Volume 7, Issue 2 (2019)                   ECOPERSIA 2019, 7(2): 69-77 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taati M, Ghanbarian G, Safaeian R, Afzali S. Comparative Assessment of Carbon Sequestration Capability in Plant and Soil of Three Dominant Halophytic Species, Including Aeluropus littoralis, Halocnemum strobilaceum, and Seidlitzia rosmarinus in Fars Province. ECOPERSIA 2019; 7 (2) :69-77
URL: http://ecopersia.modares.ac.ir/article-24-23692-en.html
1- Natural Resources & Environmental Engineering Department, Agriculture Faculty, Shiraz University, Shiraz, Iran
2- Natural Resources & Environmental Engineering Department, Agriculture Faculty, Shiraz University, Shiraz, Iran , ghanbarian@shirazu.ac.ir
Abstract:   (6557 Views)
Aims: In the present work, carbon sequestration in different organs of 3 dominant of (A. , H. , and S. ) soil carbon sequestration of the corresponding habitats were examined.
Materials and Methods: The aboveground and belowground organs of 3 species were randomly sampled and oven dried. Three soil samples were taken from 0-0.15 and 0.15-0.3 m soil depths (SD). From these, soil organic carbon (SOC), soil texture (sand, silt, and clay), bulk density (BD), moisture content (MC), electrical conductivity (EC), and soil acidity (pH) were measured.
Findings: All of the tested had more carbon sequestration in the aboveground rather than organs. The highest value of carbon sequestration was observed in S. , which was about 18% and 90% more than the reported values of H. A. , respectively. Soil with S. greater content of organic carbon (1.5%) compared with H. 0.64%) and A. 0.63%), respectively. The results confirmed that soil top layer (0-0.15m) of patch area had more capability to sequester carbon (1.81%) in S. with the other species.
Conclusion: All the tested plants had higher carbon sequestration in the aboveground organs compared with the parts. The leaves had presented the lowest value compared with shoots and roots. The soil organic carbon of the species habitat varied from 0.63 (A. ) 1.5% (H. ). Moreover, with increasing the soil depth, carbon sequestration of the underlying soil layers decreased.
Full-Text [PDF 497 kb]   (1860 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecology and Management
Received: 2018/07/31 | Accepted: 2019/01/15 | Published: 2019/04/15
* Corresponding Author Address: Natural Resources & Environmental Engineering Department, Agriculture Faculty, Shiraz University, Shiraz, Iran. Postal Code: 7144165186

References
1. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, et al. Ecological responses to recent climate change. Nature. 2002;416(6879):389-95. [Link] [DOI:10.1038/416389a]
2. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005;438(7066):310-7. [Link] [DOI:10.1038/nature04188]
3. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag. 2010;259(4):698-709. [Link] [DOI:10.1016/j.foreco.2009.09.023]
4. Intergovernmental Panel on Climate Change. Climate change 2014: Mitigation of climate change. New York: Cambridge University Press; 2015. [Link]
5. Sinn HW. Public policies against global warming: A supply side approach. Int Tax Public Financ. 2008;15(4):360-94. [Link] [DOI:10.1007/s10797-008-9082-z]
6. Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K, Knutti R, et al. Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature. 2009;458(7242):1158-62. [Link] [DOI:10.1038/nature08017]
7. Sadeghi H, Ghasemi Nejad Raeini M. Estimation and comparison of carbon sequestration by Zygophyllum atriplicoides and Gymnocarpus decander. Clean Soil Air Water. 2016;44(3):284-90. [Link] [DOI:10.1002/clen.201400638]
8. Ghanbarian GA, Hassanli AM, Rajabi Noghab V. Comparing potential carbon sequestration of different parts of mountain almond and grape plants and soil in Fars province. J Nat Environ. 2015;68(2):257-65. [Persian] [Link]
9. Hadi MR. Biotechnological potentials of Seidlitzia rosmarinus: A mini review. Afr J Biotechnol. 2009;8(11):2429-31. [Link]
10. Roozitalab MH, Siadat H, Farshad, A. The soils of Iran. 1st Edition. New York: Springer; 2018. [Link] [DOI:10.1007/978-3-319-69048-3]
11. Barrett-Lennard EG. Restoration of saline land through revegetation. Agric Water Manag. 2002;53(1-3):213-26. [Link] [DOI:10.1016/S0378-3774(01)00166-4]
12. Barrett-Lennard EG, Bathgate AD, Malcolm CV. Saltland pastures in Australia, a practical guide. 2nd Edition. Kensington: WA Government Dept of Agriculture and Food; 2003. [Link]
13. Richter GM, Agostini F, Redmile-Gordon M, White R, Goulding KWT. Sequestration of C in soils under Miscanthus can be marginal and is affected by genotype-specific root distribution. Agric Ecosyst Environ. 2015;200:169-77. [Link] [DOI:10.1016/j.agee.2014.11.011]
14. Khodahami G, Kowsar SA, Habibian SH, Tayebi M. Study of saltlands, halophyte plants and mechanisms for salt tolerance in Fars province, 3rd National Congress of Rangeland and Range Management, Karaj, Iran. 2004. p. 34-49. [Persian] [Link]
15. Forest, Rangeland and Watershed Organization (FRWO). Carbon sequestration project implementation report 2011. Tehran: Ministry of Jihad Agriculture; 2012. p. 28. [Link]
16. Falsolaiman M, Sadeghi H, Chakoshi B. Carbon sequestration international project, successful sample in creating people and participation organizations in village development (Hossein Abad plain, South Khorasan province, East of Iran). Span J Rural Dev. 2013;4(1):9-23. [Link] [DOI:10.5261/2013.GEN1.02]
17. Sharifi Rad M, Sharifi Rad J, Teixeira Da Silva JA, Mohsenzadeh S. Forage quality of two halophytic species, Aeluropus lagopoides and Aeluropus littoralis, in two phenological stages. Int J Agron Plant Prod. 2013;4(5):998-1005. [Link]
18. Bor NL. Flora Iranica. Rechinger KH, editor. Vienna: Akademische Druk-u. Verlagsastalt; 1970. pp. 419-23. [Latin] [Link]
19. Qu XX, Huang ZY, Baskin JM, Baskin CC. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann Bot. 2008;101(2):293-9. [Link] [DOI:10.1093/aob/mcm047]
20. Khan MA, Böer B, Kust GS, Barth HJ. Sabkha ecosystems, West and central Asia. 2nd Volume. Dordrecht: Springer Science and Business Media; 2008. [Link]
21. Abbadi GA, El-Sheikh MA. Vegetation analysis of Failaka Island (Kuwait). J Arid Environ. 2002;50(1):153-65. [Link] [DOI:10.1006/jare.2001.0855]
22. Nilhan TG, Emre YA, Osman K. Soil determinants for distribution of Halocnemum strobilaceum Bieb.(Chenopodiaceae) around lake Tuz, Turkey. Pak J Biol Sci. 2008;11(4):565-70. [Link] [DOI:10.3923/pjbs.2008.565.570]
23. Baghestani Maybodi N, Zare MT. Some ecological requirements and exploitation of Seidlitzia rosmarinus in the desert region of Yazd province. Environ Sci. 2009;6(3):31-42. [Persian] [Link]
24. Assadi M. Flora of Iran: Chenopodiaceae. 38th Volume. Tehran: Research Institute of Forests and Rangelands; 2001. [Persian] [Link]
25. Kurkova EB, Kalinkina LG, Baburina OK, Myasoedov NA, Naumova TG. Responses of Seidlitzia rosmarinus to salt stress. Biol Bull Russ Acad Sci. 2002;29(3):221-9. [Link] [DOI:10.1023/A:1015478329530]
26. Song J, Feng G, Zhang F. Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant Soil. 2006;279(1-2):201-7. [Link] [DOI:10.1007/s11104-005-1012-6]
27. Barhoumi Z, Djebali W, Smaoui A, Chaïbi W, Abdelly C. Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol. 2007;164(7):842-50. [Link] [DOI:10.1016/j.jplph.2006.05.008]
28. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 2006;15(3):259-63. [Link] [DOI:10.1127/0941-2948/2006/0130]
29. Schlesinger WH, Bernhardt ES. Biogeochemistry: An analysis of global change. Waltham: Academic Press; 2013. [Link]
30. FAO. Carbon content estimation: Carbon content of vegetation [Internet]. Rome: FAO; 2016 [cited 2017 Oct 13]. Available from: http://www.fao.org/forestry/17111/en/. [Link]
31. Nosetto MD, Jobbágy EG, Paruelo JM. Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. J Arid Environ. 2006;67(1):142-56. [Link] [DOI:10.1016/j.jaridenv.2005.12.008]
32. Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis, part 2: Chemical and microbiological properties. Madison WI: American Society of Agronomy/Soil Science Society of America; 1982. pp. 595-624. [Link]
33. Carter MR. Soil sampling and methods of analysis. Boca Raton FL: CRC Press; 2008. [Link]
34. IBM Corp. IBM SPSS statistics for windows, Ver. 19.0. Armonk NY; 2010. [Link]
35. Asner GP, Archer S, Flint Hughes R, James Ansley R, Wessman CA. Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937-1999. Glob Change Biol. 2003;9(3):316-35. [Link] [DOI:10.1046/j.1365-2486.2003.00594.x]
36. Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. J Ecol. 2012;100(1):42-64. [Link] [DOI:10.1111/j.1365-2745.2011.01920.x]
37. Gao YH, Luo P, Wu N, Chen H, Wang GX. Grazing intensity impacts on carbon sequestration in an Alpine meadow on the Eastern Tibetan Plateau. Res J Agric Biol Sci. 2007;3(6):642-7. [Link]
38. Roy PK, Samal NR, Roy MB, Mazumdar A. Soil carbon and nutrient accumulation under forest plantations in Jharkhand state of India. Clean Soil Air Water. 2010;38(8):706-12. [Link] [DOI:10.1002/clen.200900198]
39. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob Biogeochem Cycles. 1993;7(4):811-41. [Link] [DOI:10.1029/93GB02725]
40. Dean C, Kirkpatrick JB, Friedland AJ. Conventional intensive logging promotes loss of organic carbon from the mineral soil. Glob Change Biol. 2017;23(1):1-11. [Link] [DOI:10.1111/gcb.13387]
41. Brown GW, editor. Desert biology: special topics on the physical and biological aspects of arid regions. New York: Elsevier; 2013. [Link]
42. Perera KA, Amarasinghe MD. Carbon partitioning and allometric relationships between stem diameter and total organic carbon (TOC) in plant components of Bruguiera gymnorrhiza (L.) Lamk. and Lumnitzera racemosa Willd. in a microtidal masin Estuary in Sri Lanka. Int J Mar Sci. 2013;3(9):72-8. [Link]
43. Suman A, Singh KP, Singh P, Yadav RL. Carbon input, loss and storage in sub-tropical Indian Inceptisol under multi-ratooning sugarcane. Soil Tillage Res. 2009;104(2):221-6. [Link] [DOI:10.1016/j.still.2009.02.008]
44. Li XJ, Li XR, Wang XP, Yang HT. Changes in soil organic carbon fractions after afforestation with xerophytic shrubs in the Tengger desert, Northern China. Eur J Soil Sci. 2016;67(2):184-95. [Link] [DOI:10.1111/ejss.12315]
45. Li YL, Wang L, Zhang WQ, Zhang SP, Wang HL, Fu XH, et al. Variability of soil carbon sequestration capability and microbial activity of different types of salt marsh soils at Chongming Dongtan. Ecol Eng. 2010;36(12):1754-60. [Link] [DOI:10.1016/j.ecoleng.2010.07.029]
46. Bikila NG, Tessema ZK, Abule EG. Carbon sequestration potentials of semi-arid rangelands under traditional management practices in Borana, Southern Ethiopia. Agric Ecosyst Environ. 2016;223:108-14. [Link] [DOI:10.1016/j.agee.2016.02.028]
47. Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl. 2000;10(2):423-36. [Link] [DOI:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2]
48. E Schuman G, H Janzen H, E Herrick J. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ Pollut. 2002;116(3):391-6. [Link] [DOI:10.1016/S0269-7491(01)00215-9]
49. Li J, Zhao C, Zhu H, Li Y, Wang F. Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar basin, China. J Arid Environ. 2007;71(4):350-61. [Link] [DOI:10.1016/j.jaridenv.2007.03.015]
50. Walker LR, Thompson DB, Landau FH. Experimental manipulations of fertile islands and nurse plant effects in the Mojave desert, USA. West N Am Nat. 2001;61(1):25-35. [Link]
51. Perez-Quezada JF, Delpiano CA, Snyder KA, Johnson DA, Franck N. Carbon pools in an arid shrubland in Chile under natural and afforested conditions. J Arid Environ. 2011;75(1):29-37. [Link] [DOI:10.1016/j.jaridenv.2010.08.003]
52. Dabasso BH, Taddese Z, Hoag D. Carbon stocks in semi-arid pastoral ecosystems of Northern Kenya. Pastoralism. 2014;4:5. [Link] [DOI:10.1186/2041-7136-4-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.