Volume 9, Issue 2 (2021)                   ECOPERSIA 2021, 9(2): 139-152 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samadi Khangah S, Ghorbani A, Choukali M, Moameri M, Badrzadeh M, Motamedi J. Effect of Grazing Exclosure on Vegetation Characteristics and Soil Properties in the Mahabad Sabzepoush Rangelands, Iran. ECOPERSIA 2021; 9 (2) :139-152
URL: http://ecopersia.modares.ac.ir/article-24-45164-en.html
1- Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2- Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran , a_ghorbaniuma.ac.ir
3- Department of Plant Sciences and Medicinal Plants, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Meshginshahr, Iran
4- Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
Abstract:   (1999 Views)
Aims: Most rangelands of Urmia in Iran have been destroyed and need significant restoration to achieve favorable conditions. This study aimed to investigate the impacts of a 19-years research exclosure on vegetation and soil features in Mahabad Sabzepoush rangelands of Iran.
Methods: To conduct research using the random-systematic method, three reference sites inside the exclosure and three reference sites outside the exclosure were selected with similar conditions. In each site, three linear transects, and along each transect, ten plots of one square meter were established. The percentage of canopy cover and the number of plants in each plot were measured using estimation and counting methods. From the beginning, middle, and end of each transect, soil samples were collected from a depth of 30 cm. An independent t-test was used to compare data on quantitative vegetation factors, land surface cover, richness characteristics, species diversity, evenness, and soil characteristics both inside and outside the enclosure.
Findings: Based on the results, 75 species belonging to 60 genera and 19 families were identified in the selected sites. Results showed that vegetation factors such as density and canopy cover of forbs and grasses and total canopy cover had a significant difference between the outside and inside of exclosure (p<0.05). The total density, density, and canopy cover of shrubs were not significantly different between exclosure and control sites (p>0.05). In the grazing area, the value of plant density of forbs, grasses, and shrubs was 43.84, 40.62, and 1.10number/m2, respectively. After 19 years of the exclosure, the forbs' density (57.45number/m2) and shrubs (2.17number/m2) were increased. Besides, forbs canopy cover increased from 18.14 to 24.88 (percentage) and shrubs canopy cover increased from 0.91 to 0.97% in 19 years exclosure. Richness, diversity, and evenness did not differ significantly between the exclosure and open grazing sites (p>0.05). The richness and diversity index was increased by 0.03 and 0.05 in the exclosure sites, but the evenness index increased by 0.01 in the open grazing sites. Nitrogen, electrical conductivity (EC), available phosphorus, organic matter, silt, and potassium in the exclosure and open grazing areas, had a significant difference (p<0.05). In the grazing area, EC and potassium's value was 1.35ds/m and 464.24ppm, respectively. After 19 years of the exclosure, the value of EC (1.10ds/m) and potassium (464.24ppm) were increased. Nevertheless, the values of other factors were decreased.
Conclusion: Although exclosure has increased the percentage of canopy cover, density, and diversity of species, but in some cases, non-observance of exclusion will prevent the achievement of the expected goals and desired results. These results indicate that grazing exclosure plays a crucial role in vegetation recovery and soil protection of destroyed rangelands.
Full-Text [PDF 862 kb]   (729 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecology and Management
Received: 2020/08/12 | Accepted: 2020/09/27 | Published: 2020/10/31
* Corresponding Author Address: Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran. Postal code: 5619913131

References
1. Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Change. 2001;51(1):35-72. [Link] [DOI:10.1023/A:1017529816140]
2. Deng J, Zhou Y, Zhu W, Yin Y. Effects of afforestation with Pinus sylvestris var mongolica plantations combined with enclosure management on soil microbial community. Peer J. 2020;8(6):8857. [Link] [DOI:10.7717/peerj.8857]
3. He C, Tian J, Gao B, Zhao Y. Differentiating climate-and human-induced drivers of grassland degradation in the Liao river basin, China. Environ Monit Assess. 2015;187(1):4199. [Link] [DOI:10.1007/s10661-014-4199-2]
4. Li J, Tong X, Awasthi MK, Wu F, Ha S, Ma J, et al. Dynamics of soil microbial biomass and enzyme activities along a chronosequence of desertified land revegetation. Ecol Eng. 2018;111:22-30. [Link] [DOI:10.1016/j.ecoleng.2017.11.006]
5. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Res. 2004;29(26):261-99. [Link] [DOI:10.1146/annurev.energy.29.062403.102142]
6. Fick SE, Belnap J, Duniway MC. Grazing-induced changes to biological soil crust cover mediate hillslope erosion in long-term exclosure experiment. Rangel Ecol Manag. 2020;73(1):61-72. [Link] [DOI:10.1016/j.rama.2019.08.007]
7. Aubault H, Webb NP, Strong CL, Mc Tainsh GH, Leys JF, Scanlan JC. Grazing impacts on the susceptibility of rangelands to wind erosion: The effects of stocking rate, stocking strategy and land condition. Aeolian Res. 2015;17:89-99. [Link] [DOI:10.1016/j.aeolia.2014.12.005]
8. Nauman TW, Duniway MC, Webb NP, Belnap J. Elevated aeolian sediment transport on the Colorado plateau, USA: The role of grazing, vehicle disturbance, and increasing aridity. Earth Surf Process Landf. 2018;43(14):2897-914. [Link] [DOI:10.1002/esp.4457]
9. Duniway MC, Geiger EL, Minnick TJ, Phillips SL, Belnap J. Insights from long-term ungrazed and grazed watersheds in a salt desert Colorado plateau ecosystem. Rangel Ecol Manag. 2018;71(4):492-505. [Link] [DOI:10.1016/j.rama.2018.02.007]
10. Yao M, Rui J, Li J, Wang J, Cao W, Li X. Soil bacterial community shifts driven by restoration time and steppe types in the degraded steppe of inner Mongolia. Catena. 2018;165:228-36. [Link] [DOI:10.1016/j.catena.2018.02.006]
11. Zhao J, Li X, Li R, Tian L, Zhang T. Effect of grazing exclusion on ecosystem respiration among three different alpine grasslands on the central Tibetan plateau. Ecol Eng. 2016;94:599-607. [Link] [DOI:10.1016/j.ecoleng.2016.06.112]
12. Gebregergs T, Tessema ZK, Solomon N, Birhane E. Carbon sequestration and soil restoration potential of grazing lands under exclosure management in a semi-arid environment of northern Ethiopia. Ecol Evolut. 2019;9(11):6468-79. [Link] [DOI:10.1002/ece3.5223]
13. Liu M, Zhang Z, Sun J, Wang Y, Wang J, Tsunekawa A, et al. One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan plateau. Glob Ecol Conserv. 2020;22:00951. [Link] [DOI:10.1016/j.gecco.2020.e00951]
14. Gao Y, Zeng X, Schumann M, Chen H. Effectiveness of exclosures on restoration of degraded alpine meadow in the eastern Tibetan plateau. Arid Land Res Manag. 2011;25(2):164-75. [Link] [DOI:10.1080/15324982.2011.554954]
15. Yuan J, Ouyang Z, Zheng H, Xu W. Effects of different grassland restoration approaches on soil properties in the southeastern Horqin sandy land, northern China. Appl Soil Ecol. 2012;61:34-9. [Link] [DOI:10.1016/j.apsoil.2012.04.003]
16. Zhu GY, Deng L, Zhang XB, Shangguan ZP. Effects of grazing exclusion on plant community and soil physicochemical properties in a desert steppe on the Loess plateau, China. Ecol Eng. 2016;90:372-81. [Link] [DOI:10.1016/j.ecoleng.2016.02.001]
17. Zhang Y, Gao Q, Dong S, Liu S, Wang XX, Su X, et al. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan plateau. Rangel J. 2014;37:57-65. [Link] [DOI:10.1071/RJ14080]
18. Jing Z, Cheng J, Su J, Bai Y, Jin J. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecol Eng. 2014;64:171-8. [Link] [DOI:10.1016/j.ecoleng.2013.12.023]
19. Shi XM, Li XG, Li CT, Zhao Y, Shang ZH, Ma Q. Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghaie-Tibetan plateau. Ecol Eng. 2013;57:183-7. [Link] [DOI:10.1016/j.ecoleng.2013.04.032]
20. Wang D, Wu GL, Zhu YJ, Shi ZH. Grazing exclusion effects on above-and below-ground C and N pools of typical grassland on the Loess plateau (China). Catena. 2014;123:113-20. [Link] [DOI:10.1016/j.catena.2014.07.018]
21. Liu M, Liu G, Wu X, Wang H, Chen L. Vegetation traits and soil properties in response to utilization patterns of grassland in Hulun Buir city, inner Mongolia, China. Chin Geogr Sci. 2014;24:471-8. [Link] [DOI:10.1007/s11769-014-0706-1]
22. Niu D, Hall SJ, Fu H, Kang J, Qin Y, Elser JJ. Grazing exclusion alters ecosystem carbon pools in Alxa desert steppe. N.Z. J Agric Res. 2011;54(3):127-42. [Link] [DOI:10.1080/00288233.2011.576683]
23. Su H, Liu W, Xu H, Wang Z, Zhang H, Hu H, et al. Long-term livestock exclusion facilitates native woody plant encroachment in a sandy semiarid rangeland. Ecol Evol. 2015;5(12):2445-56. [Link] [DOI:10.1002/ece3.1531]
24. Lunt ID, Jansen A, Binns DL, Kenny SA. Long-term effects of exclusion of grazing stock on degraded herbaceous plant communities in a riparian Eucalyptus camaldulensis forest in south-eastern Australia. Austral Ecol. 2010;32(8):937-49. [Link] [DOI:10.1111/j.1442-9993.2007.01782.x]
25. Cao J, Li G, Adamowski JF, Holden NM, Deo RC, Hu Z, et al. Suitable exclosure duration for the restoration of degraded alpine grasslands on the Qinghai-Tibetan plateau. Land Use Policy. 2019;86:261-7. [Link] [DOI:10.1016/j.landusepol.2019.05.008]
26. Sun J, Zhang ZC, Dong SK. Adaptive management of alpine grassland ecosystems over Tibetan plateau. Pratac Sci. 2019;36(4):933-8. [Chinese] [Link]
27. Cheng J, Wu GL, Zhao LP, Li Y, Li W, Cheng JM. Cumulative effects of 20-year exclusion of livestock grazing on above-and belowground biomass of typical steppe communities in arid areas of the Loess plateau, China. Plant Soil Environ. 2011;57(1):40-4. [Link] [DOI:10.17221/153/2010-PSE]
28. Wu GL, Du GZ, Liu ZH, Thirgood S. Effect of fencing and grazing on a kobresia-dominated meadow in the Qinghai-Tibetan plateau. Plant Soil. 2009;319(1):115-26. [Link] [DOI:10.1007/s11104-008-9854-3]
29. Xu L, Nie Y, Chen B, Xin X, Yang G, Xu D, et al. Effects of fence enclosure on vegetation community characteristics and productivity of a degraded temperate meadow steppe in northern China. Appl Sci. 2020;10(8):1-16. [Link] [DOI:10.3390/app10082952]
30. Mofidi M, Jafari M, Tavili A, Rashtbari M, Alijanpour A. Grazing exclosure effect on soil and vegetation properties in Imam Kandi rangelands, Iran. Arid Land Res Manag. 2013;27(1):32-40. [Link] [DOI:10.1080/15324982.2012.719575]
31. Khosravi H, Ebrahimi E, Rigi M. Effects of rangeland exclusion on plant cover and soil properties in a steppe rangeland of southeastern Iran. Arid Land Res Manag. 2017;31(3):352-71. [] [DOI:10.1080/15324982.2017.1310147]
32. Yazdanshenas H, Ehsani A, Ghaemi M, Shafeian E, Yeganeh H. Determining suitable grazing time for Puccinella distans Parl based on its phenology in west Azerbaijan province of Iran. J Plant Interact. 2016;11(1):67-73. [Link] [DOI:10.1080/17429145.2016.1179803]
33. Yeilaghi SH, Ghorbani A, Asghari A, Heidari M. Study of species richness and evenness in different aspects of inside and outside of the exclosure in rangelands of Qushchy Ghat of Uremia. Nat Ecosyst Iran. 2013;4(1):33-43. [Persian] [Link]
34. Mesdaghi M. Plant Ecology. Mashhad: University of Mashhad; 2003. [Link]
35. Su YZ, Zhao HL, Zhang TH, Zhao XY. Soil properties following cultivation and non-grazing of a semiarid sandy grassland in northern China. Soil Tillage Res. 2004;75(1):27-36. [Link] [DOI:10.1016/S0167-1987(03)00157-0]
36. Choukali M. Comparison of the composition and species diversity of inside and outside the exclosure in Mahabad Sabzepoush reserve [dissertation]. Ardabil: University of Mohaghegh Ardabili; 2020. [Persian] [Link]
37. Planned budget organization of Iran. Drift analysis, climatic and geological conditions and mineral capabilities [Internet]. Tehran: Planned Budget Organization of Iran; 2009 [Unknown Cited]. Available from: https://www.mporg.ir/en [Link]
38. Kent M, Coker P. Vegetation description and analysis: A practical approach. Boca Raton: CRC-Press; 1992. [Link]
39. Arzani H, Abedi M. Rangeland assessment: Vegetation measurement. Tehran: University of Tehran Press; 2015. [Persian] [Link]
40. Davis P. Flora of Tukey. Edinburgh: Edinburgh University Press; 1984. [Link]
41. Rechinger KH. Flora Iranica. Graz: Akademische Druck-u Verlagsanstalt; 1975. [Link]
42. Assadi M. Flora of Iran. Tehran: Research Institute of Forests and Rangelands; 2015. [Link]
43. Zohary M. On the geobotanical structure of Iran. Jerusalem: Weizman Science Press of Israel; 1963. [Link] [DOI:10.24157/ARC_13414]
44. Raunkiaer C. The life forms of plants and statistical plant geography. New York: Arno Press; 1977. [Link]
45. Arzani H, Zohdi M, Fish E, Zahedi Amiri G, Nikkhah A, Wester D. Phenological effects on forage quality of five grass species. Rangel Ecol Manag. 2004;57:624-9. https://doi.org/10.2307/4004019 [Link] [DOI:10.2111/1551-5028(2004)057[0624:PEOFQO]2.0.CO;2]
46. Saadati S. Studio medicinal plants of Mahabad Hamzehabad. International Conference on Research in Science and Technology, 14 December 2015, Tehran, Iran. Tehran: Civilica; 2015. [Persian] [Link]
47. Heidari Rikan M, Rahimdokht R. Introduction of a number of medicinal plants with economic importance in west Azerbaijan province. J Iran Nat. 2017;2(3):46-51. [Persian] [Link]
48. Ahmadkhani R, Moameri M, Samadi S. Investigating the structural and functional changes of vegetation in two areas of exclosure and under grazing in the around Urmia lake. J Rangel. 2020;14(2):299-312. [Persian] [Link]
49. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379-423. [Link] [DOI:10.1002/j.1538-7305.1948.tb01338.x]
50. Menhinick EF. A comparison of some species individual diversity indices applied to samples of field insects. Ecology. 1964;45(4):859-61. [Link] [DOI:10.2307/1934933]
51. Sanjit L, Bhatt D. How relevant are the concepts of species diversity and species richness?. J Biosci. 2005;30(5):557-60. [Link] [DOI:10.1007/BF02703552]
52. Aghajanlou F, Ghorbani A, Zare Chahouki MA, Mostafazadeh R, Hashemimajd K. The impact of environmental factors on distribution of Ferula ovina (Boiss.) Boiss in northwest Iran. Appl Ecol Environ Res. 2018;16(2):977-92. [Link] [DOI:10.15666/aeer/160ررررررررررررر2_977992]
53. Jafari Haghighi M. Soil analysis methods: Sampling and important physical and chemical analyses. Sari: NEDAYE ZOHA. 2003. [Persian] [Link]
54. Nejadhabibvash F, Makali H, Rezaei Chiyaneh E. Flora, life form and chorology of plants in Razhan protected area in west Azerbaijan province. Taxon Biosyst. 2016;8(27):85-95. [Persian] [Link]
55. Shikh Kanlooie Millan B, Rajamand MA, Motamedi J. Introduction to the flora, life form and chorology of the Avrin mountains rangelands in Khoy, west Azerbaijan. PAJOUHESH VA SAZANDEGI. 2017;30(3):3-17. [Persian] [Link]
56. Ghorbani A, Mashkoori L. Comparison of quantitative parameters of Festuca ovina species in different grazing intensity in north and southeast rangelands of Sabalan. Rangeland. 2017;10(4):398-408. [Persain] [Link]
57. Salarian F, Ghorbani J, Safaeian NA. Vegetation changes under enclosure and livestock grazing in Chahar Bagh rangelands in Golestan province. Iran J Range Desert Res. 2013;20(1):115-29. [Persain] [Link]
58. Amousi O, Ghollasimood S, Fattahi B. Investigate and compare the plant diversity in two areas of semi-steppe grazed and enclosed sites in the Zagros (case study: Rangeland of Prdanan-Piranshahr). Desert Ecosyst Eng J. 2014;2(3):37-44. [Persain] [Link]
59. Mirzaei Mossivand A, Zandi Esfahan E, Keivan Behjou F. Comparison of plant species diversity in two rangelands under grazing and exclosure conditions, Lorestan province (case study: Northeast Delfan county). Iran J Range Desert Res. 2016;23(3):606-17. [Persain] [Link]
60. Yoshihara Y, Ohkuro T, Bunveibaatar B, Jamsran U, Takeuchi K. Spatial pattern of grazing affects influence of herbivores on spatial heterogeneity of plants and soils. Oecologia. 2010;162:427-34. [Link] [DOI:10.1007/s00442-009-1481-z]
61. Sharifi Niarag J. Assessment of grassland diversity in Ardabil. Sci Inf Cent. 1995;1(1):26-31. [Link]
62. Firinioglu HK, Seefeldt SS, Sahin B. The effects of long-term grazing exclosures on range plants in the central Anatolian region of Turkey. Environ Manag. 2007;39(3):326-37. [Link] [DOI:10.1007/s00267-005-0392-y]
63. Haydaryan Aghakhani M, Naghipour Borj AA, Tavakoli H. The effect of grazing on vegetation and soil in Sisab rangelands, Bojnord, Iran. Iran J Range Desert Res. 2010;17(2):243-55. [Persian] [Link]
64. Farahnak Ghazani M, Najibzadeh MR, Ghahramani MA. Effects of exclosure on vegetation changes in Sahand rangelands. Iran J Range Desert Res. 2015;22(3):525-36. [Persian] [Link]
65. Bari F, Wood MK, Murray L. Livestock grazing impacts on infiltration rates in a temperate range of Pakistan. J Range Manag Arch. 1993;46(4):367-72. [Link] [DOI:10.2307/4002475]
66. Siahmansour R, Akbarzadeh M, Zandi Esfahan E, Khademi K, Javadi SA. Effects of exclosure on vegetation characteristics and soil conservation in summer rangelands of Gardaneh Zagheh. Iran J Range Desert Res. 2015;22(3):417-25. [Persian] [Link]
67. Ebrahimi M, Khosravi H, Rigi M. Short-term grazing exclosure from heavy livestock rangelands affects vegetation cover and soil properties in natural ecosystems of southeastern Iran. Ecol Eng. 2016;95:10-8. [Link] [DOI:10.1016/j.ecoleng.2016.06.069]
68. Cingolani AM, Posse G, Collantes MB. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J Appl Ecol. 2005;42(1):50-9. [Link] [DOI:10.1111/j.1365-2664.2004.00978.x]
69. Ghafari S, Ghorbani A, Moameri M, Mostafazadeh R, Bidarlord M. Composition and structure of species along altitude gradient in Moghan-Sabalan rangelands, Iran. J Mt Sci. 2018;15(6):1209-28. [Link] [DOI:10.1007/s11629-017-4820-2]
70. Bestelmeyer B, Brown JR, Havstad KM, Alexander R, Chavez R, Herrick JE. Development and use of state and transition models for rangelands. J Range Managt. 2003;56(2):114-26. [Link] [DOI:10.2307/4003894]
71. Mengistu T, Teketay D, Hulten H, Yemshaw Y. The role of enclosures in the recovery of woody vegetation in degraded dry land hillsides of central and northern Ethiopia. J Arid Environ. 2005;60(2):259-81. [Link] [DOI:10.1016/j.jaridenv.2004.03.014]
72. Derner JD, Hart RH. Livestock and vegetation responses to rotational grazing in short-grass steppe. West North Am Nat. 2007;67(3):359-67. [Link] [DOI:10.3398/1527-0904(2007)67[359:LAVRTR]2.0.CO;2]
73. Liu M, Liu G, Zheng X. Spatial pattern changes of biomass, litter fall and coverage with environmental factors across temperate grassland subjected to various management practices. Landsc Ecol. 2015;30:477-86. [Link] [DOI:10.1007/s10980-014-0120-1]
74. Al-Rowaily SL, El-Bana MI, Al-Bakre DA, Assaeed AM, Hegazy AK, Ali MB. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of western Saudi Arabia. Saudi J Biol Sci. 2015;22(4):430-7. [Link] [DOI:10.1016/j.sjbs.2015.04.012]
75. Azarnivand H, Zare Chahouki MA. Rangeland ecology. Tehran: Tehran University Press; 2010. [Persian] [Link]
76. Motamedi J, Sheidai Karkaj E. Suitable species diversity abundance model in three grazing intensities in Dizaj Batchi rangelands of west Azerbaijan. J Range Watershed Manag. 2014;67(1):103-15. [Persian] [Link]
77. Benaradj A, Boucherit H, Mederbal K, Benabdeli K, Baghdadi D. Effect the exclosure on plant diversity of the Hammada scoparia steppe in the Naama steppe courses (Algeria). J Mater Environ Sci. 2013;2(1):564-71. [Link]
78. Houessou LG, Teka A, Oumorou M, Sinsin B. Hemicryptophytes plant species as indicator of grassland state in semi-arid region: Case study of W biosphere reserve and its surroundings area in Benin (west Africa). Int J Biol Chem Sci. 2012;6(3):1271-80. [Link] [DOI:10.4314/ijbcs.v6i3.30]
79. Liddle MJ. A selective review of the ecological effects of human trampling on natural ecosystems. Biol Conserv. 1975;7(1):17-36. [Link] [DOI:10.1016/0006-3207(75)90028-2]
80. Ghorbani A, Mohammadi Moghaddam S, Hashemi Majd K, Dadgar D. Spatial variation analysis of soil properties using spatial statistics: A case study in the region of Sabalan mountain, Iran. J Prot Mt Areas Res. 2018;10(1):70-80. [Link] [DOI:10.1553/eco.mont-10-1s70]
81. Jafari M, Javadi SA, Bagherpoor MA, Tahmoures M. Relationships between Soil characteristics and vegetation in Nodoushan rangelands of Yazd province. Rangeland. 2009;3(1):29-40. [Persian] [Link]
82. Aghasi MJ, Bahmaniar MA, Akbarzadeh M. Comparison of the effects of exclusion and water spreading on vegetation and soil parameters in Kyasar rangelands, Mazandaran province. J Agric Sci Nat Resour. 2006;13(4):73-87. [Persian] [Link]
83. Alfaro MA, Jarvis SC, Gregory PJ. Factors affecting potassium leaching in different soils. Soil Use Manag. 2004;20(2):182-9. https://doi.org/10.1079/SUM2004249 [Link] [DOI:10.1111/j.1475-2743.2004.tb00355.x]
84. Jalilvand H, Tamartash R, Heydarpour H. Grazing impact on vegetation and some soil chemical properties in Kojour rangelands, Noushahr, Iran. Rangeland. 2007;1(1):53-66. [Persian] [Link]
85. Gavili Kilaneh E, Vahabi MR. The effect of some soil characteristics on range vegetation distribution in central Zagros, Iran. J Sci Technol Agric Nat Resour. 2012;16(59):245-58. [Persian] [Link]
86. Abdalla M, Hastings A, Chadwick DR, Jones DL, Evans CD, Jones MB, et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric Ecosyst Environ. 2018;253:62-81. [Link] [DOI:10.1016/j.agee.2017.10.023]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.