Volume 7, Issue 1 (2019)                   ECOPERSIA 2019, 7(1): 29-37 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Faraji F, Alijanpour A, Sheidai Karkaj E, Motamedi J. Effect of Fire and Rangeland Banqueting on Soil Carbon Sequestration in Atbatan Summer Rangelands, East Azerbaijan Province. ECOPERSIA 2019; 7 (1) :29-37
URL: http://ecopersia.modares.ac.ir/article-24-25574-en.html
1- Range & Watershed Management Department, Natural Resources Faculty, Urmia University, Urmia, Iran
2- Forestry Department, Natural Resources Faculty, Urmia University, Urmia, Iran
3- Range & Watershed Management Department, Natural Resources Faculty, Urmia University, Urmia, Iran , esmaeil_sheidayi@yahoo.com
4- Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
Abstract:   (7146 Views)

Aims: In recent years, global warming has increased the importance of carbon sequestration. The present study was conducted to survey the effect of banqueting and fire on soil organic carbon (SOC) sequestration in Atbatan rangelands of Bostanabad District.
Materials & Methods: For this purpose, using systematic-random strategy, composite soil samples were taken from fire happened 2 years ago (in 2 aspects of east and west), banqueting constructed 25 years ago (in 2 aspects of north and south), and control sites. The SOC was measured and results were analyzed, using two-way ANOVA.
Findings: On the contrary of interaction effect, the main effects of aspect and fire were significant on SOC. The SOC of the control site with 28.9 t/ha was higher than the fire site with 21.76 t/ha. The average SOC in the eastern aspect was higher than the western aspect as such the average amount of SOC in western and eastern aspects were 28.94 t/ha and 21.72 t/ha, respectively. Banqueting had an increasing significant effect on SOC, as such SOC of the treatment site was 34.47 t/ha compared to the control site with 22.21 t/ha. The SOC in the northern and southern aspects was not significantly different, and the SOC of southern and northern aspects equaled 28.45 t/ha and 28.23 t/ha, respectively.
Conclusion: In conclusion, according to the results of the study, the occurrence of fire in rangelands can reduce the amount of SOC. The rangeland banqueting increases the amount of SOC in both aspects.
 

Full-Text [PDF 460 kb]   (1373 Downloads)    
Article Type: Original Research | Subject: Terrestrial Ecosystems
Received: 2018/09/27 | Accepted: 2018/11/5 | Published: 2019/01/20
* Corresponding Author Address: Range & Watershed Management Department, Natural Resources Faculty, Urmia University, 11 Kilometer of Daneshgah Boulevard, Urmia, West Azerbaijan Province, Iran. Postal Code: 5756151818

References
1. Azarnivand H, Zare Chahuki MA. Range improvement. Tehran: University of Tehran; 2008. [Persian] [Link]
2. Jangju M. Improvement and development of rangeland. Mashhad: Academic Center for Education Culture and Research; 2009. [Persian] [Link]
3. Lu D, Moran E, Mausel P. Linking Amazonian secondary succession forest growth to soil properties. Land Degrad Dev. 2002;13(4):331-43. [Link] [DOI:10.1002/ldr.516]
4. Aradóttir ÁL, Svavarsdóttir K, Jónsson ÞH, Guðbergsson G. Carbon accumulation in vegetation and soils by reclamation of degraded areas. Icel Agric Sci. 2000;13:99-113. [Link]
5. Jahantigh M, Pessarakli M. Utilization of contour furrow and pitting techniques on desert rangelands: Evaluation of runoff, sediment, soil water content and vegetation cover. J Food Agric Environ. 2009;7(2):736-9. [Link]
6. Rich TD. Effects of contour furrowing on soils, vegetation and grassland breeding birds in North Dakota. In: John Ralph C, Rich TD, Pacific Southwest Research Station. Bird conservation implementation and integration in the Americas: Proceedings of the Third International Partners in Flight Conference, March 20-24, 2002, Asilomar, California. 1st Volume. Albany CA: USDA Forest Service Pacific Southwest Research Station; 2005. pp. 496-503. [Link]
7. Li WQ, Xiao-Jing L, Ajmal Khan M, Gul B. Relationship between soil characteristics and halophytic vegetation in coastal region of North China. Pak J Bot. 2008;40(3):1081-90. [Link]
8. Gammoh IA. A mechanized system for establishment of forage shrubs in water harvesting micro-catchment structures. Int J Bot. 2011;7(2):145-53. [Link] [DOI:10.3923/ijb.2011.145.153]
9. Niknahad Gharmakher H, Jafari Foutami I, Sharifi A. Effects of grazing exclusion on plant productivity and carbon sequestration (Case study: Gomishan rangelands, Golestan province, Iran). J Rangel Sci. 2015;5(2):122-34. [Link]
10. Akhzari D, Pessarakli M, Mahmoodi F, Farokhzadeh B. Effects of grazing and fire on soil and vegetation properties in a semi-arid rangeland. Ecopersia. 2015;3(1):901-16. [Link]
11. Naseri S, Tavakoli H, Jafari M, Arzani H. Impacts of rangeland reclamation and management on carbon stock in North East of Iran (Case study: Kardeh basin, Mashhad, Iran). J Rangel Sci. 2016;6(4):320-33. [Link]
12. Singh G, Khan AU, Kumar A, Bala N, Tomar U K. Effects of rainwater harvesting and afforestation on soil properties and growth of Emblica officinalis while restoring degraded hills in Western India. Afr J Environ Sci Technol. 2012;6(8):300-11. [Link] [DOI:10.5897/AJEST11.040]
13. Kashi H, Abdipoor M, Arastoo B. Impacts of land use changes on soil carbon and nitrogen stocks (Case study: Shahmirzad lands, Semnan province, Iran). J Rangel Sci. 2016;6(2):156-67. [Link]
14. Ehsani SM, Sheidai Karkaj E, Alilou F. Variation of carbon sequestration in Halocnemum strobilaceum and soil under livestock grazing (Case study: Salt lands of Golestan province, Iran). Ecopersia. 2017;5(3):1875-86. [Link]
15. Foster CN, Barton PS, Robinson NM, MacGregor CI, Lindenmayer DB. Effects of a large wildfire on vegetation structure in a variable fire mosaic. Ecol Appl. 2017;27(8):2369-81. [Link] [DOI:10.1002/eap.1614]
16. Badía D, Martí C, Aguirre AJ, Aznar JM, González-Pérez JA, De la Rosa JM, et al. Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil. Catena. 2014;113:267-75. [Link] [DOI:10.1016/j.catena.2013.08.002]
17. Mesdaghi M. Rangeland management in Iran. 2nd ed. Mashhad: Imam Reza International University; 2003. [Persian] [Link]
18. Thomey ML, Ford PL, Reeves MC, Finch DM, Litvak ME, Collins SL. Climate change impacts on future carbon stores and management of warm deserts of the United States. Rangel. 2014;36(1):16-24. [Link] [DOI:10.2111/RANGELANDS-D-13-00045.1]
19. Mortenson MC, Schuman GE, Ingram LJ. Carbon sequestration in rangelands interseeded with yellow-flowering alfalfa (Medicago sativa ssp. falcata). Environ Manag. 2004;33 Suppl 1:S475-81. [Link] [DOI:10.1007/s00267-003-9155-9]
20. Attaeian B. Estimation of aboveground biomass carbon sequestration potential in the rangeland ecosystems of Iran. Ecopersia. 2016;4(1):1283-94. [Link] [DOI:10.18869/modares.ecopersia.4.1.1283]
21. Gómez-Rey MX, Couto-Vázquez A, García-Marco S, González-Prieto SJ. Impact of fire and post-fire management techniques on soil chemical properties. Geoderma. 2013;195-196:155-64. [Link] [DOI:10.1016/j.geoderma.2012.12.005]
22. García-Corona R, Benito E, de Blas E, Varela ME. Effects of heating on some soil physical properties related to its hydrological behavior in two north-western Spanish soils. Int J Wildland Fire. 2004;13(2): 195-9. [Link] [DOI:10.1071/WF03068]
23. Thornley JH, Cannell MG. Long-term effects of fire frequency on carbon storage and productivity of boreal forests: A modeling study. Tree Physiol. 2004;24(7):765-73. [Link] [DOI:10.1093/treephys/24.7.765]
24. Pathak K, Jyoti Nath A, Sileshi GW, Lal R, Kumar Das A. Annual burning enhances biomass production and nutrient cycling in degraded Imperata grasslands. Land Degrad Dev. 2017;28(5):1763-71. [Link] [DOI:10.1002/ldr.2707]
25. González-Pérez JA, González-Vila FJ, Almendros G, Knicker H. The effect of fire on soil organic matter--a review. Environ Int. 2004;30(6):855-70. [Link] [DOI:10.1016/j.envint.2004.02.003]
26. Blake GR. Bulk density. In: Blake CA. Methods of soil analysis, part 1: Physical and mineralogical properties, including statistics of measurement and sampling. Blake CA, editor. Madison WI: American Society of Agronomy; 1965. pp. 374-90. [Link]
27. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Sparks L. Methods of soil analysis, part 3: Chemical methods. Soil Science Society of America, American Society of Agronomy, editors. Madison WI: Soil Science Society of America; 1996. pp. 961-1010. [Link]
28. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123(1-2):1-22. [Link] [DOI:10.1016/j.geoderma.2004.01.032]
29. Ellert BH, Bettany JR. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci. 1995;75(4): 529-38. [Link] [DOI:10.4141/cjss95-075]
30. Tian G, Granato TC, Cox AE, Pietz RI, Carlson CR Jr, Abedin Z. Soil carbon sequestration resulting from long term application of biosolids for land reclamation. J Environ Qual. 2009;38(1):61-74. [Link] [DOI:10.2134/jeq2007.0471]
31. Deng L, Sweeney S, Shangguan Z. Long-term effects of natural enclosure: Carbon stocks, sequestration rates and potential for grassland ecosystems in the Loess Plateau. Clean Soil Air Water. 2014;42(5):617-25. [Link] [DOI:10.1002/clen.201300176]
32. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, et al. Fire in the earth system. Science. 2009;324(5926):481-4. [Link] [DOI:10.1126/science.1163886]
33. Mataix-Solera J, Cerdà A, Arcenegui V, Jordán A, Zavala LM. Fire effects on soil aggregation: A review. Earth Sci Rev. 2011;109(1-2):44-60. [Link] [DOI:10.1016/j.earscirev.2011.08.002]
34. Abril A, Barttfeld P, Bucher EH. The effect of fire and overgrazing disturbers on soil carbon balance in the Dry Chaco forest. For Ecol Manag. 2005;206(1-3):399-405. []
35. Neff JC, Harden JW, Gleixner G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can J For Res. 2005;35(9):2178-87. [Link] [DOI:10.1139/x05-154]
36. Granged AJP, Jordán A, Zavala LM, Mu-oz-Rojas M, Mataix-Solera J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma. 2011;167-168:125-34. [] [DOI:10.1016/j.geoderma.2011.09.011]
37. Certini G. Effects of fire on properties of forest soils: A review. Oecologia. 2005;143(1):1-10. [Link] [DOI:10.1007/s00442-004-1788-8]
38. Verma S, Jayakumar S. Impact of forest fire on physical, chemical and biological properties of soil: A review. Proc Int Acad Ecol Environ Sci. 2012;2(3)168-76. [Link]
39. Fernández I, Cabaneiro A, Carballas T. Carbon mineralization dynamics in soils after wildfires in two Galician forests. Soil Biol Biochem. 1999;31(13):1853-65. [Link] [DOI:10.1016/S0038-0717(99)00116-9]
40. Nazari F, Hosseini V, Shabanian N. Effect of fire severity on organic carbon, total nitrogen and available phosphorus of forest soils (Case study: Marivan). Iran J For Poplar Res. 2012;20(1):25-37. [Persian] [Link]
41. Augustine DJ, Brewer P, Blumenthal DM, Derner JD, von Fischer JC. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland. J Arid Environ. 2014;104: 59-66. [Link] [DOI:10.1016/j.jaridenv.2014.01.022]
42. Wiedinmyer C, Hurteau MD. Prescribed fire as a means of reducing forest carbon emissions in the Western United States. Environ Sci Technol. 2010;44(6):1926-32. [Link] [DOI:10.1021/es902455e]
43. Hebel CL, Smith JE, Cromack K. Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Appl Soil Ecol. 2009;42:150-9. [Link] [DOI:10.1016/j.apsoil.2009.03.004]
44. Whelan A, Mitchell R, Staudhammer C, Starr G. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems. PLoS One. 2013;8(1):e54045. [Link] [DOI:10.1371/journal.pone.0054045]
45. Zhao H, Tong DQ, Lin Q, Lu X, Wang G. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma. 2012;189-190:532-9. [Link] [DOI:10.1016/j.geoderma.2012.05.013]
46. Jones R, Chambers JC, Johnson DW, Blank RR, Board DI. Effect of repeated burning on plant and soil carbon and nitrogen in cheatgrass (Bromus tectorum) dominated ecosystems. Plant Soil. 2015;386(1-2):47-64. [Link] [DOI:10.1007/s11104-014-2242-2]
47. Naghipour borj AA, Farokhnia S. The effect of fire on carbon sequestration of soil and plant biomass in Semi-Steppe rangelands of Central Zagros region, Iran. J Plant Ecosyst Cons. 2017;5(10):39-51. [Persian] [Link]
48. Post WM, Kwon KC. Soil carbon sequestration and land-use change: Processes and potential. Glob Chang Biol. 2000;6(3):317-27. [Link] [DOI:10.1046/j.1365-2486.2000.00308.x]
49. Mofidi M, Jafari M, Tavili A, Alijanpour A. Effect of Three rangeland improvement practices on vegetation properties in Emam Kandi Rangelands, Urmia. Watershed Manag Res. 2017;29(4):30-9. [Link]
50. Tavakoli H. Potential of carbon sequestration of Hammada salicornica vegetation type in desert areas (Case study: South Khorasan, Iran). J Rangel Sci. 2016;6(1):24-32. [Link]
51. Yousefian M, Mahdavi Kh, Mahdavi M, Tamartash R. Evaluation of enclosure effects on soil carbon storage (Case study: Rangeland of Shahtappeh-Chah Mahmood and Chiro in Semnan province). J Rangel Sci. 2011;2(1):439-48. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.