.009]
3. Qu JJ, Hao X, Kafatos M, Wang L. Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geosci Remote Sens Lett. 2006;3(4):484-6. [Link] [DOI:10.1109/LGRS.2006.877752]
4. El-Askary H, Farouk R, Ichoku C, Kafatos M. Transport of dust and anthropogenic aerosols across Alexandria, Egypt. Ann Geophysicae. 2009;27(7):2869-79. [Link] [DOI:10.5194/angeo-27-2869-2009]
5. Zirjani Zadeh S. Mineralogy, geochemistry and morphology of the dust storms particles in the city of Gonabad. Iran J Crystallogr Mineral. 2018;26(2):263-72. [Persian] [Link] [DOI:10.29252/ijcm.26.2.263]
6. Mishra SK, Tripathi SN. Modeling optical properties of mineral dust over the Indian Desert. J Geophysic Res Atmos. 2008;113(D23). [Link] [DOI:10.1029/2008JD010048]
7. Zarasvandi A, Carranza EJM, Moore F, Rastmanesh F. Spatio-temporal occurrences and mineralogical-geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J Geochem Explor. 2011;111(3):138-51. [Link] [DOI:10.1016/j.gexplo.2011.04.004]
8. Kandler K, Schütz L, Deutscher C, Ebert M, Hofmann H, Jäckel S, et al. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B. 2009;61(1):32-50. https://doi.org/10.1111/j.1600-0889.2008.00385.x [Link] [DOI:10.3402/tellusb.v61i1.16798]
9. Xi X, Sokolik NI. Impact of Asian dust aerosol and surface albedo on photosynthetically active radiation and surface radiative balance in dryland ecosystems. Adv Meteorol. 2012;2012:276207. [Link] [DOI:10.1155/2012/276207]
10. Engelbrecht JP, Moosmüller H, Pincock S, Jayanty RKM, Lersch T, Casuccio G, et al. Technical note: Mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions. Atmos Chem Phys. 2016;16(17):10809-30. [Link] [DOI:10.5194/acp-16-10809-2016]
11. Azimzadeh HR, Fallahzadeh RA, Ghaneian MT, Almodaresi SA, Eslami H, Taghavi M. Investigation of chemical characteristics and spatiotemporal quantitative changes of dust fall using GIS and RS technologies; A case study, Yazd city, central plateauof Iran. J Environ Health Eng Manag. 2017;4(1):45-53. [Link] [DOI:10.15171/EHEM.2017.07]
12. Akhzari D, Haghighi S. Effect of vegetation change of source area on dust storms occurrence in the west of Iran. ECOPERSIA. 2015;3(4):1133-43. [Link]
13. Khamooshi S, Panahi F, Vali A, Mousavi SH. Dust storm monitoring using HYSPLIT model and NDDI (Case study: Southern cities of Shiraz, Bushehr and Fasa, Iran). ECOPERSIA. 2016;4(4):1603-16. [Link] [DOI:10.18869/modares.ecopersia.4.4.1603]
14. Modaihsh AS. Characteristics and composition of the falling dust sediments on Riyadh city, Saudi Arabia. J Arid Environ. 1997;36(2):211-23. [Link] [DOI:10.1006/jare.1996.0225]
15. Khosh Akhlagh F, Najafi MS, Zamanzadeh SM, Shirazi MH, Samadi M. Investigating the composition of dust burden in west and southwest of Iran. Geogr Environ Hazards. 2013;(6):17-36. [Persian] [Link]
16. niocexp.ir [Internet]. Tehran: Exploration Directorate; 2013 [Cited 2019 December 20]. Available from: https://www.niocexp.ir/ [Persian] [Link]
17. ISO. ISO 13320:2009, Particle size analysis-laser diffraction methods [Internet]. Geneva: ISO; 2009 [Cited 2019 December 22]. Available from: https://www.iso.org/standard/44929.html [Link]
18. ISO. ISO/IEC 17025:2017, General requirements for the competence of testing and calibration laboratories. [Internet]. Geneva: ISO; 2017 [Cited 2019 December 25]. Available from: https://www.iso.org/standard/66912.html [Link]
19. Jackson ML. Soil chemical analysis: Advanced course. 2nd Edition. Unknown Publisher City: Parallel Press; 1969. [Link]
20. Rashki A, Kaskaoutis DG, Rautenbach CJdeW, Eriksson PG, Qiang M, Gupta P. Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Res. 2012;5:51-62. [Link] [DOI:10.1016/j.aeolia.2011.12.001]
21. Goudie A, Middleton NJ. Desert dust in the global system. Heidelberg: Springer-Verlag; 2006. [Link]
22. Broomandi P, Dabir B, Bonakdarpour B, Rashidi Y. Mineralogical and chemical characterization of suspended atmospheric particles in Ahvaz. Int J Res. 2017;11:55-62. [Link] [DOI:10.1007/s41742-017-0006-6]
23. Jalilian AH. Sedimentology and Sedimentary chemistry earthquakes in Ahvaz metropolis. Iran J Geol 2017;11(41):79-93. [Persian] [Link]
24. Karimian B, Landi A, Hojati S, Ahadian J. Physicochemical and mineralogical characteristics of dust particles deposited in Ahvaz city. Iran J Soil Water Res. 2016;47(1):159-73. [Persian] [Link]
25. Díaz-Hernández JL, Martín-Ramos JD, López-Galindo A. Quantitative analysis of mineral phases in atmospheric dust deposited in the south-eastern Iberian Peninsula. J Atmos Environ. 2011;45(18):3015-24. [Link] [DOI:10.1016/j.atmosenv.2011.03.024]
26. Jiries A, El-Hasan T, Manasrah W. Qualitative evaluation of the mineralogical and chemical composition of dry deposition in the central and southern highlands of Jordan. Chemosphere. 2002;48(9):933-8. [Link] [DOI:10.1016/S0045-6535(02)00177-7]
27. Ganor E, Deutsch Y, Foner HA. Mineralogical composition and sources of airborne settling particles on Lake Kinneret (the sea of Galilee), Israel. Water Air Soil Pollut. 2000;118:245-62. [Link] [DOI:10.1023/A:1005167230795]
28. Pye K. Aeolian dust transport and deposition over crete and adjacent parts of the Mediterranean Sea. Earth Surf Process Landf. 1992;17(3):271-88. [Link] [DOI:10.1002/esp.3290170306]
29. Wu G, Xu B, Zhang C, Gao S, Yao T. Geochemistry of dust aerosol over the Eastern Pamirs. Geochimica et Cosmochimica Acta. 2009;73(4):977-89. [Link] [DOI:10.1016/j.gca.2008.11.022]
30. Rajabi M, Souri B. Evaluation of heavy metals among dustfall particles of Sanandaj, Khorramabad and Andimeshk cities in western iran 2012-2013. J Health Environ. 2015;8(1):11-22. [Link]
31. Mahmoodi Z, Khademi H. Concentration of selected heavy metals in atmospheric dust of Isfahan and neighboring metropolitan areas. J Water Soil Sci. 2014;18(67):243-55. [Persian] [Link]
32. Nourmohammadi F, Soufi M, Sadeghi SH, Mirrezaie S, Kazemi V, Karimzadeh H, et al. Storm-wise sediment production of gully erosion in the west of Iran. ECOPERSIA. 2014;2(2):539-56. [Link]
33. Hojati S, Khademi H, Cano AF, Landi A. Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains. CATENA. 2012;88(1):27-36. [Link] [DOI:10.1016/j.catena.2011.09.002]
34. McTainsh GH, Lynch AW, Hales R. Particle-size analysis of aeolian dusts, soils and sediments in very small quantities using a Coulter Multisizer. Earth Surf Process Landf. 1997;22(13):1207-16. https://doi.org/10.1002/(SICI)1096-9837(199724)22:13<1207::AID-ESP820>3.0.CO;2-K [Link] [DOI:10.1002/(SICI)1096-9837(199724)22:133.0.CO;2-K]
35. Hoffmann C, Funk R, Sommer M, Li Y. Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia. Atmos Environ. 2008;42(36):8422-31. [Link] [DOI:10.1016/j.atmosenv.2008.08.014]
36. Osada K, Ura S, Kagawa M, Mikami M, Tanaka TY, Matoba S, et al. Wet and dry deposition of mineral dust particles in Japan: Factors related to temporal variation and spatial distribution. Atmos Chem Phys. 2014;14(2):1107-21. [Link] [DOI:10.5194/acp-14-1107-2014]
37. Wang Y, Yao L, Wang LL, Liu ZR, Ji DS, Tang GQ, et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci China Earth Scie. 2014;57:14-25. [Link] [DOI:10.1007/s11430-013-4773-4]
38. Abaspour O, Qeisari Kh. Fuzzy and substructural analysis of dust in the city of Ahvaz. 2nd National Conference on Wind Erosion and Dust Storms, 16-17 February 2011, Yazd, Iran. Yazd: Yazd University; 2011. pp. 65-72. [Persian] [Link]
39. Sheikh Abadi H. Investigating the structure and elements of Kermanshah refractories [Dissertation]. Kermanshah: Razi University; 2014. [Persian] [Link]

Add your comments about this article : Your username or Email:

Send email to the article author