Volume 6, Issue 2 (2018)                   ECOPERSIA 2018, 6(2): 131-138 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yurekli K. Variation of Seasonal and Annual Rainfall Series over ‎Southeastern Anatolian Project Area. ECOPERSIA. 2018; 6 (2) :131-138
URL: http://ecopersia.modares.ac.ir/article-24-16366-en.html
Department of Biosystem Engineering, Faculty of Agriculture, University of Gaziosmanpasa, Tokat, ‎Turkey , kadriyurekli@yahoo.com
Abstract:   (3352 Views)
Aims: In this study, variation in annual and seasonal rainfalls in Southeastern Anatolian Project (GAP) area was analyzed using the non-parametric and parametric approaches.
Materials and Methods: According to the aim of the study, the data sets of the seasonal and annual timescales, based on monthly rainfalls in the GAP area, including 9 rain gauges operated by Turkish State Meteorological Service, were considered in the study. Mann–Kendall (MK) and unit root test to detect the direction of an available monotonic trend in any given data were used while obtaining the magnitude of the variation with Theil–Sen slope estimator.
Findings: Based on the MK test, decreasing trend in four of the seven different time scales was observed, whereas there was an upward trend in the only two (P-III and P-IV) of the all time scales while none of the stations in the P-II period showed a monotonic trend. However, the parametric unit root test detected the existence of variation in the period III for Sanliurfa station and the period V for Sirnak station.
Conclusion: The percentage change calculated by considering the MK varied between 19 and 57%.
Full-Text [PDF 298 kb]   (348 Downloads)    
Article Type: مقاله Ø§Ø³ØªØ®Ø±Ø§Ø Ø´Ø¯Ù‡ از پایان نامه | Subject: Aquatic Ecology
Received: 2017/04/25 | Accepted: 2018/07/17 | Published: 2018/07/17
* Corresponding Author Address: Department of Biosystem Engineering, Faculty of Agriculture, University of Gaziosmanpasa, Tokat, Turkey.‎

1. IPCC. Climate Change 2007: Synthesis report, contribution of working groups I, II and III to the fourth ‎assessment report of the intergovernmental panel on climate change [Internet]. Cambridge: Cambridge ‎University Press; 2007 [Cited 2017, 3 March?]. Available from: https://www.ipcc.ch/pdf/assessment-‎report/ar4/syr/ar4_syr_full_report.pdf.‎ [Link]
2. IPCC. Climate Change 2013: The physical science basis, contribution of working group I to the fifth ‎assessment report of the intergovernmental panel on climate change [Internet]. Cambridge: Cambridge ‎University Press; 2013 [Cited 2017, 3 March]. Available from: ‎https://www.ipcc.ch/pdf/assessmentreport/ar4/syr/ar4_syr_full_report.pdf.‎ [Link]
3. Giorgi F. Climate change hot-spots. Geophys Res Lett. 2006;33(8):L08707.‎ [Link]
4. Unal YS, Deniz A, Toros H and Incecik S. Temporal and spatial patterns of precipitation variability for ‎annual, wet, and dry seasons in Turkey. Int J Climatol. 2012;32:392-405.‎ [Link] [DOI:10.1002/joc.2274]
5. Onyutha C, Tabari H, Taye MT, Nyandwaro GN and Willems P. Analyses of rainfall trends in the Nile river ‎basin. J Hydro Environ Res. 2016;13:36-51.‎ [Link]
6. Bari SH, Rahman MTU, Hoque MA and Hussain MM. Analysis of seasonal and annual rainfall trends in the ‎northern region of Bangladesh. Atmos Res. 2016;176-177:148-58.‎ [Link] [DOI:10.1016/j.atmosres.2016.02.008]
7. Seyhun R and Akıntug B. Trend analysis of rainfall in north Cyprus. In: Dincer I, Colpan CO and Kadioglu ‎F, editors. Causes, impacts and solutions to global warming. City?: Springer Science & Business Media; 2013. ‎pp. 169-81.‎ [Link]
8. Gajbhiye S, Meshram C, Mirabbasi R and Sharma SK. Trend analysis of rainfall time series for Sindh river ‎basin in India. Theor Appl Climatol. 2016;125(3-4):593-608.‎ [Link] [DOI:10.1007/s00704-015-1529-4]
9. Nafarzadegan AR, Ahani H, Singh VP and Kherad M. Parametric and non-parametric trend of reference ‎evapotranspiration and its key influencing climatic variables (Case study: Southern Iran). Ecopersia. ‎‎2013;1(2):123-44.‎ [Link]
10. Gautam DK and Regmi SK. Recent trends in the onset and withdrawal of summer monsoon over Nepal. ‎Ecopersia. 2013;1(4):353-67.‎ [Link]
11. Altınbilek D. Development and management of the Euphrates–Tigris basin. Water Resour Dev. ‎‎2004;20(1):15-33.‎ [Link] [DOI:10.1080/07900620310001635584]
12. Kibaroglu A and Unver IHO. An institutional framework for facilitating cooperation in the Euphrates-‎Tigris river basin. International Negotition. 2000;5(2):311-30.‎ https://doi.org/10.1163/15718060020848785 [Link] [DOI:10.1023/A:1009811703456]
13. Beaumont P. Restructuring of water usage in the Tigris-Euphrates basin: the impact of modern water ‎management policies. Ed Albert J., Bernhardsson, M. and Kenna R. Transformations of Middle Eastern ‎Natural Environments: Legacies and Lessons. Yale School of Forestry and Environmental Studies, Bulletin ‎Series No. 103, 1998; New Haven, Connecticut, USA, pp. 168-186.‎ [Link]
14. Abdul Aziz OI and Burn DH. Trends and variability in the hydrological regime of the Mackenzie River ‎Basin. J Hydrol. 2006;319(1-4):282-94.‎ [Link] [DOI:10.1016/j.jhydrol.2005.06.039]
15. Espadafor M, Lorite IJ, Gavilán P and Berengena J. An analysis of the tendency of reference ‎evapotranspiration estimates and other climate variables during the last 45 years in southern Spain. Agric. ‎Water. Manage. 2011;98(6):1045–61.‎ [Link] [DOI:10.1016/j.agwat.2011.01.015]
16. Hamed KH. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling ‎hypothesis, J Hydrol. 2008;349(3-4):350–63.‎ [Link] [DOI:10.1016/j.jhydrol.2007.11.009]
17. Liang LQ, Li LJ and Liu Q. Temporal variation of reference evapotranspiration during 1961–2005 in the ‎Taoer river basin of northest China. Agric For Meteorol. 2010;150(2):298-306.‎ [Link] [DOI:10.1016/j.agrformet.2009.11.014]
18. Tabari H and Hosseinzadeh Talaee PH. Temporal variability of precipitation over Iran: 1966–2005. J ‎Hydrol. 2011;396(3-4):313-20.‎ [Link]
19. Huth R. Testing for trends in data unevenly distributed in time. Theor Appl Climatol. 1999;64(3-4):151-‎‎62.‎ [Link]
20. Zhang Q, Xu CY, Zhang Z and Chen YD. Changes of temperature extremes for 1960–2004 in far-west ‎China. Stoch Environ Res Risk Assess. 2009;23(6):721-35.‎ [Link] [DOI:10.1007/s00477-008-0252-4]
21. Sen PK. Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc. ‎‎1968;63(324):1379-89.‎ [Link] [DOI:10.1080/01621459.1968.10480934]
22. Theil H. A rank-invariant method of linear and polynomial regression analysis, part 3. In: Raj B, Koerts J ‎editors. Henri Theil's Contributions to Economics and Econometrics. Netherlands Akademie van ‎Wettenschappen, Proceedings. 1950; 53: pp. 1397-412‎ [Link]
23. Yurekli K. Impact of climate variability on precipitation in the upper Euphrates–Tigris rivers basin of ‎southeast Turkey. Atmos Res. 2015;154:25-38.‎ [Link] [DOI:10.1016/j.atmosres.2014.11.002]
24. Hamed KH and Rao AR. A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. ‎‎1998;204(1-4):182-96.‎ [Link] [DOI:10.1016/S0022-1694(97)00125-X]
25. Yue S and Wang CY. Applicability of prewhitening to eliminate the influence of serial correlation on the ‎Mann–Kendall test. Water Resour Res. 2002;38(6):1068.‎ [Link]
26. Yue S and Pilon P. Canadian streamflow trend detection: impact of serial and cross-correlation. HSJ. ‎‎2003;48(1):51-63.‎ [Link]
27. Petrow T and Merz B. Trends in flood magnitude, frequency and seasonality in Germany in the period ‎‎1951–2002. J Hydrol. 2009;371(1-4):129-41‎ [Link] [DOI:10.1016/j.jhydrol.2009.03.024]
28. Ljung GM and Box GEP. On a measure of lack of fit in time series models. Biometrika. 1978;65(2):297-‎‎303.‎ [Link]
29. Onoz B and Bayazit M. The power of statistical tests for trend detection. Turkish J Eng Env Sci. ‎‎2003;27(4):247-51.‎ [Link]
30. Hirsch RM, Alexander RB and Smith RA. Selection of methods for the detection and estimation of trends ‎in water quality. Water Resour Res. 1991;27:803-14.‎ [Link] [DOI:10.1029/91WR00259]
31. Karabulut M, Cosun F. Precipitation trend analyses in Kahramanmaras province. Cog Bil Der. ‎‎2009;7(1):61-83 [Turkish].‎ [Link]
32. Kutiel H, Maheras P, Turkes M, Paz S. North Sea– CaspianPattern (NCP)– an upper level atmospheric ‎teleconnection affecting the eastern Mediterranean– implications on the regional climate.Theor App Climatol. ‎‎2002;72(3-4):173-92.‎ [Link] [DOI:10.1007/s00704-002-0674-8]
33. Tatli, H. Analysis mediterranean precipitation associated with the North Atlantic Oscillation Index (NAOI) ‎via Hilbert-Huang transformation. In Proceedings of the Conference on Water Observation and Information ‎System for Decision Support (BALWOIS-2006). Ohrid; 2006.‎ [Link]
34. Turkes M and Erlat E. Precipitation changes and variability in Turkey linked to the North Atlantic ‎Oscillation during the period 1930–2000. Int J Climatol. 2003;23,1771-96.‎ [Link] [DOI:10.1002/joc.962]

Add your comments about this article : Your username or Email:

Send email to the article author