Volume 9, Issue 3 (2021)                   ECOPERSIA 2021, 9(3): 215-224 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehbashi F, Azarmsa S. Differences between Sediment Grain Size in Rip Channel and its Surrounding Area in Royan Marine Ecosystem, Iran. ECOPERSIA 2021; 9 (3) :215-224
URL: http://ecopersia.modares.ac.ir/article-24-37077-en.html
1- Marine Physics Department, Natural Resources & Marine Sciences Faculty, Tarbiat Modares University, Mazandaran, Iran
2- Marine Physics Department, Natural Resources & Marine Sciences Faculty, Tarbiat Modares University, Mazandaran, Iran , azarmsaa@modares.ac.ir
Abstract:   (1482 Views)
Aims: In this study, sediment size distribution and its statistical properties are studied in the rip channel, and its surroundings in the Royan marine ecosystem lied in the southern part of the Caspian Sea.  
Materials & Methods: Three rip current channels were selected every eight investigating months. Sediment samples were collected from inside each rip channel and its surrounding areas. The statistical indices, viz., D50, mean, skewness, and sorting, have been calculated for sediment grain size parameters. Finally, a general linear model and unpaired t-test were used to perform statistical comparisons of grain size characteristics between the rip channel and its surrounding area.
Findings: In May, June, and July, the medians of sediment grain size were significantly higher in the rip channel (202.7, 168.9, and 174.5mm, respectively) compared with its surrounding areas. In general, the mean sediment grain size was significantly higher in the rip channel (193.1mm) than the control area (176.3mm). In May, June, and July, the highest values of the mean grain size of sediments were related to the rip channel (226.9, 178.5, and 183.2mm, respectively).
Conclusion: The rip channel contains sediments with coarser grains than the surrounding area. The rip current leads the median and mean of sediment size distribution in the rip channel to move toward the larger sizes. Moreover, the skewness is a more sensitive factor to environmental changes of the channel and its surrounding area than the other sediment properties, emphasizing consideration in the studies.
Full-Text [PDF 728 kb]   (742 Downloads)    
Article Type: Original Research | Subject: Marine Ecosystems
Received: 2019/10/5 | Accepted: 2020/11/22 | Published: 2021/05/25
* Corresponding Author Address: Marine Physics Department, Natural Resources & Marine Sciences Faculty, Tarbiat Modares University, Mazandaran, Iran

References
1. Leatherman S, Fletemeyer J, editors. Rip currents, beach safety, physical oceanography and wave modeling. Boca Raton, Florida: CRC Press; 2011. pp. 1-29. [Link] [DOI:10.1201/b10916]
2. MacMahan JH, Thornton EB, Reniers AJ. Rip current review. Coast Eng. 2006;53(2-3):191-208. [Link] [DOI:10.1016/j.coastaleng.2005.10.009]
3. Kumar SA, Prasad KVSR. Rip current-related fatalities in India: A new predictive risk scale for forecasting rip currents. Nat Hazard. 2014;70(1):313-35. [Link] [DOI:10.1007/s11069-013-0812-x]
4. Shepard FP, Emery KO, La Fond EC. Rip currents: A process of geological importance. J Geol. 1941;49(4):337-69. [Link] [DOI:10.1086/624971]
5. Wright LD, Short AD. Morphodynamic variability of surf zones and beaches: A synthesis. Mar Geol. 1984;56(1-4):93-118. [Link] [DOI:10.1016/0025-3227(84)90008-2]
6. Inman DL, Brush BM. The coastal challenge. Science. 1973;181(4094):20-32. [Link] [DOI:10.1126/science.181.4094.20]
7. MacMahan J, Brown J, Brown J, Thornton E, Reniers A, Stanton T, et al. Mean Lagrangian flow behavior on an open coast rip-channeled beach: A new perspective. Mar Geol. 2010;268(1-4):1-15. [Link] [DOI:10.1016/j.margeo.2009.09.011]
8. Aagaard T, Greenwood B, Nielsen J. Mean currents and sediment transport in a rip channel. Mar Geol. 1997;140(1-2):25-45. [Link] [DOI:10.1016/S0025-3227(97)00025-X]
9. Brander RW. Sediment transport in low-energy rip current systems. J Coast Res. 1999;15(3):839-49. [Link]
10. Short AD. Rip-current type, spacing and persistence, Narrabeen Beach, Australia. Marine Geol. 1985;65(1-2):47-71. [Link] [DOI:10.1016/0025-3227(85)90046-5]
11. MacMahan JH, Thornton EB, Stanton TP, Reniers AJ. RIPEX: Observations of a rip current system. Mar Geol. 2005;218(1-4):113-34. [Link] [DOI:10.1016/j.margeo.2005.03.019]
12. Brander RW. Field observations on the morphodynamic evolution of a low-energy rip current system. Mar Geol. 1999;157(3-4):199-217. [Link] [DOI:10.1016/S0025-3227(98)00152-2]
13. Thornton EB, MacMahan J, Sallenger Jr AH. Rip currents, mega-cusps, and eroding dunes. Mar Geol. 2007;240(1-4):151-67. [Link] [DOI:10.1016/j.margeo.2007.02.018]
14. Zhang X, Ji Y, Yang Z, Wang Z, Liu D, Jia P. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments. Sci China Earth Sci. 2016;59(2):258-67. [Link] [DOI:10.1007/s11430-015-5165-8]
15. Siuf Jahromi M, Ghaderi D. Rip current in the beach and its hazards. First National Conference in Marine Sciences. Bandarabbas: Unknown Publisher; 2014. pp.1-13. [Persian] [Link]
16. Poppe LJ, Eliason AH, Fredericks JJ, Rendigs RR, Blackwood D, Polloni CF. Grain size analysis of marine sediments: Methodology and data processing. US: Geological Survey East Coast sediment analysis, procedures, database, and georeferenced displays; 2000 May. Report No.: 00-358. Sponsored by the Department of Geological Survey. [Link] [DOI:10.3133/ofr00358]
17. Blott SJ, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf. 2001;26(11);1237-48. [Link] [DOI:10.1002/esp.261]
18. Poullet P, Muñoz-Perez JJ, Poortvliet G, Mera J, Contreras A, Lopez P. Influence of different sieving methods on estimation of sand size parameters. Water. 2019;11(5):879. [Link] [DOI:10.3390/w11050879]
19. Gallagher EL, MacMahan J, Reniers AJHM, Brown J, Thornton EB. Grain size variability on a rip-channeled beach. Mar Geol. 2011;287(1-4):43-53. [Link] [DOI:10.1016/j.margeo.2011.06.010]
20. Wang C, Chen M, Qi H, Intasen W, Kanchanapant A. Grain-size distribution of surface sediments in the chanthaburi coast, Thailand and implications for the sedimentary dynamic environment. J Mar Sci Eng. 2020;8(4):242. [Link] [DOI:10.3390/jmse8040242]
21. Linares Á, Wu CH, Bechle AJ, Anderson EJ, Kristovich DA. Unexpected rip currents induced by a meteotsunami. Sci Rep. 2019;9(1):1-9. [Link] [DOI:10.1038/s41598-019-38716-2]
22. Rudeh H, Lorestani G, Etemadi F, Valikhani S. Dynamic simulation of waves and sand transport on the coast of the caspian sea. Quant Geomorphol Res. 2014;2:1-18. [Link]
23. Kabiri-Samani AR, Aghaee-Tarazjani J, Borghei SM, Jeng DS. Application of neural networks and fuzzy logic models to long-shore sediment transport. Appl Soft Comput. 2011;11(2):2880-7. [Link] [DOI:10.1016/j.asoc.2010.11.021]
24. Kunte PD. Sediment concentration and bed form structures of Gulf of Cambay from remote sensing. Int J Remote Sens. 2008;29(8):2169-82. [Link] [DOI:10.1080/01431160701422221]
25. Van Rijn LC. Principles of sediment transport in rivers, estuaries and coastal seas. Amsterdam: Aqua publications; 1993. pp. 11-3. [Link]
26. Muralidharan J, Ganesh Kumar B, Kunte PD. Sediment transport study along Gulf of Kachchh - a numerical and geospatial approach. Int J Appl Eng Res. 2015;10(55):4291-6. [Link]
27. Fang J, Chen J, Wang A, Li D, Huang C. The modern sedimentary environment and transport trends in Jiulongjiang estuary. Mar Geol Quat Geol. 2010;30(2):35-41. [Link] [DOI:10.3724/SP.J.1140.2010.02035]
28. Azarmsa SA. An introduction to wind induced water waves. Tehran: Tarbiat Modares University Press; 2019. P. 348. [Persian] [Link]
29. Srivastava AK, Ingle PS, Lunge HS, Khare N. Grain-size characteristics of deposits derived from different glacigenic environments of the Schirmacher Oasis, East Antarctica. Geologos. 2012;18(4):251-66. [Link] [DOI:10.2478/v10118-012-0014-0]
30. McLaren P. An interpretation of trends in grain size measures. J Sediment Res. 1981;51(2):611-24. [Link] [DOI:10.1306/212F7CF2-2B24-11D7-8648000102C1865D]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.