Volume 8, Issue 1 (2020)                   ECOPERSIA 2020, 8(1): 1-14 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shoaei Z, Emamjomeh R. Prediction of Time to Failure in Creep Type Large-Scale Landslide. ECOPERSIA 2020; 8 (1) :1-14
URL: http://ecopersia.modares.ac.ir/article-24-32086-en.html
1- Soil Conservation Department, Soil Conservation & Watershed Management Research Institute, Tehran, Iran , zshoaei@gmail.com
2- Soil Conservation Department, Soil Conservation & Watershed Management Research Institute, Tehran, Iran
Abstract:   (3049 Views)
Aims: Time prediction of the main failure is of great assistance in managing the risk involved in landslide occurrence. The complexity of subsurface structure, lack of sufficient information about the slip surface, and complexity of seasonal factors make the prediction more difficult. Most of the solutions proposed for modeling the prediction of the main failure are not efficient and are associated with considerable errors due to the oversimplification. It makes the simultaneous incorporation of all effective factors nearly impossible. In this study, a reliable method was proposed for selecting the appropriate time to analyze the landslide movement and providing the speed threshold leading to the main landslide occurrence in a large-scale rockslide in the Anguran Open-Pit Mine.
Materials & Methods: In this study, the data set of two years movement of a reliable creep type landslide in Anguran Mine (Zanjan, Iran) were implemented to modify the prediction method suggested by the previous study. The method of this study was a careful comparison of accelerator factors and landslide motion.
Findings: The independence of the movement speed from the effective factors such as precipitation could be a reliable situation that can be used to predict the critical condition of landslide motion toward final and rapid failure. In this rockslide, 1.5 million m3 block of stone slid into the open pit.
Conclusion: The employed method presented in this study allows predicting the occurrence of a final rockslide within a reasonable interval of time and preventing the damage occurred through the timely evacuation of workers and equipment.
 
Full-Text [PDF 3321 kb]   (1727 Downloads)    
Article Type: Original Research | Subject: Ecosystem Management, Monitoring, Policy and Law
Received: 2019/04/17 | Accepted: 2019/09/15 | Published: 2020/03/14
* Corresponding Author Address: 9th Km of Karaj Special Highway, Shafiee Street, Jalal Street, SCWMRI, Tehran, Iran. Post Code: 1389817635

References
1. Smith K, Petley DN. Environmental hazards: Assessing risk and reducing disasters. 5th Edition. Abingdon: Routledge; 2009. [Link]
2. Bhandari RK. Special lecture: Some practical lessons in the investigation and field monitoring of landslides. The 5th International Symposium on Landslides, 1988 July 10-15, Lausanne, Switzerland. Roterdam: Bulkema; 1988. [Link]
3. Guedjeo CS, Kagou Dongmo A, Wotchoko P, Nkouathio DG, Chenyi ML, Wilson Buma G, et al. Landslide susceptibility mapping and risk assessment on the Bamenda Mountain (Cameroon Volcanic Line). J Geosci Geomat. 2017;5(4):173-85. [Link] [DOI:10.12691/jgg-5-4-2]
4. Van Westen CJ. The modelling of landslide hazards using Gis. Surv Geophys. 2000;21(2-3):241-55. [Link] [DOI:10.1023/A:1006794127521]
5. Voight B. A method for prediction of volcanic eruptions. Nature. 1988;332(6160):125-30. [Link] [DOI:10.1038/332125a0]
6. Voight B. A relation to describe rate-dependent material failure. Science. 1989;243(4888):200-3. [Link] [DOI:10.1126/science.243.4888.200]
7. Crosta GB, Agliardi F. How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth Parts A B C. 2002;27(36):1557-65. [Link] [DOI:10.1016/S1474-7065(02)00177-8]
8. Crosta GB, Agliardi F. Failure forecast for large rock slides by surface displacement measurements. Can Geotech J. 2003;40(1):176-91. [Link] [DOI:10.1139/t02-085]
9. Crosta GB, Agliardi F. A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci. 2003;3:407-22. [Link] [DOI:10.5194/nhess-3-407-2003]
10. Terzaghi K. Mechanism of landslides. In: Paige S, editor. Application of geology to engineering practice (Berkey Volume). Boulder: Geological Society of America; 1950. pp. 83-123. [Link] [DOI:10.1130/Berkey.1950.83]
11. Haefeli R. Creep problems in soils, snow, and ice. The 3rd International Conference on Soil Mechanics and Foundation Engineering, 1953 August 16-27, Zürich, Switzerland. Unknown Publisher; 1953. pp. 238-51. [Link]
12. Emery JJ. Simulation of slope creep. In: Voight B, editor. Rockslides and avalanches developments in geotechnical engineering. 14th Volume. Amsterdam: Elsevier; 1979. pp. 669-91. [Link] [DOI:10.1016/B978-0-444-41507-3.50027-1]
13. Van Asch TWJ. Creep processes in landslides. Earth Surf Process Landf. 1984;9(6):573-83. [Link] [DOI:10.1002/esp.3290090611]
14. Cornelius RR, Scott PA. A materials failure relation of accelerating creep as empirical description of damage accumulation. Rock Mech Rock Eng. 1993;26(3):233-52. [Link] [DOI:10.1007/BF01040117]
15. Saito M. Forecasting the time of occurrence of a slope failure. The 6th International Conference on Soil Mechanics and Foundation Engineering, 1965 September 8-15, Montreal, Canada. Toronto: University of Toronto Press; 1965. pp. 537-41. [Link]
16. Fukuzono T. A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement (in Japanese). J Japan Landslide Soc. 1985;22(2):8-14. [Japanese] [Link] [DOI:10.3313/jls1964.22.2_8]
17. Cruden DM, Masoumzadeh S. Accelerating creep of the slopes of a coal mine. Rock Mech Rock Eng. 1987;20(2):123-35. [Link] [DOI:10.1007/BF01410043]
18. Cruden DM. A simple definition of a landslide. Bull Int Assoc Eng Geol. 1991;43(1):27-9. [Link] [DOI:10.1007/BF02590167]
19. Saito M, Uezawa H. Failure of soil due to creep. The 5th International Conference on Soil Mechanics and Foundation Engineering, 1961 July 17-22, Paris. Paris: Dunod; 1961. pp. 315-8. [Link]
20. Saito M. Forecasting time of slope failure by tertiary creep. The 7th International Conference on Soil Mechanics and Foundation Engineering, 1969, Mexico City, Mexico. Mexico: Sociedad Mexicana de Mecanica de Suelos, A.C.; 1969. pp. 677-83. [Link]
21. Borsetto M, Frassoni A, La Barbera G, Fanelli M, Giuseppetti G, Mazza G. An application of Voight empirical model for the prediction of soil and rock instabilities. The 5th International Symposium on Landslides, 1988 July 10-15, Lausanne, Christchurch. Rotterdam: Balkema; 1991. pp. 335-41. [Link]
22. Cornelius RR, Scott PA. A materials failure relation of accelerating creep as empirical description of damage accumulation. Rock Mech Rock Eng. 1993;26(3):233-52. [Link] [DOI:10.1007/BF01040117]
23. Agliardi F, Crosta G, Zanchi A. Structural constraints on deep-seated slope deformation kinematics. Eng Geol. 2001;59(1-2):83-102. [Link] [DOI:10.1016/S0013-7952(00)00066-1]
24. Hao SW, Zhang BJ, Tian JF, Elsworth D. Predicting time‐to‐failure in rock extrapolated from secondary creep. J Geophys Res: Solid Earth. 2014;119(3):1942-53. [Link] [DOI:10.1002/2013JB010778]
25. Pazouki A, Yeganeh BY. Recovery of lead-zinc from Angouran mine Iran. J Metall Mater Sci. 2000;42(4):221-6. [Link]
26. Boni M, Gilg H, Balassone G, Schneider J, Allen CR, Moore F. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Mineralium Deposita. 2007;42(8):799-820. [Link] [DOI:10.1007/s00126-007-0144-4]
27. Gilg HA, Boni M, Balassone G, Allen CR, Banks D, Moore F. Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit NW Iran: Interaction of sedimentary brines with a metamorphic core complex. Mineralium Deposita. 2006;41:1. [Link] [DOI:10.1007/s00126-005-0035-5]
28. Shoaei Z, Ghayoumian J. Seimareh landslide, the largest complex slide in the world. The 8th International Congress, International Association for Engineering Geology and the Environment, 1998 September 21-25, Vancouver, Canada. Rotterdam: Balkema; 1998. pp. 1337-42. [Link]
29. Shoaei Z. Mechanism of the giant Seimareh landslide, Iran, and the longevity of its landslide dams. Environ Earth Sci. 2014;72(7):2411-22. [Link] [DOI:10.1007/s12665-014-3150-8]
30. Skempton AW. Long-term stability of clayey slopes. Geotechnique. 1964;14(2):77-102. [Link] [DOI:10.1680/geot.1964.14.2.77]
31. Sassa K, Canuti P. Landslides, disaster risk reduction. Berlin: Springer; 2009. p. 649. [Link] [DOI:10.1007/978-3-540-69970-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.