Volume 8, Issue 3 (2020)                   ECOPERSIA 2020, 8(3): 139-146 | Back to browse issues page

XML Print

1- Nature Engineering Department, Natural Resources & Environmental Science Faculty, Malayer University, Malayer, Iran
2- Nature Engineering Department, Natural Resources & Environmental Science Faculty, Malayer University, Malayer, Iran , d_akhzari@yahoo.com
Abstract:   (355 Views)
Aims: Allelopathy and salinity stresses are known as major abiotic factors which limits the growth and production of plants. Environmental stresses such as salinity and allelopathy can affect the growth and establishment of rangeland species; however the interaction of such environmental stress and inter-plant competition (i.e., allelopathic effects) associated with arbuscular mycorrhiza rarely understood. Therefore, this study aimed to investigate the effect of arbuscular mycorrhiza on physiological traits and nutrient uptake of Poa bulbosa L. under the influence of allelopathy and salinity stress.  
Materials & Methods: A factorial experiment was designed with a completely randomized design with three replications. Factors include allelopathy extracted by Artemisia persica Boiss root (treat vs. control), salinity (control, 1, 4, and 8mmol/kg NaCl) and mycorrhizal fungi (mixed and unmixed). The experiment was set up in Malayer University greenhouse in a completely randomized design with factorial layout and 3 replications.
Findings: The stem and root of the studied plant species were higher than those found in non-inoculated treatments at low salinity and allelopathy treatments (p<0.05). Also, in severe stress conditions, mycorrhizal dependency was significantly higher (50.87). Proline content does not show variation under all studied treatments (p<0.05). Chlorophyll content decreased significantly with increasing salinity and allelopathy, but in the presence of mycorrhizal fungi, the rate of reduction was significantly lower and mycorrhizal fungi increased chlorophyll well. Plant nitrogen and phosphorus contents also coincided with the mycorrhizal fungi, showing the highest yield (3.7% and 2.6g kg-1 for total nitrogen and phosphorus respectively).
Conclusion: The growth, establishment and physiological properties of the Poa bulbosa L. are improved under the influence of mycorrhizal application. Thus, the use of mycorrhizal fungi can be a useful biological method to reduce the destructive effects of environmental stresses such as salinity and allelopathy.
Full-Text [PDF 199 kb]   (54 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecosystems
Received: 2019/12/29 | Accepted: 2020/02/9 | Published: 2020/09/20
* Corresponding Author Address: Natural Resources & Environmental Science Faculty, Malayer University, Malayer, Iran. Postal Code: 6571995863

1. Lund HG. Accounting for the world's rangelands. Rangelands. 2007;29(1):3-10. [Link] [DOI:10.2111/1551-501X(2007)29[3:AFTWR]2.0.CO;2]
2. Snyman HA. Disturbances impact on longevity of grass seeds, semi-arid South African Rangeland. J Range Manag Arch. 2013;66(2):143-56. [Link] [DOI:10.2111/REM-D-11-00145.1]
3. Gniazdowska A, Bogatek R. Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiologiae Plantarum. 2005;27:395-407. [Link] [DOI:10.1007/s11738-005-0017-3]
4. Enteshari Sh, Ahrabi F. Influence of coumarin on some physiological and biochemical indices of rapeseed Hyola 401. Iran J Plant Biol. 2011;3(10):23-36. [Persian] [Link]
5. Juniper S, Abbott LK. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza. 2006;16(5):371-9. [Link] [DOI:10.1007/s00572-006-0046-9]
6. Ferreira-Silva SL, Voigt EL, Viégas RA, Paiva JR, Silveira JAG. Influence of rootstocks on the resistance of cashew plantlets to salt stress. Pesquisa Agropecuária Brasileira. 2009;44(4):361-7. [Link] [DOI:10.1590/S0100-204X2009000400005]
7. Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299-363. [Link] [DOI:10.1007/s00572-005-0033-6]
8. Gange AC, Gane DRJ, Chen Y, Gong M. Dual colonization of Eucalyptus urophylla ST Blake by arbuscular and ectomycorrhizal fungi affects levels of insect herbivore attack. Agric Forest Entomol. 2005;7(3):253-63. [Link] [DOI:10.1111/j.1461-9555.2005.00268.x]
9. Nguyen TD, Cavagnaro TR, Watts-Williams SJ. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Report. 2019;9:14880. [Link] [DOI:10.1038/s41598-019-51369-5]
10. Clark RB, Zeto SK. Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutrition. 2000;23(7): 867-902. [Link] [DOI:10.1080/01904160009382068]
11. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol. 2007;61(2):295-304. [Link] [DOI:10.1111/j.1574-6941.2007.00337.x]
12. Bayani R, Saateyi A, Faghani E. Some Root Traits of Barley (Hordeum vulgare L.) as Affected by Mycorrhizal Symbiosis under Drought Stress. J Crop Product Process. 2016;6(19):125-35. [Persian] [Link] [DOI:10.18869/acadpub.jcpp.6.19.125]
13. Ale Taha R, Safari Sanjani AA, Zafari DM. Evaluation of growth potential in spinach inoculated with Piriformospora indica, Mycorrhiza and dark wall fungi in drought stress condition. J Agric Agronomy Improv. 2018;20(2):517-31. [Persian] [Link]
14. Ruiz-Lozano JM, Porcel R, Calvo-Polanco, M, Aroca R. Improvement of salt tolerance in rice plants by arbuscular mycorrhizal symbiosis. Root Biol. 2018;52:259-79. [Link] [DOI:10.1007/978-3-319-75910-4_10]
15. Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, et al. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 2018;247:573-85. [Link] [DOI:10.1007/s00425-017-2808-3]
16. Amanifar S, Khodabandeloo M, Fard EM, Askari MS, Ashrafi M. Alleviation of salt stress and changes in glycyrrhizin accumulation by arbuscular mycorrhiza in liquorice (Glycyrrhiza glabra) grown under salinity stress. Environ Exp Bot. 2019;160:25-34. [Link] [DOI:10.1016/j.envexpbot.2019.01.001]
17. Campanelli A, Ruta C, Morone-Fortunato I, De Mastro G. Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection. Cent Eur J Biol. 2013;8:765-76. [Link] [DOI:10.2478/s11535-013-0194-1]
18. Bates LS, Waldren RP, Tear ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205-7. [Link] [DOI:10.1007/BF00018060]
19. Akhzari D, Mahdavi S, Pessarakli M, Ebrahimi M. Effects of arbuscular mycorrhizal fungi on seedling growth and physiological traits of Melilotus officinalis L. grown under salinity stress conditions. Commun Soil Sci Plant Analys. 2016;47(7):822-31. [Link] [DOI:10.1080/00103624.2016.1146897]
20. Hajibolandi R, Barzegar R, Asgharzadeh NA. Studying the effect of mycorrhiza on root morphology and rhizosphere's pH in rice with rizobox system. The Proceeding of 9th Iranian Soil Science Congress. Tehran, 2005, 28-31 August. [Persian] [Link]
21. Akhzari D, Sepehry A, Pessarakli M, Barani H. Studying the effects of salinity stress on the growth of various halophytic plant species (Agropyron elongatum, Kochia prostrata and Puccinellia distans). World Appl Sci J. 2012;16:998-1003. [Link]
22. Akhzari D, Kalantari N. Mahdavi Sh. Studying the effects of mycorrhiza and vermicompost fertilizers on the growth and physiological traits of Vetiver Grass(Chrysopogon zizanioides L.). Desert;2018:23(1):57-62. [Link]
23. Akhzari D, Shayganfar A. The interaction of Artemisia persica allelopathy, drought and arbuscular mycorrhizal fungi on growth and physiological indices of Ferula haussknechtii H. Wolff ex Rech. F. ECOPERSIA. 2019;7(4):203-10. [Link]
24. Ebrahimi M, Ricki Maryshany A, Shirmohammadi E. Effect of extract of fast growing species Trifolium alexandrium L. on germination, photosynthetic pigments and nutrient uptake of Prosopis cineraria (L.) druce. ECOPERSIA. 2016;4(3):1493-1503. [Link] [DOI:10.18869/modares.ecopersia.4.3.1493]