Volume 8, Issue 4 (2020)                   ECOPERSIA 2020, 8(4): 247-259 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motamedi J, Afradi J, Sheidai Karkaj E, Alijanpour A, Emadodin I, Banej Shafiei S et al . Environmental Factors Affecting the Structural Trials and Biomass of Onobrychis aurea Bioss. ECOPERSIA 2020; 8 (4) :247-259
URL: http://ecopersia.modares.ac.ir/article-24-27458-en.html
1- Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran , motamedi@rifr-ac.ir
2- East Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research Education and Extension Organization (AREEO), Tabriz, Iran
3- Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
4- Institute for Crop Science and Plant Breeding, Grass and Forage Science, 24118 Kiel Kiel, Germany
5- Desert Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
6- Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
Abstract:   (1615 Views)
Aims: Recognizing the environmental factors affecting plants structural trials and biomass is important to conserve plants as well as their ecosystem function, and services. Onobrychis aurea is a valuable forage that is distributed in the marl lands and is considered as an endangered plant species in Iran. In the present study, the ecological characteristics (plant traits) of this species has been investigated in detail.
Materials & Methods: For this purpose, structural traits and biomass of O. aurea were investigated in 12 ecological units with different topographical and soil conditions. Three soil samples were taken to 15cm depth, (0-15cm) in each ecological unit. The relationship between structural traits and species biomass with environmental factors was tested by redundancy analysis (RDA) method in 2016.
Findings: The results indicated that the soil characteristics including clay, lime and silt content play a more important role in the structural and biomass traits of O. aurea evidence show. Spatial and topographical factors, especially elevation and geographical aspects, had a smaller contribution in structural traits and species biomass in comparison with soil factors. Higher structural values were recorded in heavy textured alkaline soils. The slope percentages also have no significant effect on plant characteristics.
Conclusion: The present study indicated that the soil and topographic factors are very important for management of O. aurea. In general, it should also be emphasized that having good knowledge related to plant ecology as well as environmental condition could help managers to conserve and rehabilitate endangered plants.
Full-Text [PDF 1687 kb]   (496 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecology and Management
Received: 2018/11/23 | Accepted: 2020/02/25 | Published: 2020/09/22
* Corresponding Author Address: Research Institute of Forests and Rangelands, Tehran, Iran, Postal Code: 1496813111.

1. Reich PB. The world‐wide 'fast-slow'plant economics spectrum: A traits manifesto. J Ecol. 2014;102(2):275-301. [Link] [DOI:10.1111/1365-2745.12211]
2. Weiher E, Van Der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O. Challenging Theophrastus: A common core list of plant traits for functional ecology. J Veg Sci. 1999;10(5):609-20. [Link] [DOI:10.2307/3237076]
3. Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O. BIOPOP-a database of plant traits and internet application for nature conservation. Folia Geobotanica. 2003;38(3):263-71. [Link] [DOI:10.1007/BF02803198]
4. Cornelissen JH, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot. 2003;51(4):335-80. [Link] [DOI:10.1071/BT02124]
5. Grime JP. Plant strategies and vegetation processes and ecosystem properties. 2nd Edition. Hoboken: Wiley; 2001. [Link]
6. Tahmasebi P. Ordination (multivariate analysis in science and natural resources). Shahrekord: University of Shahrekord; 2015. [Persian] [Link]
7. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: Meta‐analyses of interspecific variation and environmental control. New Phytol. 2012;193(1):30-50. [Link] [DOI:10.1111/j.1469-8137.2011.03952.x]
8. Suding KN, Lavorel S, Chapin Iii FS, Cornelissen JH, DIAz S, Garnier E, et al. Scaling environmental change through the community‐level: A trait‐based response‐and‐effect framework for plants. Glob Chang Biol. 2008;14(5):1125-40. [Link] [DOI:10.1111/j.1365-2486.2008.01557.x]
9. Kleyer M, Dray S, Bello F, Lepš J, Pakeman RJ, Strauss B, et al. Assessing species and community functional responses to environmental gradients: Which multivariate methods?. J Veg Sci. 2012;23(5):805-21. [Link] [DOI:10.1111/j.1654-1103.2012.01402.x]
10. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, et al. Let the concept of trait be functional!. Oikos. 2007;116(5):882-92. [Link] [DOI:10.1111/j.0030-1299.2007.15559.x]
11. Lavorel S, Diaz S, Cornelissen JH, Garnier E, Harriso SP, McIntyr S, et al. Plant functional types: Are we getting any closer to the holy grail? In: Canadell JG, Pataki D, Pitelk L, editors. Terrestrial ecosystems in a changing world. Berlin: Springer; 2007. pp. 149-60. [Link] [DOI:10.1007/978-3-540-32730-1_13]
12. Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology. 2004;85(9):2630-7. [Link] [DOI:10.1890/03-0799]
13. Mokany K, Roxburgh SH. The importance of spatial scale for trait-abundance relations. Oikos. 2010;119(9):1504-14. [Link] [DOI:10.1111/j.1600-0706.2010.18411.x]
14. Peng Sh, Piao Sh, Shen Z, Ciais P, Sun Z, Chen Sh, et al. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agric For Meteorol. 2013;178-179:46-55. [Link] [DOI:10.1016/j.agrformet.2013.02.002]
15. Chang J, Wang Z, Li Y, Han G, Wang ZW. Relationship between aboveground net primary productivity and precipitation and air temperature of three plant communities in Inner Mongolia grassland. Acta Scientiarum Naturalium Universitatis NeiMongol. 2010;41:689-94. [Link]
16. Fan J, Zhong H, Harris W, Yu G, Wang Sh, Hu Z, et al. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass. Clim Chang. 2008;86(3-4):375-96. [Link] [DOI:10.1007/s10584-007-9316-6]
17. Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 2007;144(4):1890-8. [Link] [DOI:10.1104/pp.107.101352]
18. Dunbar-Co S, Sporck MJ, Sack L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int J Plant Sci. 2009;170(1):61-75. [Link] [DOI:10.1086/593111]
19. Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J Appl Ecol. 2011;48(5):1079-87. [Link] [DOI:10.1111/j.1365-2664.2011.02048.x]
20. Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol. 2011;99(1):135-47. [Link] [DOI:10.1111/j.1365-2745.2010.01753.x]
21. Dias AT, Krab EJ, Mariën J, Zimmer M, Cornelissen JH, Ellers J, et al. Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods. Oecologia. 2013;172(3):667-77. [Link] [DOI:10.1007/s00442-012-2541-3]
22. Kahmen S, Poschlod P. Effects of grassland management on plant functional trait composition. Agric Ecosyst Environ. 2008;128(3):137-45. [Link] [DOI:10.1016/j.agee.2008.05.016]
23. Mládek J, Hejcman M, Hejduk S, Duchoslav M, Pavlů V. Community seasonal development enables late defoliation without loss of forage quality in semi-natural grasslands. Folia Geobotanica. 2011;46(1):17-34. [Link] [DOI:10.1007/s12224-010-9083-4]
24. Verheyen K, Honnay O, Motzkin G, Hermy M, Foster DR. Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol. 2003;91(4):563-77. [Link] [DOI:10.1046/j.1365-2745.2003.00789.x]
25. Aubin I, Gachet S, Messier Ch, Bouchard A. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience. 2007;14(2):259-71. [Link] [DOI:10.2980/1195-6860(2007)14[259:HRANHF]2.0.CO;2]
26. Gondard H, Jauffret S, Aronson J, Lavorel S. Plant functional types: A promising tool for management and restoration of degraded lands. Appl Veg Sci. 2003;6(2):223-34. https://doi.org/10.1658/1402-2001(2003)006[0223:PFTAPT]2.0.CO;2 [Link] [DOI:10.1111/j.1654-109X.2003.tb00583.x]
27. Mitchell RJ, Auld MH, Le Duc MG, Robert MH. Ecosystem stability and resilience: A review of their relevance for the conservation management of lowland heaths. Perspect Plant Ecol Evol Syst. 2000;3(2):142-60. [Link] [DOI:10.1078/1433-8319-00009]
28. Jalili A. Red data book of Iran: A preliminary survey of endemic, rare & endangered plant species in Iran. Tehran: Research Institute of Forests and Rangelands; 1999. [French] [Link]
29. Ranjbar M, Amirabadizadeh H, Karamian R, Ghahremani MA. Notes on Onobrychis sect. Heliobrychis (Fabaceae) in Iran. Willdenowia. 2004;34(1):187-90. [Link] [DOI:10.3372/wi.34.34116]
30. Motamedi J, Abdolslizadeh Z, Sheidaei Karkaj E. Field and laboratory methods for grassland and animal production research. Urmia: University of Urmia Press; 2016. [Persian] [Link]
31. Carter MR, Gregorich EG. Soil sampling and methods of analysis. 2nd Edition. Abingdon: Taylor & Francis; 2007. [Link] [DOI:10.1201/9781420005271]
32. Jongman EJ. Data analysis in community and landscape ecology. Cambridge: University of Cambridge; 1995. [Link] [DOI:10.1017/CBO9780511525575]
33. Elias Azar K. Public and private soil science. Urmia: University of Urmia; 1990. [Persian] [Link]
34. Ajami M, Khormali F, Ayobi, SH. Changes in some soil quality parameters due to land use change in different locations of sloping lands in the east of Golestan Province. Iran J Soil Water Res. 2008;39(1):15-30. [Persian] [Link]
35. Tisdall JM, Oades J. Organic matter and water‐stable aggregates in soils. J Soil Sci. 1982;33(2):141-63. [Link] [DOI:10.1111/j.1365-2389.1982.tb01755.x]
36. Jones CS. Does shade prolong juvenile development? A morphological analysis of leaf shape changes in Cucurbit a argyrosperma Subsp. Sororia (Cucurbitaceae). Am J Bot. 1995;82(3):346-59. [Link] [DOI:10.1002/j.1537-2197.1995.tb12639.x]
37. Stoddart L, Smith A, Box D, Thadis W. Range management. New York: McGraw-Hill Book Company; 1975. [Link]
38. Abdollahi J, Naderi H. Soil and topographical variation influencing the growing factors of Artemisia sieberi in steppic rangeland, Nodoushan-Yazd. PAJOUHESH-VA-SAZANDEGI. 2013;25(4):52-62. [Persian] [Link]
39. Ghorbani A, Moameri M, Dadjou F, Seyedi Kaleybar SA, Pournemati A, Asghari S. Determinization of environmental factors effects on plants production in QezelOzan-Kosar rangelands, Ardabil Province factors effect on rangelands production. Ecopersia. 2020;8(1):47-56. [Link]
40. Rahmati Z, Tarkesh Esfahani M, Pourmanafi S, Vahabi MR. Potential habitat modelling of Ferula ovina using artificial neural network in Fereydunshahr region, Isfahan Province. Iran J Appl Ecol. 2015;4(11):41-53. [Persian] [Link] [DOI:10.18869/acadpub.ijae.4.11.41]
41. Vahabi MR, Basiri M, Moghadam MR, Masoumi AA. Determination of the most effective habitat indices for evaluation of tragacanth sites in Isfahan Province. Iran J Nat Resur. 2007;59(4):1013-29. [Persian] [Link]
42. Najafi M, Vahabi MR, Tarkesh Esfahani M. The application modeling potential habitat in habitat protection Fritillaria (Fritillaria imperialis). J Plant Ecosyst Conserv. 2016;3(7):113-28. [Persian] [Link]
43. Sun J, Cheng G, Li W, Sha Y, Yang Y. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens. 2013;5(4):1894-911. [Link] [DOI:10.3390/rs5041894]
44. Javidfar A, Rouhi-Moghaddam E, Ebrahimi M. Some ecological conditions of amygdalus scoparia Spach in Nehbandan, Eastern Iran. Ecopersia. 2017;5(1):1655-67. [Link] [DOI:10.18869/modares.ecopersia.5.1.1655]
45. Sheidai Karkaj E, Akbarlou M, Jafari I, Shakhsi Khodabakhsh E. Land use management response on carbon sequestration and soil properties (case study: Kalpoush plain, Golestan province). Int J Agric. 2013;3(2):299-304. [Link]
46. Fattahi B, Aghabeigi Amin S, Ilderimi AR, Maleki M, Hasani J, Sabetpoor T. Investigation of some environmental factors affecting Astragalus gossypinus in mountain ranges of Zagros (Case study: Galebar rangelands in Hamadan Province). J Rangel Sci. 2009;3(2):203-16. [Persian] [Link]
47. Moradi HR, Tahmasebi A, Erfanzadeh R. Study of relation among vegetation, soil and geomorphologic factors in Kasilian watershed using GIS. J Agric Sci Nat Resour. 2004;2(2):38-53. [Persian] [Link]
48. Ahmadi A, Zahedi Amiri G, Mahmoodi Sh, Moghiseh E. Soil-vegetation relationships in saliferous and gypsiferous soils in winter rangelands (Eshtehard). J Nat Res. 2007;60(3):1049-58. [Persian] [Link]
49. Royer DL, McElwain JC, Adams JM, Wilf P. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytol. 2008;179(3):808-17. [Link] [DOI:10.1111/j.1469-8137.2008.02496.x]
50. Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Funct Plant Biol. 2000;27(12):1191. [Link] [DOI:10.1071/PP99173_CO]
51. Dianati Tilaki GA, Naderi Nasrabad H, Abdollahi J. Investigation of relationship between vegetation, topography and some soil physico-chemical characteristics in Nodoushan rangelands of Yazd Province (Iran). Ecopersia. 2011;1(2):147-56. [Link]
52. Brouwer R. Nutritive influences on the distribution of dry matter in the plant. Neth J Agric Sci. 1962;10(5):399-408. [Link] [DOI:10.18174/njas.v10i5.17581]
53. Tilman D. Plant strategies and the dynamics and structure of plant communities. Princeton: University of Princeton; 1988. [Link] [DOI:10.1515/9780691209593]
54. Zhao Ch, Feng Z, Chen G. Soil water balance simulation of alfalfa (Medicago sativa L.) in the semiarid Chinese Loess Plateau. Agric Water Manag. 2004;69(2):101-14. [Link] [DOI:10.1016/j.agwat.2004.04.006]
55. Emerson WW. Water-retention, organic-C and soil texture. Soil Res. 1995;33(2):241-51. [Link] [DOI:10.1071/SR9950241]
56. Wen J, Su, B. A method for estimating relative soil moisture with ESA wind scatterometer data. Geophys Res Lett. 2003;30(7):50-4. [Link] [DOI:10.1029/2002GL016557]
57. Teague WR, Dowhower SL, Baker SA, Haile N, DeLaune PB, Conover DM. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric Ecosyst Environ. 2011;141(3-4):310-22. [Link] [DOI:10.1016/j.agee.2011.03.009]
58. Berntson GM. Topological scaling and plant root system architecture: Developmental and functional hierarchies. New Phytol. 1997;135(4):621-34. [Link] [DOI:10.1046/j.1469-8137.1997.00687.x]
59. Ryser P, Eek L. Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. Am J Bot. 2000;87(3):402-11. [Link] [DOI:10.2307/2656636]
60. Schenk HJ, Jackson RB. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma. 2005;126(1-2):129-40. [Link] [DOI:10.1016/j.geoderma.2004.11.018]
61. Pärtel M, Zobel M, Zobel K, Van Der Maarel E. The species pool and its relation to species richness: Evidence from Estonian plant communities. Oikos. 1996;75(1):111-7. [Link] [DOI:10.2307/3546327]
62. Cain ML, Milligan BG, Strand AE. Long‐distance seed dispersal in plant populations. Am J Bot. 2000;87(9):1217-27. [Link] [DOI:10.2307/2656714]
63. Trakhtenbrot A, Nathan R, Perry G, Richardson DM. The importance of long‐distance dispersal in biodiversity conservation. Divers Distrib. 2005;11(2):173-81. [Link] [DOI:10.1111/j.1366-9516.2005.00156.x]
64. Haddad NM, Bowne DR, Cunningham A, Danielson BJ, Levey DJ, Sargent S, et al. Corridor use by diverse taxa. Ecology. 2003;84(3):609-15. [Link] [DOI:10.1890/0012-9658(2003)084[0609:CUBDT]2.0.CO;2]
65. Palmer MA, Ambrose RF, Poff NL. Ecological theory and community restoration ecology. Restor Ecol. 1997;5(4):291-300. [Link] [DOI:10.1046/j.1526-100X.1997.00543.x]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.