Volume 7, Issue 2 (2019)                   ECOPERSIA 2019, 7(2): 105-114 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motaharfard E, Mahdavi A, Iranmanesh Y, Jafarzadeh A. Effect of Land Uses on Aboveground Biomass and Carbon Pools in Zagros Forests, Iran. ECOPERSIA 2019; 7 (2) :105-114
URL: http://ecopersia.modares.ac.ir/article-24-28777-en.html
1- Forest Sciences Department, Agriculture and Natural Resources Faculty, University of Ilam, Ilam, Iran
2- Forest Sciences Department, Agriculture and Natural Resources Faculty, University of Ilam, Ilam, Iran , mahdaviali56@gmail.com
3- Research Division of Natural Resources, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord, Iran
Abstract:   (7359 Views)
Aims: Different types of land use have different effects on carbon stored in their pools and Co2 . We compared carbon storage in different pools (tree, litter, and soil) across main land uses Mishkhas watershed in the of Ilam province, Iran.
Materials and Methods: Oak forest (Quercus brantii Lindl.; Lu-F) and orchard (Juglans regia L; Lu-O) in 4 different ages were determined for estimation of carbon stocks in tree biomass, the litter, and 20 cm depth of soils in two land uses.
Findings: The results showed that total carbon stocks in Lu-O ecosystem (68.75 Mg ha-1) than Lu-F (41.22 Mg ha-1). In general, soil at the two land uses was as estimated about 91% and (37.61 Mg ha-1) 82% (57.01Mg ha-1) total carbon stocks in Lu-F and Lu-O, respectively. The above ground biomass of trees was as and contained a lower contribution of total carbon stocks (roughly 6% and 15% in forest and orchard ecosystems). The least carbon , about 2% of the total carbon stocks in Lu-F and Lu-O occurred in litter due to the grazing intensity.
Conclusion: As a conclusion, our findings confirm that land use type can significantly effect on carbon stocks in different pools. Therefore, management strategies are needed to enhance the forest carbon sequestration in Mishkhas watershed of Ilam province.
Full-Text [PDF 451 kb]   (1886 Downloads)    
Article Type: Original Research | Subject: Forest Ecosystems
Received: 2019/02/13 | Accepted: 2019/02/22 | Published: 2019/04/20
* Corresponding Author Address: Pajohesh Str. Ilam University, Ilam, Iran.

References
1. Zhu L, Zhang XB, Fan Y. A non-linear model for estimating the cost of achieving emission reduction targets: The case of U.S., China and India. J Syst Sci Syst Eng. 2012;21(3):297-315. [Link] [DOI:10.1007/s11518-012-5195-0]
2. IPCC. Land use, land use change and forestry, special report of the IPCC. Cambridge: Cambridge University Press; 2000. p. 377. [Link]
3. Pibumrung P, Gajaseni N, Popan A. Profiles of carbon stocks in forest, reforestation and agricultural land, Northern Thailand. J For Res. 2008;19(1):11-8. [Link] [DOI:10.1007/s11676-008-0002-y]
4. Abbas F, Hammad HM, Fahad Sh, Cerdà A, Rizwan M, Farhad W, et al. Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios - a review. Environ Sci Pollut Res. 2017;24(12):11177-91. [Link] [DOI:10.1007/s11356-017-8687-0]
5. Lozano-García B, Mu-oz-Rojas M, Parras-Alcántara L. Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Sci Total Environ. 2017;579:1249-59. [Link] [DOI:10.1016/j.scitotenv.2016.11.111]
6. Murthy IK, Gupta M, Tomar S, Munsi M, Tiwari R, Hegde GT, et al. Carbon sequestration potential of agroforestry systems in India. J Earth Sci Clim Change. 2013;4(1):1000131. [Link] [DOI:10.4172/2157-7617.1000131]
7. Sedjo RA. Forest carbon sequestration: Some issues for forest investments [Internet]. Washington DC: Resources for the Future; 2001 [cited 2017 Nov 25]. Available from: http://bit.ly/2CclvHZ [Link]
8. Federici S, Vitullo M, Tulipano S, De Lauretis R, Seufert G. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: The Italian case. iForest - Biogeosci For. 2008;1(2):86-95. [Link] [DOI:10.3832/ifor0457-0010086]
9. Lal R. Forest soils and carbon sequestration. For Ecol Manag. 2005;220(1-3):242-58. [Link]
10. Kim M, Lee WK, Kurz WA, Kwak DA, Morken S, Smyth CE, et al. Estimating carbon dynamics in forest carbon pools under IPCC standards in South Korea using CBM-CFS3. iForest - Biogeosci For. 2016;10(1):83-92. [Link] [DOI:10.3832/ifor2040-009]
11. Sferlazza S, Maetzke FG, Iovino M, Baiamonte G, Palmeri V, La Mela Veca DS. Effects of traditional forest management on carbon storage in a Mediterranean holm oak (Quercus ilex L.) coppice. iForest - Biogeosci For. 2018;11(2):344-51. [Link]
12. Guo LB, Gifford RM. Soil carbon stocks and land use change: A meta analysis. Glob Change Biol. 2002;8(4):345-60. [Link] [DOI:10.1046/j.1354-1013.2002.00486.x]
13. Khormali F, Ajami M, Ayoubi S, Srinivasarao Ch, Wani SP. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agric Ecosyst Environ. 2009;134(3-4):178-89. [Link] [DOI:10.1016/j.agee.2009.06.017]
14. Jafari Z, Mesri S. Soil carbon sequestration capacity in different land uses (Case study: Award watershed in Mazandaran province). Environ Resour Res. 2015;3(2):139-49. [Link]
15. Sierra CA, Del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For Ecol Manag. 2007;243(2-3):299-309. [Link]
16. Oubrahim H, Boulmane M, Bakker MR, Augusto L, Halim M. Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco. iForest - Biogeosci For. 2015;9(1):125-37. [Link] [DOI:10.3832/ifor1364-008]
17. Jafarnia Sh, Akbarinia M, Hosseinpour B, Modarres Sanavi SAM, Salami SA. Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iForest - Biogeosci For. 2018;11(2):212-20. [Link] [DOI:10.3832/ifor2496-010]
18. Jazirehi MH, Ebrahimi Rostaghi M. Silviculture in Zagros. Tehran: University of Tehran; 2003. [persian] [Link]
19. Ahmadi R, Kiadaliri H, Mataji A, Kafaki S. Oak forest decline zonation using AHP model and GIS technique in Zagros forests of Ilam province. J Biodivers Environ Sci. 2014;4(3):141-50. [Link]
20. Talebi M, Sagheb Talebi Kh, Jahanbazi Goojani H. Site demands and some quantitative and qualitative characteristics of Persian oak (Quercus brantii Lindl.) in Chaharmahal & Bakhtiari province (Western Iran). Iran J For Poplar Res. 2006;14(1):67-79. [Persian] [Link]
21. Pourbabaei H, Cheraghi R, Ebrahimi SS. The study of woody species structure and diversity in the Persian oak (Quercus brantii Lindl.) Site, Dashtak, Yasouj, Western Iran. J Zagros For Res. 2015;2(1):1-17. [Persian] [Link]
22. Attarod P, Sadeghi SMM, Taheri Sarteshnizi F, Saroyi S, Abbasian P, Masihpoor M, et al. Meteorological parameters and evapotranspiration affecting the Zagros forests decline in Lorestan province. Iran J For Range Prot Res. 2015;13(2):97-112. [Persian] [Link]
23. Asgari H.A. The economic - accounting valuation of oak forests in Ilam province. J Nat Resour Econ. 2013;(2):77-88. [persian] [Link]
24. Haidari M, Namiranian M, Zobeiri M, Ghahramany L. Evaluation of different sampling method to study of tree density (tree/hectare) in the Zagros forest. Int J Adv Biol Biomed Res. 2013;1(1):11-7. [Link]
25. Chen X, Zhang X, Zhang Y, Wan C. Carbon sequestration potential of the stands under the grain for green program in Yunnan province, China. For Ecol Manag. 2009;258(3):199-206. [Link] [DOI:10.1016/j.foreco.2008.07.010]
26. Karamshahi A, Karami A, Mohammadi G. Offering structure quantitative spatial analysis model of Persian oak species in two types of high forest and coppice of West oak forests (Case study: Karzan forests, Ilam province). For Res Dev. 2016;2(3):205-18. [Persian] [Link]
27. Li Q, Tang LN, Ren Y. Temporal dynamics and spatial variations of forest vegetation carbon stock in Liaoning Province, China. J For Res. 2011;22(4):519-25. [Link] [DOI:10.1007/s11676-011-0195-3]
28. Xiuyun W, Yujun S. Review on research and estimation methods of carbon storage in forest ecosystem. World For Res. 2008;21(5):24-9. [Chinese] [Link]
29. Jenkins JC Chojnacky DC, Heath LS, Birdsey RA. Comprehensive database of diameter-based biomass regressions for North American tree species [Internet]. Washington DC: United States Department of Agriculture; 2004 [cited 2017 Aug 11]. Available from: https://www.fs.usda.gov/treesearch/pubs/7058 [Link] [DOI:10.2737/NE-GTR-319]
30. Zobeiry M. Forest inventory (measurement of tree and forest). Tehran: University of Tehran; 1994. p. 305. [Persian] [Link]
31. Zhang H, Wang K, Zeng Zh, Du H, Zeng F. Biomass and carbon sequestration by Juglans regia plantations in the Karst regions of Southwest China. Forests. 2017;8(4):103. [Link] [DOI:10.3390/f8040103]
32. Iranmanesh Y, Sagheb Talebi Kh, Sohrabi H, Jalali SGA, Hosseini SM. Biomass and carbon stocks of brant's oak (Quercus brantii Lindl.) in two vegetation forms in Lordegan, Chaharmahal & Bakhtiari forests. Iran J For Poplar Res. 2014;22(4):749-62. [Persian] [Link]
33. Ponce-Hernandez R. Assessing carbon stocks and modeling win-win scenarios of carbon sequestration through land-use changes [Internet]. Rome: Food and Agriculture Organization of the United Nations; 2004 [cited 2017 Sep 21]. Available from: http://www.fao.org/3/y5490e/y5490e00.htm [Link]
34. Gupta DK, Bhatt RK, Keerthika A, Shukla AK, Noor Mohamed MB, Jangid BL. Wood specific gravity of trees in hot semi-arid zone of India: Diversity among species and relationship between stem and branches. Curr Sci. 2017;113(8):1597-600. [Link] [DOI:10.18520/cs/v113/i08/1597-1600]
35. Mac Dicken KG. A guide to monitoring carbon storage in forestry and agroforestry projects [Internet]. Washington DC: Winrock International Institute for Agricultural Development; 1997 [cited 2017 Oct 15]. Available from: https://books.google.com/books?id=dVp6PwAACAAJ&dq [Link]
36. Askari Y, Soltani A, Akhavan R, Tahmasebi Kohyani P. Assessment of root-shoot ratio biomass and carbon storage of Quercus brantii Lindl. in the central Zagros forests of Iran. J For Sci. 2017;63(6):282-9. [Link] [DOI:10.17221/122/2015-JFS]
37. Brown S, Lugo AE. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica. 1982;14(3):161-87. [Link] [DOI:10.2307/2388024]
38. Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, et al, editors. Good practice guidance for land use, land-use change and forestry [Internet]. Hayama: Institute for Global Environmental Strategies (IGES); 2003 [cited 2018 Feb 20]. Available from: https://www.ipcc nggip.iges.or.jp/public/gpglulucf/gpglulucf.html [Link]
39. Allen SE, Grimshaw HM, Rowland AP. Chemical analysis. In: Moore PD, Chapman SB. Methods in plant ecology. London: Blackwell Scientific; 1986. pp. 285-344. [Link]
40. Sariyildiz T, Savaci G, Sevinç Kravkaz I. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in Northwestern Turkey. iForest - Biogeosci For. 2015;9(1):165-70. [Link] [DOI:10.3832/ifor1567-008]
41. Gee GW, Bauder JW. Particle-size analysis. In: Klute A, editor. Methods of soil analysis: Physical and mineralogical methods. 2nd Edition. Madison WI: American Society of Agronomy; 1986. pp. 383-411. [Link]
42. Bremner JM, Mulvaney CS. Nitrogen total. In: Page AL. Methods of soil analysis: Chemical and microbiological properties. 2nd Edition. Klute A, Page AL, editors. Madison WI: American Society of Agronomy; 1982. pp. 595-624. [Link]
43. Black G, Hartge K. Bulk density. In: Klute A, editor. Methods of soil analysis: Physical and mineralogical methods. 2nd Edition. Madison WI: American Society of Agronomy; 1986. pp. 347-80. [Link]
44. Walkley A, Armstrong Black I. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29-38. [Link] [DOI:10.1097/00010694-193401000-00003]
45. Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, et al. Spatial distribution of soil organic carbon stocks in France. Biogeosciences. 2011;8(5):1053-65. [Link] [DOI:10.5194/bg-8-1053-2011]
46. Haidari M, Namiranian M, Gahramani L, Zobeiri M, Shabanian N. Study of vertical and horizontal forest structure in Northern Zagros forest (Case study: West of Iran, oak forest). Eur J Exp Biol. 2013;3(1):268-78. [Link]
47. Pato M, Salehi A, Zahedi Amiri Q, Banj Shafiei A. Estimating the amount of carbon storage in biomass of different land uses in Northern Zagros forest. Iran J For. 2017;9(2):159-70. [Persian] [Link]
48. Peichl M, Altaf Arain M. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol. 2006;140(1-4):51-63. [Link] [DOI:10.1016/j.agrformet.2006.08.004]
49. Terakunpisut J, Gajaseni N, Ruankawe N. Carbon sequestration potential in aboveground biomass of Thong Pha Phum national forest, Thailand. Appl Ecol Environ Res. 2007;5(2):93-102. [Link] [DOI:10.15666/aeer/0502_093102]
50. Gairola S, Sharma CM, Ghildiyal SK, Suyal S. Live tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Curr Sci. 2011;100(12):1862-70. [Link]
51. Justine MF, Yang W, Wu F, Tan B, Khan MN, Zhao Y. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze river. Forests. 2015;6(10):3665-82. [Link] [DOI:10.3390/f6103665]
52. Saeedi S. Comparison of biomass and carbon sequestration of standing volume in seed, coppice and mixed (seed and coppice) originated Persian oak stands [Dissertation]. Ilam: Ilam University; 2017. [persian] [Link]
53. Marziliano PA, Coletta V, Menguzzato G, Nicolaci A, Pellicone G, Veltri A. Effects of planting density on the distribution of biomass in a douglas-fir plantation in Southern Italy. iForest - Biogeosci For. 2014;8(3):368-76. [Link] [DOI:10.3832/ifor1078-007]
54. Askari Y, Soltani A, Akhavan R, Tahmasebi Kohyani P. Comparison between above- and below-ground biomass and carbon stocks of Quercus brantii in central and South Zagrosian forests. Inst Integr Omics Appl Biotechnol J. 2016;7(4):30-7. [Link]
55. Bhat JA, Iqbal K, Kumar M, Negi AK, Todaria NP. Carbon stock of trees along an elevational gradient in temperate forests of Kedarnath Wildlife Sanctuary. For Sci Pract. 2013;15(2):137-43. [Link] [DOI:10.1007/s11632-013-0210-1]
56. Dar JA, Sundarapandian S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ Monit Assess. 2015;187(2):55. [Link] [DOI:10.1007/s10661-015-4299-7]
57. Hoover CM, Birdsey RA, Heath LS, Stout SL. How to estimate carbon sequestration on small forest tracts estimate carbon sequestration on small forest tracts. J For. 2000 Sep:13-9. [Link]
58. Baishya R, Barik SK, Upadhaya K. Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in Northeast India. Trop Ecol. 2009;50(2):295-304. [Link]
59. Proietti P, Sdringola P, Brunori A, Ilarioni L, Nasini L, Regni L, et al. Assessment of carbon balance in intensive and extensive tree cultivation systems for oak, olive, poplar and walnut plantation. J Clean Prod. 2016;122(Pt 4):2613-24. [Link] [DOI:10.1016/j.jclepro.2015.10.009]
60. Alinejadi S, Basiri R, Tahmasebi Kohyani P, Askari Y, Moradi M. Estimation of biomass and carbon sequestration in various forms of Quercus brantii Lindl. stands in Balout Boland, Dehdez. Iran J For. 2016;8(2):129-39. [Persian] 64- Bordbar SK, Mortazavi Jahromi SM. Carbon sequestration potential of Eucalyptus comaldulensis Dehnh. and Acacia salicina Lindl. plantation in Western areas of Fars province. Pajouhesh & Sazandegi. 2006;(70):95-103. [Persian] 65- Han F, Hu W, Zheng J, Du F, Zhang X. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma. 2010;154(3-4):261-6. [Link]
61. Garkoti SC. Estimates of biomass and primary productivity in a high-altitude maple forest of the West central Himalayas. Ecol Res. 2008;23(1):41-9. [Link] [DOI:10.1007/s11284-007-0355-2]
62. Abdipour M, Hoseini SM, Kaboli H, Kia Kianian M. Effects of land use change on carbon sequestration: A case study in Shahmirzad walnut orchard, Semnan, Iran. Res J Soil Biol. 2015;7(1):1-12. [Link] [DOI:10.3923/rjsb.2015.1.12]
63. Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, et al. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Change Biol. 2012;18(7):2233-45. [Link] [DOI:10.1111/j.1365-2486.2012.02699.x]
64. Bordbar SK, Mortazavi Jahromi SM. Carbon sequestration potential of Eucalyptus comaldulensis Dehnh. and Acacia salicina Lindl. plantation in Western areas of Fars province. Pajouhesh & Sazandegi. 2006;(70):95-103. [Persian] [Link]
65. Han F, Hu W, Zheng J, Du F, Zhang X. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma. 2010;154(3-4):261-6. [Link] [DOI:10.1016/j.geoderma.2009.10.011]
66. Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, et al. Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci. 2008;171(1):27-35. [Link] [DOI:10.1002/jpln.200700051]
67. Li Z, Liu C, Dong Y, Chang X, Nie X, Liu L, et al. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China. Soil Tillage Res. 2017;166:1-9. [Link] [DOI:10.1016/j.still.2016.10.004]
68. Garten Jr CT. Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA. Biomass Bioenergy. 2002;23(2):93-102. [Link] [DOI:10.1016/S0961-9534(02)00033-8]
69. Haghdoust N, Akbarinia M, Hosseini SM, Varamesh S. Effects of substitution of degraded natural forests with plantations on soil carbon sequestration and fertility in North of Iran. J Environ Stud. 2012;38(3):135-46. [Persian] [Link]
70. Mohanraj R, Saravanan J, Dhanakumar S. Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. iForest - Biogeosci For. 2011;4(2):61-5. [Link] [DOI:10.3832/ifor0568-004]
71. Varamesh S, Hosseini SM, Sefidi K. Assessment of carbon sequestration content in biomass, Robinia arizonica stands around Tehran. J Environ Sci Technol. 2015;16:343-52. [Persian] 74- Dicus CA, Dean TJ. Stand density effects on biomass allocation patterns and subsequent soil nitrogen demand. Ninth Biennial Southern Silvilcultural Research Conference, Clemson, 25-27 Feb, 1997. Asheville NC: USDA, Forest Service, Southern Research Station; 1998. p. 564-8. [Link]
72. Eslamdoust J, Sohrabi H. Carbon storage in biomass, litter, and soil of different native and introduced fast-growing tree plantation in the South Caspian Sea. J For Res. 2018;29(2):449-57. [Link] [DOI:10.1007/s11676-017-0469-5]
73. Gao Y, Cheng J, Ma Z, Zhao Y, Su J. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of Northwest China. Ann For Sci. 2014;71(4):427-35. [Link] [DOI:10.1007/s13595-013-0355-z]
74. 74- Dicus CA, Dean TJ. Stand density effects on biomass allocation patterns and subsequent soil nitrogen demand. Ninth Biennial Southern Silvilcultural Research Conference, Clemson, 25-27 Feb, 1997. Asheville NC: USDA, Forest Service, Southern Research Station; 1998. p. 564-8. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.