Volume 6, Issue 3 (2018)                   IQBQ 2018, 6(3): 171-178 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azizi S, Kazemi Sangdehi A, Tabari Kouchaksaraei M. Effect of Salinity on Growth and Gas Exchanges in Seedlings of Pinus nigra Subsp. Pallasiana . IQBQ. 2018; 6 (3) :171-178
URL: http://journals.modares.ac.ir/article-24-16046-en.html
1- Forestry Department, Natural Resources & Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
2- Forestry Department, Natural Resources & Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran , mtabari@modares.ac.ir
Abstract:   (205 Views)
Aims: Salinity, due to its remarkable effects on physiology and performance of plant is considered as a world major problem in arid zone ecosystems. Pinus nigra subspecies pallasiana is known as a nurse and pioneer species. The aims of this study were to determine growth responses and gas exchanges of the seedlings of Pinus nigra subspecies under different salinity stress in the greenhouse environment.
Materials and Methods: In this experimental Study, Seedlings of Pinus nigra was investigated under salinity stress in 6 NaCl levels including 0, 50, 100, 150, 200 and 250mM as completely randomized design in greenhouse conditions. Height and diameter growth and gas exchanges parameters were determined in day 90 (August) and biomass allocations in day 150 (November). For data analysis One-Way ANOVA, Duncan’s test and SPSS 19 software were used.
Findings: The highest survival appeared in zero and 50mM with 100 and 93.33%, respectively. Salinity stress decreased survival, height and diameter growth and also biomass of root, shoot, root:shoot and total of seedling. With increasing salinity, photosynthesis, stomatal conductance, transpiration reduced. Higher survival, better growth and gas exchanges were detected below 50mM NaCl salinity.
Conclusion: Salinity has adverse effects on growth and gas exchanges of P. nigra seedlings during the studied period. Survival in 50mM NaCl has a high percentage, but in higher salt concentrations (200 and 250mM NaCl) it drastically reduce. Similarly, decrease in seedling performance was found in severe salinity levels. This species has a relatively good resistance to 50mM NaCl.
Full-Text [PDF 382 kb]   (43 Downloads)    
Article Type: مقاله Ø§Ø³ØªØ®Ø±Ø§Ø Ø´Ø¯Ù‡ از پایان نامه |
Received: 2018/01/19 | Accepted: 2018/07/7 | Published: 2018/08/25
* Corresponding Author Address: Forestry Department, Natural Resources & Marine Sciences Faculty, Tarbiat Modares University, Imam Reza Street, Noor, Mazandaran, Iran. Postal Code: 4641776489

1. Kafi d. Agricultural forage halophytic: Strategies for plant, soil and water management. Mashhad: Ferdowsi University of Mashhad. 2011; p. 384. [Persian] [Link]
2. Shannon MC, Rhoades JD, Draper JH, Scardaci SC, Spyres MD. Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Sci. 1997;38(2):394-8. [Link] [DOI:10.2135/cropsci1998.0011183X003800020021x]
3. Hosseini Nasr SM, Kiani Savadkoohi S, Ahmadi E. Investigation of salinity impacts on germination and growth of two forest tree species at seedling stage. J For Res. 2013;24(4):703-8. [Link] [DOI:10.1007/s11676-013-0407-0]
4. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239-50. [Link] [DOI:10.1046/j.0016-8025.2001.00808.x]
5. Gu J, Weina L, Akinnagbe A, Wang J, Jia L, Yang M. Effect of salt stress on genetic diversity of Robinia pseudoacacia seedlings. Afr J Biotechnol. 2012;11(8):1838-47. [Link] [DOI:10.5897/AJB11.1369]
6. Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann Bot. 2009;103(4):551-60. [Link] [DOI:10.1093/aob/mcn125]
7. Bray WA, Lawrence AL, Leung-Trujillo JR. The effect of salinity on growth and survival of Penaeus vannamei, with observations on the interaction of IHHN virus and salinity. Aquaculture. 1994;122(2-3):133-46. [Link] [DOI:10.1016/0044-8486(94)90505-3]
8. Medrano H, Escalona JM, Bota J, Gulías J, Flexas J. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann Bot. 2002;89 Spec No:895-905. [Link] [DOI:10.1093/aob/mcf079]
9. Da Silva EC, Nogueira RJMC, De Araújo FP, De Melo NF, De Azevedo Neto AD. Physiological responses to salt stress in young umbu plants. Environ Exp Bot. 2008;63(1-3):147-57. [Link] [DOI:10.1016/j.envexpbot.2007.11.010]
10. Abdel Latef AA. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Commun. 2010;38(1):43-55. [Link] [DOI:10.1556/CRC.38.2010.1.5]
11. Croser C, Renault S, Franklin J, Zwiazek J. The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environ Pollut. 2001;115(1):9-16. [Link] [DOI:10.1016/S0269-7491(01)00097-5]
12. Kayama M, Quoreshi AM, Kitaoka S, Kitahashi Y, Sakamoto Y, Maruyama Y, et al. Effects of deicing salt on the vitality and health of two spruce species, Picea abies Karst, and Picea glehnii Masters planted along roadsides in northern Japan. Environ Pollut. 2003;124(1):127-37. [Link] [DOI:10.1016/S0269-7491(02)00415-3]
13. Sadeghi H, Khavarinezhad RA, Falahian FA, Imanipour V. The effects of NaCl salinity on the growth and mineral uptake of Tehran pine (Pinus eldarica M.). Iran J Hortic Sci Technol. 2007;8(3):199-212. [Persion] [Link]
14. Jimenez-Casas M, Zwiazek JJ. Adventitious sprouting of Pinus leiophylla in response to salt stress. Ann For Sci. 2014;71(7):811-9. [Link] [DOI:10.1007/s13595-014-0379-z]
15. Agastain P, Kingsley SJ, Vivekandan M. Effect of salinity on photosynthesis and biochemical characteristics in Mulberry genotypes. Photosynthetica. 2000;38(2):287-90. [Link] [DOI:10.1023/A:1007266932623]
16. Cristiano G, Camposeo S, Fracchiolla M, Vivaldi GA, De Lucia B, Cazzato E. Salinity differentially affects growth and ecophysiology of two mastic tree (Pistacia lentiscus L.) accessions. Forests. 2016;7(8):156. [Link] [DOI:10.3390/f7080156]
17. Farjon A. A handbook of the world's conifers. 2nd Volume. Leiden: Brill; 2010; p. 526. [Link] [DOI:10.1163/9789047430629]
18. Pausas JG, Blade C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, et al. Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice – a review. Plant Ecol. 2004;171(1-2):209-20. [Link] [DOI:10.1023/B:VEGE.0000029381.63336.20]
19. Aminpour M, Etemad V, Namiranian M, Maroofi H. Investigation on the plantations in the Hassan Abad forest park of Sanandaj. Pajouhesh va Sazandegi. 2007;20(2):193-7. [Persian] [Link]
20. Yin C, Pang X, Chen K. The effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species. Environ Exp Bot. 2009;67(1):196-203. [Link] [DOI:10.1016/j.envexpbot.2009.06.003]
21. Baltzer JL, Thomas SC. Determinants of whole-plant light requirements in Bornean rain forest tree saplings. J Ecol. 2007;95(6):1208-21. [Link] [DOI:10.1111/j.1365-2745.2007.01286.x]
22. Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004;166(1):3-16. [Link] [DOI:10.1016/j.plantsci.2003.10.024]
23. Abdollahi P, Soltani A, Beigi Harchegani H. Evaluation of salinity tolerance in four suitable tree species in urban forestry. Iran J For Poplar Res. 2011;19(3):265-82. [Persian] [Link]
24. Sokhna Sarr M, Seiler JR, Sullivan J. Growth and physiology of Senegalia senegal (L.) Britton Seedlings as influenced by seed origin and salinity and fertility treatments. Forests. 2017;8(10):388. [Link] [DOI:10.3390/f8100388]
25. Zhang M, Fang Y, Ji Y, Jiang Z, Wang L. Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South Afr J Bot. 2013;85:1-9. [Link] [DOI:10.1016/j.sajb.2012.11.005]
26. Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci. 2005;45(2):437-48. [Link] [DOI:10.2135/cropsci2005.0437]
27. Fung LE, Wang SS, Altman A, Hütterman A. Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. For Ecol Manag. 1998;107(1-3):135-46. [Link]
28. Hafsi C, Lakhdhar A, Rabhi M, Debez A, Abdelly C, Ouerghi Z. Interactive effects of salinity and potassium availability on growth, water status, and ionic composition of Hordeum maritimum. J Plant Nutr Soil Sci. 2007;170(4):469-73. [Link] [DOI:10.1002/jpln.200625203]
29. Arshi A, Ahmad A, Aref IM, Igbal M. Effect of calcium against salinity-induced inhibition in growth, ion accumulation and prolin contents in Cichhorium intybus L. J Environ Biol. 2010;31(6):939-44. [Link]
30. Khoshbakht D, Ghorbani A, Baninasab B, Naseri LA, Mirzaei M. Effects of supplementary potassium nitrate on growth and gas-exchange characteristics of salt-stressed citrus seedlings. Photosynthetica. 2014;52(4):589-96. [Link] [DOI:10.1007/s11099-014-0068-z]
31. Abdul Jaleel C, Gopi R, Manivannan P, Panneerselvam R. Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. To paclobutrazol treatment under salinity. Acta Physiol Plant. 2007;29(3):205-9. [Link] [DOI:10.1007/s11738-007-0025-6]
32. Qiu DL, Lin P, Guo SZ. Effects of salinity on Leaf characteristics and CO2/H2O exchange of Kandelia candel (L.) Druce seedlings. J For Sci. 2007;53(1):13-9. [Link] [DOI:10.17221/2081-JFS]
33. Proiett, P. Effect of fruiting on leaf gas exchange in olive (Olea europea L.). Photosynthetica. 2000;38(3):397-402. [Link] [DOI:10.1023/A:1010973520871]
34. Sivritepe N, Ozkan Sivritepe H, Celik H, Katkat AV. Salinity responses of grafted grapevines: Effects of scion and rootstock genotypes. Notulae Botanicae Horti Agrobotanici Cluj Napoca. 2010;38(3):193-201. [Link]
35. Kaya C, Kirnak H, Higgs D. Enhancement of growth, and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars growth at high (NaCl) salinity. J Plant Nutr. 2001;24(2):357-67. [Link] [DOI:10.1081/PLN-100001394]
36. Hester MW, Mendelssohn IA, Mckee KL. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constrains. Environ Exp Bot. 2001;46(3):277-97. [Link] [DOI:10.1016/S0098-8472(01)00100-9]
37. Reina-Sánchez A, Romero-Aranda R, Cuartero J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water. Agric Water Manag. 2005;78(1-2):54-66. [Link] [DOI:10.1016/j.agwat.2005.04.021]

Add your comments about this article : Your username or Email:

Send email to the article author