Volume 6, Issue 3 (2018)                   IQBQ 2018, 6(3): 187-194 | Back to browse issues page

XML Print

1- Watershed Management Department, Natural Resources & Earth Sciences Faculty, University of Kashan, Kashan, Iran , ghazavi@kashanu.ac.ir
2- Watershed Management Department, Natural Resources & Earth Sciences Faculty, University of Kashan, Kashan, Iran
Abstract:   (556 Views)
Aims: In arid and semi-arid regions, to reduce the impact of infrequent flood, groundwater recharge and decrease flood damages, runoff should be stored through Flood Water Spreading (FWS) systems. The aim of the present study was to estimate of artificial groundwater recharge by flood water spreading system in an arid region using inverse modeling and the Soil-Conservation Service-Curve-Number (SCS-CN) method in Mosian plain.
Materials and Methods: The present study is the original research which was done in a computational manner, groundwater recharge by FWS system under arid conditions of west of Iran was estimated using mathematical and empirical methods. The annual component values of the water balance equation were estimated using the mathematical model (MODFLOW). Groundwater recharge by FWS system was estimated using the inverse modeling approach for the study area. Daily rainfall data (1994-2014) was used to estimate the daily runoff from the upland using SCS-CN method. The estimated runoff was used to estimate the groundwater recharge from FWS system. The R-squared statistic test and PMWIM? Software were used.
Findings: Estimated annual average groundwater recharge by the MODFLOW model and SCS method were 6.55 and 8.47MCM respectively (1994-2014). Comparison between mathematical and empirical models showed minor differences. A minimum of 13mm daily rainfall was required to generate 1mm of recharge from the floodwater spreading system.
Conclusion: Combination of the mathematical and empirical models can increase the accuracy of the groundwater recharge predictions. Groundwater recharge in FWS system area increase with increasing of rainfall, but after the certain value of precipitation, it is nearly constant due to ponds capacity and infiltration speed limitation.
Full-Text [PDF 600 kb]   (155 Downloads)    
Article Type: مقاله Ø§Ø³ØªØ®Ø±Ø§Ø Ø´Ø¯Ù‡ از پایان نامه |
Received: 2018/02/18 | Accepted: 2018/07/17 | Published: 2018/08/25
* Corresponding Author Address: Watershed Management Department, Natural Resources & Earth Sciences Faculty, University of Kashan, Kashan, Iran. Postal code: ‎8731753153

1. Thomas T, Jaiswal RK, Galkate R, Singh S. Development of a rainfall–recharge relationship for a fractured basaltic aquifer in Central India. Water Resour Manag. 2009;23(15):3101–19. [Link] [DOI:10.1007/s11269-009-9425-2]
2. Ghazavi R, Vali AB, Eslamian S. Impact of flood spreading on groundwater level variation and groundwater quality in an arid environment. Water Resour Manag. 2012;26(6):1651-63. [Link] [DOI:10.1007/s11269-012-9977-4]
3. Aeschbacher J, Liniger H, Weingartner R. River water shortage in a highland–lowland system: A case study of the impacts of water abstraction in the Mount Kenya region. Mt Res Dev. 2005;25(2):155-62. [Link] [DOI:10.1659/0276-4741(2005)025[0155:RWSIAH]2.0.CO;2]
4. Hashemi H, Uvo CB, Berndtsson R. Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrol Earth Syst Sci. 2015;19(10):4165-81. [Link] [DOI:10.5194/hess-19-4165-2015]
5. Ghayoumian J, Mohseni Saravi M, Feiznia S, Nouri B, Malekian A. Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. J Asian Earth Sci. 2007;30(2):364-74. [Link] [DOI:10.1016/j.jseaes.2006.11.002]
6. Turner DP, Sumner ME. The influence of initial soil moisture content on field measured infiltration rates. Water SA. 1978;4(1):18-24. [Link]
7. Feizi V, Mollashahi M, Frajzadeh M, Ghasem A. Spatial and temporal trend analysis of temperature and precipitation in Iran. Ecopersia. 2014;2(4):727-42. [Link]
8. Hashemi H, Berndtsson R, Persson M. Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran. J Hydrol Sci. 2015;60(2):336-50. [Link] [DOI:10.1080/02626667.2014.881485]
9. Hashemi H, Berndtsson R, Kompani-Zare M, Persson M. Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrol Earth Syst Sci. 2013;17(2):637-50. [Link] [DOI:10.5194/hess-17-637-2013]
10. Bhattacharya AK. Artificial ground water recharge with special reference to India. Artif Gr Water Recharg. 2010;4(2):214-21. [Link]
11. Bouwer H. Issues in artificial recharge. Water Sci Technol. 1996;33(10-11):381-90. [Link] [DOI:10.2166/wst.1996.0696]
12. Dahan O, Shani Y, Enzel Y, Yechieli Y, Yakirevich A. Direct measurement of floodwater infiltration into shallow alluvial aquifers. J Hydrol. 2007;344(3-4):157-70. [Link] [DOI:10.1016/j.jhydrol.2007.06.033]
13. Kendy E, Zhang Y, Liu C, Wang J, Steenhuis T. Groundwater recharge from irrigated cropland in the North China plain: Case study of Luancheng county. Hydrol Process. 2004;18(12):2289-302. [Link] [DOI:10.1002/hyp.5529]
14. Kumar CP, Seethapathi PV. Assessment of natural groundwater recharge in upper ganga canal command area. J Appl Hydrol. 2002;15(4):13-20. [Link]
15. Zaninović K, Gajić-Čapka M. Changes in components of the water balance in the Croatian lowlands. Theor Appl Climatol. 2000;65(1-2):111-7. [Link] [DOI:10.1007/s007040050008]
16. Sutanudjaja EH, Van Beek LPH, De Jong SM, Van Geer FC, Bierkens MFP. Large-scale groundwater modeling using global datasets: A test case for the Rhine-Meuse basin. Hydrol Earth Syst Sci. 2011;15(9):2913-35. [Link] [DOI:10.5194/hess-15-2913-2011]
17. Malik VS, Singh RK, Singh SK. Ground water modeling with processing modflow for windows, (PMWIN) for the water balance study and suitable recharge site: Case of gurgaon district, Haryana, India. Int J Appl Innov Eng Manag. 2012;1(1):72-84. [Link]
18. Bhoopesh D, Joisy MB. Assessment of natural groundwater recharge for a river basin. Int J Sci Technol Res. 2012;1:19-26. [Link]
19. Nyakundi RM, Makokha M, Mwangi JK, Obiero C. Impact of rainfall variability on groundwater levels in Ruiru municipality, Kenya. Afr J Sci Technol Innov Dev. 2015;7(5):329-35. [Link] [DOI:10.1080/20421338.2015.1085157]
20. Sindhu D, Shivakumar BL, Ravikumar AS. Estimation of surface runoff in nallur amaniker watershed using scs-cn method. Int Journal Res Eng Technol. 2013;4(Issue?):404-9. [Link]
21. Park YS, Engel BA, Harbor J. A web-based model to estimate the impact of best management practices. Water. 2014;6(3):455-71. [Link] [DOI:10.3390/w6030455]
22. Zende A, Atal KR. Identification of rainwater harvesting structure for yerala river using remote sensing and GIS. Proceeding of the 36th IAHR World Congress. Hague: Unknown Publisher; 2015. [Link]
23. Jasrotia AS, Dhiman SD, Aggarwal SP. Rainfall-runoff and soil erosion modeling using remote sensing and GIS technique- a case study on tons watershed. J Indian Soc Remote Sens. 2002;30(3):167-80. [Link] [DOI:10.1007/BF02990649]
24. Amutha R, Porchelvan P. Estimation of surface runoff in Malattar sub-watershed using SCS-CN method. J Indian Soc Remote Sens. 2009;37:291. [Link] [DOI:10.1007/s12524-009-0017-7]
25. Somashekar RK, Ravikumar P, Sowmya SV, Mubhashir Aziz Dar, Ravikumar AS. Runoff estimation and morphometric analysis for Hesaraghatta watershed using IRS-1D LISS III FCC satellite data. J Indian Soc Remote. 2011;39(1):95-106. [Link] [DOI:10.1007/s12524-011-0074-6]
26. McDonald MG, Harbaugh AW. A modular three-dimensional finite difference ground-water flow model. Reston: U.S. Geological Survey; 1988. p. 258. [Link]
27. Wang H, Gao J, Zhang Sh, Zhang M, Li X. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and visual modflow. PLOS ONE. 2013;8(11):79-103. [Link] [DOI:10.1371/journal.pone.0079103]
28. Harbaugh AW, Banta ER, Hill MC, McDonald MG. MODFLOW-2000, the U.S. geological survey modular ground-water model- user guide to modularization concepts and the ground-water flow process. Reston: US Geological Survey; 2000. p. 121. [Link] [DOI:10.3133/ofr200092]
29. Waterloo Hydrogeologic. Visual MODFLOW v. 4.1 User's Manual. Waterloo: Waterloo Hydrogeologic. 2006; p. 634. [Link]
30. Wang JR, Hu LT, Sun KN, Liu XM. Numerical studies on groundwater-grassland relations in an inland arid region in China. Earth Environ Sci. 2017;82(012039):1-6. [Link] [DOI:10.1088/1755-1315/82/1/012039]
31. Mahab Ghods Consulting engineers. Studies project of utilization of soil and water resources in Meymeh and Doiraj river basins (first stage): Groundwaters report for Dehloran, Mosian and Eyn-e-khosh plains. Ministry of Energy, Iran. 1992;320-40. [Persian] [Link]
32. Zehtabian GR, Rahimzadeh GR. Investigation of flood spreading effects on soil infiltration (Case study in Mousian region, province Ilam). J Phys Geogr. 2010;3(9):1-14. [Persian] [Link]
33. Ebrahimi H, Ghazavi R, Karimi H. Estimation of Groundwater Recharge from the Rainfall and Irrigation in an Arid Environment Using Inverse Modeling Approach and RS. Water Resour Manag. 2016;30(6):1939-51. [Link] [DOI:10.1007/s11269-016-1261-6]
34. Rallison RE, Miller N. Past, present and future SCS runoff procedure. In: Singh VP, editor. Rainfall-runoff relationship. Littleton: Water resources publication; 1982. pp. 353-64. [Link]
35. Alghamri RJ, Nassar A. Study the impact of land use and over pumping on nitrate concentration in groundwater by using modelling approach. World Rev Sci Technol Sustain Dev. 2014;11(3-4):282-93. [Link] [DOI:10.1504/WRSTSD.2014.066820]
36. United States. Soil Conservation Service. SCS national engineering handbook, Section 4: Hydrology. Minneapolis: The Service; 1972. p. 127. [Link]