Volume 7, Issue 2 (2019)                   ECOPERSIA 2019, 7(2): 79-85 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sepahvand F, Abrari Vajari K, Soosani J. Fine Root Biomass in Acer monspessulanum Trees and Its Relation to Ecological Factors in Zagros Mountain Forests. ECOPERSIA 2019; 7 (2) :79-85
URL: http://ecopersia.modares.ac.ir/article-24-28581-en.html
1- Forestry Deptartment, Agriculture & Natural Resources Faculty, Lorestan University, Khorramabad, Lorestan, Iran
2- Forestry Deptartment, Agriculture & Natural Resources Faculty, Lorestan University, Khorramabad, Lorestan, Iran , kambiz.abrari2003@yahoo.com
Abstract:   (6038 Views)
Aims: Roots of diverse diameters and various physiological and physical roles compose the root systems of forest trees and its distribution influence the quantities and distributions of plant obtainable water and nutrient.
Materials and Methods: Fine roots of Acer trees (n=40) were sampled randomly at soil depths of 0-15 and 15-30 cm in and positions under of trees. The fine roots were washed (d≤ 2 mm) and dried at 70°C and weighed. Furthermore, diameter at breast height (cm), total height (m), crown (m) for target trees and slope, altitude, and exposition of each sample point were measured in research site.
Findings: The results showed that soil depth has been influenced on fine root biomass; so, the highest amount was observed in depth of 15-30 cm rather than 0-15cm. The difference between elevations was not significant with regard to fine root biomass. The value of biomass in west aspect was greater than east one. The slope had no effect on the fine root biomass of trees in the site, as well Pearson correlation coefficient indicated that with of trees, fine root biomass was increased. There was a positive correlation (p<0.05) between the biomass of fine roots and BD (-3), sand (%) and a negative, but statistically insignificant correlation with P (p<0.05).
Conclusion: We found that depth of , exposition, crown of trees, as well as bulk density and sand (%) appeared to be a contributing fine root biomass values in Acer trees.
Full-Text [PDF 426 kb]   (1773 Downloads)    
Article Type: Original Research | Subject: Forest Ecology and Management
Received: 2018/12/25 | Accepted: 2019/01/21 | Published: 2019/04/15
* Corresponding Author Address: Forestry Deptartment, Agriculture & Natural Resources Faculty, Lorestan University, Khorramabad, Lorestan, Iran. Postal Code: 6815144316

References
1. Lang C, Dolynska A, Finkeldey R, Polle A. Are beech (Fagus sylvatica) roots territorial?. For Ecol Manag. 2010;260(7):1212-7. [Link] [DOI:10.1016/j.foreco.2010.07.014]
2. Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, et al. Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree Physiol. 2012;32(3):303-12. [Link] [DOI:10.1093/treephys/tps008]
3. Kochsiek A, Tan S, Russo SE. Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecol. 2013;214(6):869-82. [Link] [DOI:10.1007/s11258-013-0215-9]
4. Addo-Danso SD, Prescott CE, Smith AR. Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. For Ecol Manag. 2016;359:332-51. [Link] [DOI:10.1016/j.foreco.2015.08.015]
5. Xiang W, Fan G, Lei P, Zeng Y, Tong J, Fang X, et al. Fine root interactions in subtropical mixed forests in China depend on tree species composition. Plant Soil. 2015;395(1-2):335-49. [Link] [DOI:10.1007/s11104-015-2573-7]
6. Xiao Q, Huang M. Fine root distributions of shelterbelt trees and their water sources in an oasis of arid Northwestern China. J Arid Environ. 2016;130:30-9. [Link] [DOI:10.1016/j.jaridenv.2016.03.004]
7. Hertel D, Strecker T, Müller‐Haubold H, Leuschner C. Fine root biomass and dynamics in beech forests across a precipitation gradient - is optimal resource partitioning theory applicable to water‐limited mature trees?. J Ecol. 2013;101(5):1183-200. [Link] [DOI:10.1111/1365-2745.12124]
8. Grygoruk D. Root biomass of Fagus sylvatica L. stands depending on the climatic conditions. Folia Forestalia Polonica Series A Forestry. 2016;58(4):220-7. [Link] [DOI:10.1515/ffp-2016-0025]
9. Olesinski J, Lavigne MB, Kershaw Jr JA, Krasowski MJ. Fine-root dynamics change during stand development and in response to thinning in balsam fir (Abies balsamea L. Mill.) forests. For Ecol Manag. 2012;286:48-58. [Link]
10. Lehtonen A, Palviainen M, Ojanen P, Kalliokoski T, Nöjd P, Kukkola M, et al. Modelling fine root biomass of boreal tree stands using site and stand variables. For Ecol Manag. 2016;359:361-9. [Link] [DOI:10.1016/j.foreco.2015.06.023]
11. Claus A, George E. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can J For Res. 2005;35(7):1617-25. [Link] [DOI:10.1139/x05-079]
12. Hishi T, Takeda H. Soil microarthropods alter the growth and morphology of fungi and fine roots of Chamaecyparis obtusa. Pedobiologia. 2008;52(2):97-110. [Link] [DOI:10.1016/j.pedobi.2008.04.003]
13. Sun T, Dong L, Mao Z, Li Y. Fine root dynamics of trees and understorey vegetation in a chronosequence of Betula platyphylla stands. For Ecol Manag. 2015;346:1-9. [Link] [DOI:10.1016/j.foreco.2015.02.035]
14. Godbold DL, Fritz HW, Jentschke G, Meesenburg H, Rademacher P. Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiol. 2003;23(13):915-21. [Link] [DOI:10.1093/treephys/23.13.915]
15. Luo T, Brown S, Pan Y, Shi P, Ouyang H, Yu Z, et al. Root biomass along subtropical to alpine gradients: Global implication from Tibetan transect studies. For Ecol Manag. 2005;206(1-3):349-63. [Link]
16. Sariyildiz T. Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey. For Ecol Manag. 2015;335:71-86. [Link] [DOI:10.1016/j.foreco.2014.09.030]
17. Zewdie S, Fetene M, Olsson M. Fine root vertical distribution and temporal dynamics in mature stands of two enset (Enset ventricosum Welw Cheesman) clones. Plant Soil. 2008;305(1-2):227-36. [Link] [DOI:10.1007/s11104-008-9554-z]
18. Pourbabaei H, Babaeian M, Bonyad AE, Adel MN. Autecology of Montpellier maple (Acer monspessulanum subsp. cinerascens) in forests of Fars province. Iran J Biol. 2014;27(3):376-85. [Persian] [Link]
19. Alipour A, Erfanifard SY. Spatial pattern analysis of Montpellier maple (Acer monspessulanum L.) on steep slopes in Zagros (Case study: Firoozabad, Fars province). Iran J For Poplar Res. 2018;25(4):574-84. [Persian] [Link]
20. Mehrnia M, Ramak P. Floristic investigation of Noujian watershed (Lorestan province). Iran J Plant Biol. 2014;6(20):113-36. [Persian] [Link]
21. Xiang W, Wu W, Tong J, Deng X, Tian D, Zhang L, et al. Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest. Forestry. 2013;86(3):343-51. [Link] [DOI:10.1093/forestry/cpt003]
22. Chenlemuge T, Hertel D, Dulamsuren C, Khishigjargal M, Leuschner C, Hauck M. Extremely low fine root biomass in Larix sibirica forests at the Southern drought limit of the boreal forest. Flora Morphol Distrib Funct Ecol Plants. 2013;208(8-9):488-96. [Link] [DOI:10.1016/j.flora.2013.08.002]
23. Loiola PP, Scherer-Lorenzen M, Batalha MA. The role of environmental filters and functional traits in predicting the root biomass and productivity in savannas and tropical seasonal forests. For Ecol Manag. 2015;342:49-55. [Link] [DOI:10.1016/j.foreco.2015.01.014]
24. Page AL. Methods of soil analysis. Madison WI: ASA/SSSA Publishers; 1992. [English] [Link]
25. López B, Sabaté S, Gracia CA. Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant Soil. 2001;230(1):125-34. [Link] [DOI:10.1023/A:1004824719377]
26. Corcobado T, Cubera E, Moreno G, Solla A. Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agric For Meteorol. 2013;169:92-9. [Link] [DOI:10.1016/j.agrformet.2012.09.017]
27. Ostonen I, Lõhmus K, Pajuste K. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. For Ecol Manag. 2005;212(1-3):264-77. [Link]
28. Burylo M, Hudek C, Rey F. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena. 2011;84(1-2):70-8. [Link] [DOI:10.1016/j.catena.2010.09.007]
29. Rosado BHP, Martins AC, Colomeu TC, Oliveira RS, Joly CA, Aidar MPM. Fine root biomass and root length density in a lowland and a montane tropical rain forest, SP, Brazil. Biota Neotropica. 2011;11(3):203-9. [Link] [DOI:10.1590/S1676-06032011000300018]
30. Tron S, Dani A, Laio F, Preti F, Ridolfi L. Mean root depth estimation at landslide slopes. Ecol Eng. 2014;69:118-25. [Link] [DOI:10.1016/j.ecoleng.2014.03.019]
31. Zhang CB, Chen LH, Jiang J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology. 2014;206:196-202. [Link] [DOI:10.1016/j.geomorph.2013.09.024]
32. Imada S, Taniguchi T, Acharya K, Yamanaka N. Vertical distribution of fine roots of Tamarix ramosissima in an arid region of Southern Nevada. J Arid Environ. 2013;92:46-52. [Link] [DOI:10.1016/j.jaridenv.2013.01.006]
33. Varik M, Aosaar J, Ostonen I, Lõhmus K, Uri V. Carbon and nitrogen accumulation in belowground tree biomass in a chronosequence of silver birch stands. For Ecol Manag. 2013;302:62-70. [Link] [DOI:10.1016/j.foreco.2013.03.033]
34. Finér L, Ohashi M, Noguchi K, Hirano Y. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manag. 2011;262(11):2008-23. [Link] [DOI:10.1016/j.foreco.2011.08.042]
35. Yang L, Wu S, Zhang L. Fine root biomass dynamics and carbon storage along a successional gradient in Changbai mountains, China. Forestry. 2010;83(4):379-87. [Link] [DOI:10.1093/forestry/cpq020]
36. Yeh HY, Wensel LC. The relationship between tree diameter growth and climate for coniferous species in Northern California. Can J For Res. 2000;30(9):1463-71. [Link] [DOI:10.1139/x00-074]
37. Bošeľa M, Konôpka B, Šebeň V, Vladovič J, Tobin B. Modelling height to diameter ratio - an opportunity to increase Norway spruce stand stability in the Western Carpathians. Cent Eur For J. 2014;60(2):71-80. [Link] [DOI:10.2478/forj-2014-0007]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.