1. White JC, Stepper C, Tompalski P, Coops NC, Wulder MA. Comparing ALS and Image-Based Point Cloud Metrics and Modelled Forest Inventory Attributes in a Complex Coastal Forest Environment. For. 2015;6(10):3704-32. [
Link] [
DOI:10.3390/f6103704]
2. Zöhrer F. Forstinventur: Ein leitfaden für studium und praxis. Hamburg: Parey; 1980. p. 207. [German] [
Link]
3. Hudak AT, Haren, AT, Crookston NL, Liebermann RJ, Ohmann, JL. Imputing forest structure attributes from stand inventory and remotely sensed data in western Oregon, USA. For Sci. 2014;60(2):253-69. [
Link] [
DOI:10.5849/forsci.12-101]
4. Wulder MA, White JC, Hay GJ, Castilla G. Towards automated segmentation of forest inventory polygons on high spatial resolution satellite imagery. For Chron. 2008;84(2):221-30. [
Link] [
DOI:10.5558/tfc84221-2]
5. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259(4):660-84. [
Link] [
DOI:10.1016/j.foreco.2009.09.001]
6. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, et al. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci. 2005;102(42):15144-8. [
Link] [
DOI:10.1073/pnas.0505734102]
7. Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Pe-uelas J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci U S A. 2011;108(4):1474-8. [
Link] [
DOI:10.1073/pnas.1010070108]
8. Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, Lόpez-González G, et al. Drought sensitivity of the Amazon rainforest. Science. 2009;323(5919):1344-7. [
Link] [
DOI:10.1126/science.1164033]
9. Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin J F, Fulé PZ, et al. Widespread increase of tree mortality rates in the western United States. Science. 2009;323(5913):521-4. [
Link] [
DOI:10.1126/science.1165000]
10. Karlson M, Reese H, Ostwald M. Tree crown mapping in managed woodlands (parklands) of semi-arid West Africa using WorldView-2 imagery and geographic object based image analysis. Sensors. 2014;14(12):22643-69. [
Link] [
DOI:10.3390/s141222643]
11. Clark DB, Soto Castro C, Alvarado LDA, Read JM. Quantifying mortality of tropical rain forest trees using high spatial-resolution satellite data. Ecol Lett. 2004;7(1):52-9. [
Link] [
DOI:10.1046/j.1461-0248.2003.00547.x]
12. Clark DB, Read JM, Clark ML, Cruz AM, Dotti MF, Clark DA. Application of 1-M and 4-M resolution satellite data to ecological studies of tropical rain forests. Ecol Applications. 2004;14(1):61-74. [
Link] [
DOI:10.1890/02-5120]
13. Gong P, Biging GS, Lee SM, Mei X, Sheng Y, Pu R, et al. Photo ecometrics for forest inventory. Geogr Inf Sci. 1999;5(1):9-14. [
Link] [
DOI:10.1080/10824009909480508]
14. Leckie DG, Yuan X, Ostaff DP, Piene H, MacLean DA. Analysis of high spatial resolution multispectral MEIS imagery for spruce budworm damage assessment on a single tree basis. Remote Sens Environ. 1992;40(2):125-36. [
Link] [
DOI:10.1016/0034-4257(92)90010-H]
15. Levesque J, J King D. Airborne digital camera image semivariance for evaluation of forest structural damage at an acid mine site. Remote Sens Environ. 1999;68(2):112-4. [
Link] [
DOI:10.1016/S0034-4257(98)00104-7]
16. Kelly M, Shaari D, Guo Q, Liu D. A comparison of standard and hybrid classifier methods for mapping hardwood mortality in areas affected by "sudden oak death". Photogramm Eng Remote Sens. 2004;70:1229-39. [
Link] [
DOI:10.14358/PERS.70.11.1229]
17. Sedliak M, Sačkov I, Kulla L. Classification of tree species composition using a combination of multispectral imagery and airborne laser scanning data. Cent Eur For J. 2017;63(1):1-9. [
Link] [
DOI:10.1515/forj-2017-0002]
18. Niphadkar M, Nagendra H, Tarantino C, Adamo M, Blonda P. Comparing pixel and object-based approaches to map an understory invasive shrub in tropical mixed forests. Front Plant Sci. 2017;8:892. [
Link] [
DOI:10.3389/fpls.2017.00892]
19. Raczko E, Zagajewski B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur J Remote Sens. 2016;50(1):144-54. [
Link] [
DOI:10.1080/22797254.2017.1299557]
20. Juniati E, Arrofiqoh EN. Comparison of Pixel-Based and Object-Based classification using parameters and non-parameters approach for the pattern consistency of multi scale landcover. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2017;XLII-2/W7:765-71. [
Link] [
DOI:10.5194/isprs-archives-XLII-2-W7-765-2017]
21. Pazhouhan I, Najafi A, Kamkar Rouhani A, Vahidi J. Extraction of individual tree parameters by using terrestrial laser scanner data in Hercynian forest. Ecopersia. 2017;5(3):1837-47. [
Link]
22. Alem H, Mohammadi Z. Determining the water sources of lakes: A case study of lakes Haftbarm, Fars Province, Iran. Int Bull Water Resour Develop. 2014;2(2 suppl 5). [Persian] [
Link]
23. Updike T, Comp C. Radiometric use of worldview-2 imagery [Internet]. Westminster: Digital Globe; 2010 [cited 2015 May 22]. Available from: https://www.yumpu.com/en/document/view/43552535/radiometric-use-of-worldview-2-imagery-technical-note-pancroma [
Link]
24. DJI. PHANTOM 4 user manual [Internet]. Shenzhen: DJI; 2016 [cited 2018 March 11]. Available from: https://dl.djicdn.com/downloads/phantom_4/en/Phantom_4_User_Manual_en_v1.0.pdf. [
Link]
25. Quinlan JR . Learning with continuous classes. World Sci. 1992:343-8. [
Link]
26. Liang S, Liu J, Liang M. Ecological study on the mangrove communities in Beilunhekou national nature reserve. J Guangxi Norm Univ Natl Sci Ed. 2004;22(2):70-6 [Chinese] [
Link]
27. Heumann BW. An Object-Based classification of mangroves using a hybrid decision tree—support vector machine approach. Remote Sens. 2011;3(11):2440-60. [
Link] [
DOI:10.3390/rs3112440]
28. Tooke TR, Coops NC, Goodwin NR, Voogt JA. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens Environ. 2009;113(2):398-407. [
Link] [
DOI:10.1016/j.rse.2008.10.005]
29. Ghose MK, Pradhan R, Sushan Ghose S. Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix. Int J Adv Comput Sci Appl. 2010;1(5):93-101 [
Link]
30. Friedl MA, Brodley CE. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997;61(3):399-409. [
Link] [
DOI:10.1016/S0034-4257(97)00049-7]
31. Pal M, Mather PM. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ. 2003;86(4):554-65. [
Link] [
DOI:10.1016/S0034-4257(03)00132-9]
32. Jensen JR. Introductory digital image processing: A remote sensing perspective. 3rd Edition. Upper Saddle River: Prentice Hall; 2005. [
Link]
33. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81-106.
https://doi.org/10.1007/BF00116251 [
Link] [
DOI:10.1023/A:1022643204877]
34. Xu M, Watanachaturaporn P, Varshney PK, Arora MK. Decision tree regression for soft classification of remote sensing data. Remote Sens Environ. 2005;97(3):322-36. [
Link] [
DOI:10.1016/j.rse.2005.05.008]
35. Schowengerdt RA. Remote Sensing: Models and methods for image processing. Cambridge: Academic press; 1997. [
Link] [
DOI:10.1016/B978-0-08-051610-3.50009-6]
36. Woodcock CE, Strahler AH. The factor of scale in remote sensing. Remote Sens Environ. 1987;21(3):311-32. [
Link] [
DOI:10.1016/0034-4257(87)90015-0]
37. Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens. 2004;58(3-4):239-58. [
Link] [
DOI:10.1016/j.isprsjprs.2003.10.002]
38. Drǎguţ L, Tiede D, Levick SR. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci. 2010;24(6):859-71. [
Link] [
DOI:10.1080/13658810903174803]
39. Drăguţ L, Csillik O, Eisank C, Tiede D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J Photogramm Remote Sens. 2014;88:119-27. [
Link] [
DOI:10.1016/j.isprsjprs.2013.11.018]
40. Wen D, Huang X, Liu H, Liao W, Zhang L. Semantic classification of urban trees using very high resolution satellite imagery. IEEE J Sel Top Appl Earth Observ Remote Sens. 2017;10(4):1413-24. [
Link] [
DOI:10.1109/JSTARS.2016.2645798]
41. Immitzer M, Atzberger, Koukal T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012;4(9):2661-93. [
Link] [
DOI:10.3390/rs4092661]
42. Chubey MS, Franklin SE, Wulder MA. Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. J Am Soc Photogramm Remote Sens. 2006;72(4):383-94. [
Link] [
DOI:10.14358/PERS.72.4.383]
43. Desclée B, Bogaert P, Defourny P. Forest change detection by statistical object-based method. Remote Sens Environ. 2006;102(1-2):1-11. [
Link] [
DOI:10.1016/j.rse.2006.01.013]
44. Hay GJ, Castilla G, Wulder MA, Ruiz JR. An automated object-based approach for the multiscale image segmentation of forest scenes. Int J Appl Earth Observ Geoinf. 2005;7(4):339-59. [
Link] [
DOI:10.1016/j.jag.2005.06.005]
45. Zhang Zh, Kazakova A, Moskal LM, Styers DM. Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data. For. 2016;7(6):122 [
Link]
46. Myint SW, Giri CP, Wang L, Zhu Z, Gillette SC. Identifying mangrove species and their surrounding land use and land cover classes using an object-oriented approach with a lacunarity spatial measure. J GIScience Remote Sens. 2008;45(2):188-208. [
Link] [
DOI:10.2747/1548-1603.45.2.188]
47. Wang L, Sousa WP, Gong P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int J Remote Sens. 2004;25(24):5655-68. [
Link] [
DOI:10.1080/014311602331291215]
48. Shrestha R, Wynne RH. Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging Lidar. Remote Sens. 2012;4(2):484-508. [
Link] [
DOI:10.3390/rs4020484]
49. Pande-Chhetri R, Abd-Elrahman A, Liu T, Morton J, Wilhelm VL. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur J Remote Sens. 2017;50(1):564-76. [
Link] [
DOI:10.1080/22797254.2017.1373602]
50. Thanh Noi P, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors. 2017;18(1). [
Link] [
DOI:10.3390/s18010018]
51. Qian Y, Zhou W, Yan J, Li W, Han L. Comparing machine learning classifiers for Object-Based land cover classification using very high-resolution imagery. Remote Sens. 2015;7(1):153-68. [
Link] [
DOI:10.3390/rs70100153]
52. Shafri HZM, Ramle FSH. A comparison of support vector machine and decision tree classifications using satellite data of Langkawi island. Inf Technol J. 2009;8(1):64-70. [
Link] [
DOI:10.3923/itj.2009.64.70]
53. Shao Y, Lunetta RS. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J Photogramm Remote Sens. 2012;70:78-87. [
Link] [
DOI:10.1016/j.isprsjprs.2012.04.001]
54. Amami R, Ben Ayed D, Ellouze N. An Empirical comparison of SVM and some supervised learning algorithms for vowel recognition. Int J Intell Inf Proc. 2012;3(1). [
Link]
55. Ghasemian N, Akhondzadeh M. Comparison of methods of artificial neural networks, support vector machine and decision tree to identify clouds in Landsat 8 satellite images. Geospat Eng J. 2016;7(4):25-36. [Persian] [
Link]
56. Kim J, Kim BS, Savarese S. Comparing image classification methods: K-nearest-neighbor and support-vector-machines. AMERICAN-MATH'12/CEA'12 Proceedings of the 6th WSEAS international conference on computer engineering and applications, and proceedings of the 2012 American conference on applied mathematics. Stevens Point: World Scientific and Engineering Academy and Society (WSEAS); 2012. [
Link]
57. Hao P, Wang L, Niu Z. Comparison of hybrid classifiers for crop classification using normalized difference vegetation index time series: A case study for major crops in North Xinjiang, China. PLoS One. 2015;10(9):e0137748. [
Link] [
DOI:10.1371/journal.pone.0137748]
58. Hofmann T, Puzicha J, Buhmann JM. Unsupervised texture segmentation in a deterministic annealing framework. IEEE Transactions Pattern Anal Mach Intell. 1998;20(8):803-18. [
Link] [
DOI:10.1109/34.709593]
59. Chaudhuri BB, Sarkar N. Texture segmentation using fractal dimension. IEEE Transactions Pattern Anal Mach Intell. 1995;17(1):72-7. [
Link] [
DOI:10.1109/34.368149]
60. Baatz M, Schäpe A. Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation. In: Strobl J, editor. Angewandte geographische informationsverarbeitung XII: Beiträge zum AGIT- symposium Salzburg. Karlsruhe: Wichmann Verlag; 2000. pp. 12-23. [German] [
Link]
61. Blaschke T. Object-based image analysis for remote sensing. ISPRS J Photogramm Remote Sens. 2010;65(1):2-16. [
Link] [
DOI:10.1016/j.isprsjprs.2009.06.004]
62. Almeida CM, Souza IM, Durand Alves C, Pinho CMD, Pereira MN, Feitosa RQ. Multilevel object-oriented classification of quick bird images for urban population estimates. GIS '07 Proceedings of the 15th annual ACM international symposium on advances in geographic information systems, Seattle, WA, USA — November 07 - 09, 2007. New York: ACM; 2007.pp. 5. [
Link]
63. Yan G. Pixel-based and object-oriented image for coal fire research [Internet]. City publisher: publisher; 2003 [cited 2015 May 18]. Available from: http://www.ecognition.com/sites/default/files/gao_yan.pdf. [
Link]
64. Gao Y, Mas JF, Navarrete A. The improvement of an object-oriented classification using multi-temporal MODIS EVI satellite data. Int J Digit Earth. 2009;2(3):219-36. [
Link] [
DOI:10.1080/17538940902818311]
65. Zhaocong W, Lina Y, Maoyun Q. Granular approach to object-oriented remote sensing image classification. In: Wen P, Li Y, Polkowski L, Yao Y, Tsumoto S, Wang G, editors. International conference on rough sets and knowledge technology. Heidelberg: Springer; 2009. pp. 563-70. [
Link]
66. Platt RV, Schoennagel T. An object-oriented approach to assessing changes in tree cover in the Colorado Front Range 1938-1999. For Ecol Manag. 2009;258(7):1342-9. [
Link] [
DOI:10.1016/j.foreco.2009.06.039]
67. Dehvari A, Heck RJ. Comparison of object-based and pixel-based infrared airborne image classification methods using DEM thematic layer. J Geogr Reg Plan. 2009;2(4):086-96. [
Link]
68. Collingwood A, Steven EF, Guo X, Stenhouse G. A medium-resolution remote sensing classification of agriculture areas in Alberta grizzly bear habit. Can J Remote Sens. 2009;35(1):22-36. [
Link] [
DOI:10.5589/m08-076]
69. Okojie J. Assessment of forest tree structural parameter extractability from optical imaging UAV dataset [Dissertation]. Enschede: University of Twente; 2017. [
Link]