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Aims: The main aim of this study was to assess the efficacy of two important signal processing 
approaches i.e., wavelet transform and ensemble empirical mode decomposition (EEMD) on 
the performance of the convolutional neural network (CNN). 
Materials & Methods: The study was performed in two watersheds i.e., the Kasilian and 
Bar-Erieh Watersheds. In the first step, the CNN-based runoff modeling was done in its single 
form i.e., using the original data as input. In the next step, the input data was decomposed into 
several different sub-components i.e., approximation and details using Wavelet transform and 
Intrinsic Mode Functions (IMFs) using EEMD. Then the decomposed data were imported to 
the CNN model as input and combined Wavelet-CNN and EEMD-CNN models were provided. 
Findings: The results showed that CNN in its single form could not estimate the one-day-
ahead runoff with acceptable accuracy. CNN in its original form had a moderate performance 
(with NRMSE of 83 and 66%). However, the application of Wavelet transform and EEMD in 
combination with CNN produced acceptable results. It was shown that Wavelet transform 
had a higher impact (with NRMSE of 48 and 26%) on the performance of CNN in comparison 
to EEMD (with NRMSE of 52 and 61%). 
Conclusion: This study showed that signal processing approaches can enhance the ability 
of deep learning methods such as CNN in predicting runoff values for one-day-ahead. 
However, the impact of signal processing methods on the performance of deep learning 
methods is not equal. 
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Introduction
Runoff forecasting is of paramount 
importance in water resource management, 
flood mitigation, drought mitigation, and 
ecosystem service assessment [1, 2, 3, 4, 5]. 
Accurate streamflow forecasting can help 
regional authorities to take appropriate 
strategies. Three main types of modeling 
approaches can be used for runoff forecasting 
i.e., empirical, conceptual, and physically 
based models [6, 7, 8, 9, 10]. Conceptual and 
physically based models usually consider 
the process of the phenomenon that is 
being modeled. They are robust models 
and generally produce acceptable results. 
However, these types of models are relatively 
complex and require a great deal of data [11]. 
Also, they encompass several parameters in 
their structure that should be calibrated. The 
huge number of variables and parameters 
can sometimes meaningfully increase 
the uncertainty in the modeling results. 
Empirical models are acceptable alternatives, 
especially in data-scarce conditions. These 
models which are also known as data-driven 
models such as regression artificial neural 
networks, support vector regression, and 
adaptive neuro-fuzzy inference systems 
explore the relation between runoff and 
some independent variables. These models 
are relatively simply applicable. Artificial 
intelligence methods are the most robust 
data-driven models. With the advent of 
strong computer processors, deep learning 
methods have been widely used in different 
fields, especially in hydrology [12, 13]. The main 
advantage of deep learning over traditional 
neural networks is related to its high level 
of complexity and higher depth of hidden 
layers. One of the most widely used deep 
learning methods is the convolutional neural 
network (CNN) which is developed based on 
the local connectivity idea.
The main problem with runoff modeling 
with artificial intelligence models is related 

to the non-stationarity of data. Artificial 
intelligence models usually cannot deal with 
highly non-stationary signals (time series) 
[14, 15, 16]. Signal processing approaches can be 
used to cope with this problem [17, 18]. Wavelet 
transform (WT) and Ensemble Empirical 
Mode Decomposition (EEMD) are the most 
widely used signal processing methods that 
can be used in conjunction with artificial 
intelligence methods. Different studies have 
assessed the effect of wavelet transform 
and EEMD on the performance of  artificial 
intelligence models to forecast runoff. 
Shoaib et al. (2014) [19] investigated the 
efficacy of some mother wavelets on the 
performance of the artificial neural network 
in runoff prediction. In this study, the hybrid 
MLP and SVR models have been processed 
using both continuous and discrete wavelet 
transformations. The performance of 92 
hybrid models was assessed in comparison 
with single and simple neural network 
models without any pre-processing. Their 
results showed that wavelet has a significant 
effect on the performance of neural network 
models. Wang et al. (2015) [20] proposed a 
combined artificial neural network (ANN) 
-Ensemble Empirical Mode Decomposition 
(EEMD) model for predicting medium and 
long-term runoff time series. In this study, 
first of all, the time series of runoff was 
decomposed into a limited and often small 
number of the IMFs and the remaining series 
were analyzed using the EEMD technique to 
gain deeper insights into data properties. In 
the next step, all IMFs and residuals were 
predicted by ANN models. Finally, the IMF 
prediction results were modeled and the 
remaining series were collected to provide 
an ensemble prediction for the main annual 
runoff series. The results showed that EEMD 
can effectively increase the forecast accuracy 
and the proposed EEMD-ANN model 
can achieve a significant improvement 
over the ANN approach in predicting 
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runoff time series. Shoaib et al. (2016) [21] 

investigated the effect of wavelet transform 
on the performance of Lagged Recurrent 
Neural Network (TLRNN) model in runoff 
forecasting. Single and hybrid models were 
then compared. The results showed that 
TLRNN models with wavelet transform 
can be used as a good alternative for static 
wavelet MLPNN models. Tan et al. (2018) [22] 
investigated the effect of the EEMD signal 
processing method on the performance 
of ANN models in runoff prediction. The 
results demonstrated that the hybrid EEMD-
ANN model outperformed the single ANN 
model. Mao et al. (2021) [12] examined the 
performance of artificial intelligence and 
common hydrological models in runoff 
modeling. The results showed that the 
artificial neural network model and LSTM 
had higher accuracies for monthly and daily 
time scales, respectively. 
Both WT and EEMD decompose the main 
variables into their sub-components. 
This decomposition can enhance the 
performance of data-driven models. In 
this regard two different watersheds 
i.e., the Kasilian Watershed and the Bar-
Erieh Watershed were selected to assess 

the efficacy of the signal processing 
approaches on the performance of deep 
learning methods for runoff forecasting. The 
selection of two different watersheds helps 
the generalizability of the results.  To the 
best of our knowledge, no research has been 
performed on the combination of WT and 
EEMD with a convolutional neural network 
for runoff forecasting. The main goal of this 
study was to compare the performance of the 
convolutional neural network in its simple 
form with the combined signal processing-
CNN models.

Materials & Methods
Study area and data
Two physically and climatologically 
different watersheds i.e., the Kasilian 
Watershed, and the Bar-Erieh Watershed 
were used to perform this study to increase 
the generalizability of the results. Figure 
1 shows the study area. Part A of Figure 1 
shows the Kasilian Watershed with an area, 
precipitation, slope, and elevation of 68km2, 
809mm, 15.8%, and 1691m, respectively 
[23]. Part B of Figure 1 shows the Bar-Erieh 
Watershed which covers an area of 113 
km2. The precipitation, slope, and elevation 

Figure 1) Location of the Kasilian and Bar-Erieh Watersheds in Iran.
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of this watershed are 330mm, 11.9%, and 
2226m, respectively. Important data i.e., 
rainfall, air temperature, evaporation, air 
humidity, wind speed, and discharge data 
were obtained in the first step. Climatic data 
as well as discharge with appropriate time 
lags (i.e., discharge for previous days) were 
used as input and the discharge for one-day-
ahead was used as the target in the modeling 
process. The modeling process is performed 
on a daily time scale and for 20 years. 
Deep learning model
The convolutional neural network was used 
in this study for daily runoff forecasting 
[24, 25 26, 27]. Convolutional Neural Network 
(CNN) has been used in different fields. [28] 
proposed the convolutional neural network 
and developed the LeNet-5 model for the 
first time. This method consists of three 
main layers namely convolutional, pooling, 
and fully-connected layers [15]. As Figure 
2 shows the CNN includes a series of 1D 
convolutional blocks, a Batch norm layer, 
ReLU activation functions, a max pooling 
1D layer, and finally fully connected layers. 
In the next step, the input variables and 
the result of convolutional blocks are 
concatenated and imported to the fully 
connected layer and the output is calculated 

[29, 11]. The convolution layer performs some 
mathematical operations by using filters on 
the data. The pooling layer performs a down-
sampling process. Max and average are two 

main pooling methods. The results of the 
pooling layer will pass the fully connected 
layer. The data were divided into two subsets 
i.e., train and test with a 70/30% ratio. 
70% of the data were used for training or 
calibration processes. The training process 
was performed in two steps consisting of a 
forward stage in which the input is passed 
completely through the network and the 
backward stage in which gradients are back-
propagated and weights are updated.
The combined signal processing-deep 
learning model
To provide combined signal processing-
deep learning models, the original datasets 
i.e., climatic and hydrometric data were 
decomposed using wavelet transform and 
EEMD signal processing methods. There 
are two main types of wavelet transforms 
i.e., continuous (CWT) and discrete (DWT) 
transforms. As the continuous wavelet 
transform provides a great deal of data, discrete 
wavelet transform was used in this study. 
Wavelet transforms as a linear transformation 
uses some base functions that are known as 
mother wavelets. The mother wavelets are 
used to extract different coefficients from the 
original signal (that are meteorological and 
hydrometric data here). DWT provides a high-
frequency component namely detail and a low-
frequency component namely approximation. 
Several different mother wavelets such as 
Daubechies (db2, db3, db4, db5, db6, db7, 

Figure 2) Schematic illustration of convolutional neural network (27).
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db8, db9, db10), Coiflet (coif1, coif2, coif3, 
coif4, coif5), Symlet (sym2, sym3, sym4, sym5, 
sym6, sym7, sym8) and Biorthogonal (bior1.3, 

bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, 
bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, 
bior4.4, bior5.5, bior6.8) were tested in order 
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Figure 3) The results of convolutional neural network runoff modeling. I) Kasilian Watershed, and II) Bar-Erieh 
Watershed.
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to find the best mother wavelet. The original 
data were also decomposed at different levels 
to find the optimal decomposition level. The 
wavelet base function is shown in equations 1 
and 2. 

      Eq. (1)

                  Eq. (2)
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Figure 4) Wavelet-based decomposition of discharge data using “db” mother wavelet in 5 levels, I) Kasilian 
Watershed, and II) Bar-Erieh Watershed.
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a

in which  is the mother wavelet, b is shifting 
and a is the scaling factor. 
The other time-frequency analysis which 
was used in this study was Ensemble Em-
pirical Mode Decomposition (EEMD) which 
is the modified version of Empirical Mode 

Decomposition (EMD). In signal processing, 
time-frequency analysis includes all tech-
niques that assess a signal in both the time 
and frequency domains at the same time, us-
ing various time-frequency representations. 
A time-frequency representation (TFR) can 
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Figure 5) The results of wavelet-CNN runoff modeling, I) Kasilian Watershed, and II) Bar-Erieh Watershed.
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be defined as the view of a signal characterized 
by both time and frequency. EMD can be used 
to treat nonstationary data. EMD decomposes 
the original signals into some intrinsic mode 
functions (IMFs). One of the main advantag-
es of EMD in comparison with the wavelet 
transform is its self-adaptability which makes 

it very user-friendly. However, the core disad-
vantage of EMD is a mode-mixing problem 
that is a result of signal intermittency. EEMD 
has solved the mode-mixing problem. This 
method is known as a noise–assisted method 
which adds white noise to the signals. 
In this study, two parallel paths were 
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Figure 6) EEMD-based decomposition of discharge data, I) Kasilian Watershed, and II) Bar-Erieh Watershed.
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followed. In the first path, the original data 
were imported to the deep learning model 
and in the second path, the decomposed 
data using wavelet transform and EEMD 
were imported to the deep learning model. 
The results were then compared to identify 
the effect of signal processing approaches on 
the performance of the deep learning model. 

Findings 
Figure 3 shows the results of the CNN 
model using the original data without any 
preprocessing of the data. Part I shows 
the results for the Kasilian Watershed 
and part II shows the results for the Bar-
Erieh Watershed. In each part, there are 
three sections. Section "a” demonstrates 
the variations of estimated and observed 
discharges, section “b” shows the scatter 
plot of estimated and observed discharges, 
and section "c” denotes the q-q plot. As 
this figure shows, CNN in its single form 
produces moderate results. The NSEs for 
Kasilian and Bar-Erieh are about 0.51 
and 0.87, respectively. The coefficients of 
determination for Kasilian and Bar-Erieh 
are about 0.69 and 0.87, respectively. 
Figure 4 shows the results of wavelet 
decomposition on discharge data using the 
"db” mother wavelet in 5 levels for Kasilian 
(I) and Bar-Erieh (II) watersheds. As this 
Figure shows there are one approximation 
component and 5 detail components. 
Approximation shows the low-frequency 
variations and detail components show 
the high-frequency variations in the 
discharge data. Figure 5 shows the results 
of the combined wavelet-CNN model for the 
Kasilian (I) and Bar-Erieh (II) watersheds. 
As this figure shows, the coefficients of 
determination for Kasilian and Bar-Erieh are 
about 0.9 and 0.98, respectively. The NSEs for 
Kasilian and Bar-Erieh are also about 0.9 and 
0.97, respectively. It is shown that wavelet 
transform could significantly enhance the 

performance of deep learning methods such 
as CNN. As we can understand from Figures 
3 and 5, wavelet transform increased the 
coefficients of determination by 30% and 
12% for Kasilian (I) and Bar-Erieh (II) 
watersheds, respectively. It also increased 
the NSE by 76% and 11% for Kasilian (I) and 
Bar-Erieh (II) watersheds, respectively. The 
NRMEs were enhanced by 41% and 60%, for 
Kasilian (I) and Bar-Erieh (II) watersheds, 
respectively. The better results of modeling 
in the Bar-Erieh Watershed may be related to 
the more regular and symmetrical variations 
of discharge in this watershed.
Figure 6 shows the EEMD-based decomposition 
of discharge data. As this figure shows, the 
main signal is decomposed to several IMFs. 
The first IMF shows the component with the 
highest frequency and the other IMFs show 
the components with lower frequencies. 
Figure 7 shows the results of combined EEMD-
CNN runoff modeling for Kasilian (I) and Bar-
Erieh (II) watersheds. As this figure shows, the 
coefficients of determination for Kasilian and 
Bar-Erieh are about 0.9 and 0.88, respectively. 
The NSEs for Kasilian and Bar-Erieh are also 
about 0.81 and 0.88, respectively. It is shown 
that the EEMD transform could enhance the 
performance of deep learning methods such 
as CNN to some extent. As we can understand 
from Figures 3 and 7, EEMD increased the 
coefficients of determination by 30% and 1% 
for Kasilian (I) and Bar-Erieh (II) watersheds, 
respectively. It also enhanced the NSE by 58% 
and 1% for Kasilian (I) and Bar-Erieh (II) 
watersheds, respectively. The NRMEs were 
also enhanced by 37% and 7%, for Kasilian (I) 
and Bar-Erieh (II) watersheds, respectively.

Discussion 
The results of all models are shown in Table 1 
for an easier conclusion. The main advantage of 
a convolutional neural network in comparison 
with other neural networks is the ability to 
detect some important features from the 
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original data without any human control. In a 
simple neural network, the original data are 
imported to the hidden layers and the weights 
are computed. When the size of data increases, 
the number of weights and parameters in the 
structure of the neural network that should be 
tuned increases dramatically. In this situation, 

overfitting can easily occur. A convolutional 
neural network by extracting important 
features and using convolution and pooling 
functions provides a very robust structure to 
deal with a huge number of data and to find 
very complex relations between dependent 
and independent variables. As the relations 
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Figure 7) The results of EEMD-CNN runoff modeling, I) Kasilian Watershed, and II) Bar-
Erieh Watershed.

a

b c

a

b c

 [
 D

O
R

: 2
0.

10
01

.1
.2

32
22

70
0.

20
22

.1
0.

3.
6.

3 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 e

co
pe

rs
ia

.m
od

ar
es

.a
c.

ir
 o

n 
20

24
-1

2-
22

 ]
 

                            10 / 13

https://dorl.net/dor/20.1001.1.23222700.2022.10.3.6.3
https://ecopersia.modares.ac.ir/article-24-60974-en.html


Ahmadinezhad Baghban F. et al.

ECOPERSIA                                                                                                              Summer 2022, Volume 10, Issue 3

241

in natural processes are usually intricate, 
the simple neural networks sometimes fail 
to determine the relations appropriately. In 
these cases, deep learning methods are good 
approaches to cope with these problems. 
Deep learning as a machine learning approach 
imitates the behavior of the human brain 
to detect the relations between different 
variables in a specific process. In this type of 
neural network, several hidden layers are used 
despite the simple neural network that usually 
includes a handful of hidden layers. The other 
advantage of the deep learning method is its 
ability to work with unstructured data and its 
better self-learning capabilities. Having several 
hidden layers make deep learning models able 
to efficiently learn the behavior of the process 
applying more complicated computations. 
Using these advantages, deep learning 
methods usually outperform other machine 
learning approaches. The next advantage of 
deep learning methods against traditional 
approaches is their high scalability. This 
approach performs a lot of computations on a 
huge number of data effectively. It significantly 
increases the generalizability of the results 
obtained using deep learning models.
 
Conclusion 
The study revealed that the Wavelet 
transform and EEMD had a significant 
effect on the performance of deep learning 
methods in runoff modeling and prediction. 

The single form of CNN had a moderate 
performance in estimating runoff values 
for one-day-ahead. The results showed that 
both Wavelet transform and EEMD enhanced 
the performance of CNN. However, Wavelet 
transform had a higher impact on the CNN 
rather than EEMD. The results are following 
many previous studies such as [19, 20, 21, 22]. 
There are some limitations related to the 
deep learning method. Like other empirical 
methods, deep learning algorithms cannot 
consider the process and just determine a 
relation between input and output variables. 
These methods need a rather huge amount of 
data for the training step. In addition, these 
models have a local performance and can 
only be used for the area for which the model 
is developed. The other main point that 
should be taken into account is the higher 
computational cost of Wavelet transform 
compared to EEMD. Finding the optimum 
mother Wavelet and decomposition level is 
a time-consuming task. It should be done 
using a trial-and-error method (which was 
done in this study) or by combining the 
modeling approaches with optimization 
methods such as genetic algorithm or 
particle swarm optimization method. EEMD 
doesn’t need any pre-conception. Therefore, 
if the results with higher accuracies are 
needed, Wavelet transform can be a better 
option. Otherwise, EEMD can be used to 
enhance the performance of CNN to some 

Table 1) The final results of CNN, WT-CNN, and EEMD-CNN models.

Model
Kasilian Watershed Bar-Erieh Watershed

R2 NRMSE (%) NSE R2 NRMSE (%) NSE

CNN 0.69 83.1 0.51 0.87 66.6 0.87

WT-CNN 0.9 48.9 0.9 0.98 26.3 0.97

EEMD-CNN 0.9 52.1 0.81 0.88 61.9 0.88
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extent. Other signal processing methods 
such as singular spectrum analysis (SSA) 
can be used in conjunction with CNN. Also, 
performing other deep learning methods 
such as Long short-term memory (LSTM) or 
auto-encoders can be suggested for future 
studies. 
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