Volume 6, Issue 1 (2018)                   ECOPERSIA 2018, 6(1): 21-30 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sofi A, Ebrahimi M, Shirmohammadi E. Effect of Humic Acid on Germination, Growth, and Photosynthetic Pigments of Medicago sativa L. under Salt Stress. ECOPERSIA 2018; 6 (1) :21-30
URL: http://ecopersia.modares.ac.ir/article-24-14655-en.html
1- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, Iran
2- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, Iran , maebrahimi2007@uoz.ac.ir
3- Department of Soil Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran
Abstract:   (7091 Views)
Aims: Salt stress is one of the most important environmental stresses that cause to reduce biological function in plants. In this context, appropriate biotech is needed that would not only improve the productivity of the product but also improve the soil. Regarding the problem, the use of humic acid in addition to the positive effects on soil properties, it is useful in terms of economic, environmental, and social aspects and can be an appropriate alternative to chemical fertilizers.
Materials & Methods: The present research was conducted as a factorial experiment in a completely randomized design. The first factor was humic acid (0, 0.009 mg Li−1). The second factor was salt stress, which was applied at three levels of 2, 6, and 12 dS m−1. In each treatment, seed germination, seed vigor index, growth traits (allometric coefficient, radicle and pedicle length, total dry, and fresh weight), and photosynthetic contents of Medicago sativa L. were measured.
Findings: The findings showed that under salt stress, humic acid increased the seed germination of M. sativa L. Humic acid was effective in increasing the plant growth. In connection with the photosynthetic contents, the humic acid showed positive effects, especially in terms of 2 and 12 dS m−1 salinity levels, respectively.
Conclusion: In general, humic acid had high impact on reducing the negative impacts of saltstress. Due to the fact that majority of the world’s rangelands are in arid and semi-arid areas, and salt stress is one of the most important factors in reduced plant growth, more comprehensive and accurate survey in the field is recommended.
Full-Text [PDF 827 kb]   (2677 Downloads)    
Article Type: Original Research | Subject: Aquatic Ecology
Received: 2017/03/14 | Accepted: 2017/05/27 | Published: 2018/03/30
* Corresponding Author Address: Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, Iran

References
1. Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA. Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond B Biol Sci. 2008;363(1492):703-16. [Link] [DOI:10.1098/rstb.2007.2179]
2. Ranjbar Fordoei A, Dehghani Bidgholi R. Impact of salinity stress on photochemical efficiency of photosystem ii, chlorophyll content and nutrient elements of nitere bush (Nitraria schoberi L.) Plants. J Rangel Sci. 2016;6(1):1-9. [Link]
3. Omami EN, Hammes PS. Interactive effects of salinity and water stress on growth, leaf water relations, and gas exchange in amaranth (Amaranthus spp.). N.Z J Crop Hortic. 2006;34(1):33-44. [Link]
4. Salarian M, Alizadeh A, Davary K, Ansari H. The Impact of water stress and salinity on water requirement and crop coefficient of greenhouse bell pepper. Adv Environ Biol. 2014;8(19):88-99. [Link]
5. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651-81. [Link] [DOI:10.1146/annurev.arplant.59.032607.092911]
6. Araghi Shahri SM, Dianati Tilaki GhA, Behtari B, Alizadeh MA. Growth responses of Secale cereale and S. ceremont to priming treatments under salinity stress. J Rangel Sci. 2015;5(3):202-11. [Link]
7. Chachar QI, Solangi AG, Verhoef A. Influence of sodium chloride on seed germination and seeding root growth of cotton (Gossypium Hirsutum L.). Pak J Bot. 2008;40(1):183-97. [Link]
8. Öztürk M, Waisel Y, Khan MA, Görk G. Biosaline agriculture and salinity tolerance in plants. Basel: Birkhäuser Basel; 2009. [Link]
9. Memon SA, Hou X, Wang LJ. Morphological analysis of salt stress response of pak Choi. Environ Agric Food Chem. 2010;9(1):248-54. [Link]
10. Ebrahimi M, Miri E. Effect of humic acid on seed germination and seedling growth of Borago officinalis and Cichorium intybus. ECOPERSIA. 2016;4(1):1239-49. [Link] [DOI:10.18869/modares.ecopersia.4.1.1239]
11. Rezaei MA, Khavari Nejad R, Fahimi H. Physiological response of cotton (Gossypium hirsutum L.) plants to soil salinity. Pajouhesh and Sazandegi. 2004;62(4):81-9. [Persian] [Link]
12. Bulentasik B, Turan A, Celik H, Vahap Katkat A. Effects of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. Salihli) under conditions of salinity. Asian J Crop Sci. 2009;1(2):87-95. [Link] [DOI:10.3923/ajcs.2009.87.95]
13. Çelik H, Katkat AV, Bülent Aşık B, Turan MA. Effect of foliar-applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Commun Soil Sci Plant Anal. 2010;42(1):29-38. [Link] [DOI:10.1080/00103624.2011.528490]
14. Sabzevari S, Khazaie HR, Kafi M. Effect of humic acid on root and shoot growth of two wheat cultivars (Triticum aestivum L.). J Water Soil. 2009;23(2):87-94. [Persian] [Link]
15. Fu C, Hernandez T, Zhou C, Wang ZY. Alfalfa (Medicago sativa L.). Methods Mol Biol. 2015;1223:213-21. [Link] [DOI:10.1007/978-1-4939-1695-5_17]
16. Gorai M, Gasmi H, Neffati M. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae). Saudi J Biol Sci. 2011;18(3):255-60. [Link] [DOI:10.1016/j.sjbs.2011.01.004]
17. Farajollahi A, Tavili A, Gholinejad B, Darini J, Pouzesh H. Investigation and compare the allelopathic effects for different tissues of Peganum harmala in different amounts on the Bromus tectorum germination and growth characteristics. ECOPERSIA. 2013;1(1):53-62. [Link]
18. Mereddy R, Hallgren S, Wu L, Wu Y, Conway KE. Solid matrix priming improves seedling vigor Okra seeds. Proc Okla Acad Sci. 2000;80:33-7. [Link]
19. Behbodian B, Lahouti M, Nezami A. Effects evaluation of salt stress on germination of chickpea varieties. J Agric. 2005;28(2):127-37. [Persian] [Link]
20. Saravanakumar D, Vijayakumar Ch, Kumar N, Samiyappan R. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot. 2007;26(4):556-65. [Link] [DOI:10.1016/j.cropro.2006.05.007]
21. Arnon DI. Copperenzymes in isolated chloroplasts, Polyphenol oxidase in Beta volgaris. Plant Physiol. 1949;24(1):1-5. [Link] [DOI:10.1104/pp.24.1.1]
22. Zia S, Khan MA. Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can J Bot. 2004;82(2):151-7. [Link] [DOI:10.1139/b03-118]
23. Ozdamar Unlu H, Unlu H, Karakurt Y, Padem H. Changes in fruit yield and quality in response to foliar and soil humic acid application in cucumber. Sci Res Essays. 2011;6(13):2800-3. [Link]
24. Khaleghi E, Ramin AA. Study of the effects of salinity on growth and development of Lawans (Lolium perenne L.), Festuca arundinaceae and Cynedon dactylon. J Water Soil Sci. 2005;9(3):57-67. [Persian] [Link]
25. Sofi A, Ebrahimi M, Shirmohammadi E. The effect of humic acid fertilizer on quantitative characteristics of clover. Proceedings of 2nd International Conference on Sustainable Development, Strategies and Challenges with Focus on Agriculture, Natural Resources, Environment and Tourism. Tabriz: Permanent Secretariat of the International Conference on Sustainable Development, Solutions and Challenges; 2016. pp. 1-7. [Persian] [Link]
26. Gholami P, Ghorbani J, Ghaderi Sh, Salarian F, Karimzadeh A. Assessment of germination indicas for Vicia monantha under salinity and drought stresses. Rangeland. 2010;4(1):1-11. [Persian] [Link]
27. Nardi S, Pizzeghello D, Muscolo A, Vianello A. Physiological effects of humic substances on higher plants. Soil Biol Biochem. 2002;34(11):1527-36. [Link] [DOI:10.1016/S0038-0717(02)00174-8]
28. Tahir MM, Khurshid M, Khan MZ, Abbasi MK, Kazmi HM. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere. 2011;21(1):124-31. [Link] [DOI:10.1016/S1002-0160(10)60087-2]
29. Cordeiro FC, Catarina CS, Silveira V, De Souza SR. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Biosci Biotechnol Biochem. 2011;75(1):70-4. [Link] [DOI:10.1271/bbb.100553]
30. Ebrahimi M, Miri Karbasak E. Investigation effect of humic acid on germination, seedling growth and photosynthesis pigments of medicinal plant Isabgol (Plantago ovata Forssk). Iran J Seed Sci Res. 2016;3(3):35-46. [Persian] [Link]
31. Mora V, Bacaicoa E, Zamarre-o AM, Aguirre E, Garnica M, Fuentes M, et al. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant ‎Physiol. 2010;167(8):633-42. [Link] [DOI:10.1016/j.jplph.2009.11.018]
32. Ferrara G, Pacifico A, Simeone P, Ferrara E. Preliminary study on the effects of foliar applications of humic acids on 'Italia' table grape. Journal International des Sciences de la Vigne et du Vin. 2008;42(2):79-87. [Link]
33. Ramadan MF. Nutritional value, functional properties and nutraceuticals applications of black cumin (Nigella sativa L.): An overview. Food Sci Technol. 2007;42(10):1208-18. [Link] [DOI:10.1111/j.1365-2621.2006.01417.x]
34. Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recouery. S Afr J Bot. 2009;75(1):34-42. [Link] [DOI:10.1016/j.sajb.2008.06.005]
35. Delshadi S, Ebrahimi M, Shirmohammadi E. Influence of plant-growth-promoting bacteria on germination, growth and nutrients' uptake of Onobrychis sativa L. under drought stress. J Plant Interact. 2017;12(1):200-8. [Link] [DOI:10.1080/17429145.2017.1316527]
36. Delfine S, Tognetti R, Desiderio E, Alvino A. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron Sustain Dev. 2005;25(2):183-91. [Link] [DOI:10.1051/agro:2005017]
37. Kulikova NA, Stepanova EV, Koroleva OV. Mitigating activity of humic substances: Direct influence on biota. In: Perminova IV, Hatfield K, Hertkorn N, editors. Use of humic substances to remediate polluted environments: From theory to practice: Proceedings of the NATO adanced research workshop on use of humates to remediate polluted environments: From Theory to Practice, held in Zvenigorod. Berlin: Springer Science & Business Media; 2005. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.