Volume 8, Issue 1 (2020)                   ECOPERSIA 2020, 8(1): 23-31 | Back to browse issues page

XML Print

1- Forest Science Department, Agriculture & Natural Resources Faculty, Ilam University, Ilam, Iran , mirzaei.javad@gmail.com
2- Forest Science Department, Agriculture & Natural Resources Faculty, Ilam University, Ilam, Iran
3- Forestry Department, Natural Resources & Environment Faculty, Behbahan Khatam Al-Anbia University of Technology, Behbahan, Iran
4- Northern Research Station, USDA Forest Service, Columbia, USA
Abstract:   (1027 Views)
Aim: The present study aimed to 1) determine the extent of arbuscular mycorrhizal fungi symbiosis with Amygdalus scopariain in Melah-Roteh region in Dareshahr City, western Iran, and 2) model the presence or absence of different arbuscular mycorrhizal fungi on Almonds (A. scoparia) in relation to soil physicochemical properties.
Materials & Methods: In the study area (Melah-Roteh region in Zagros Woodlands), 57 soil samples were taken from the 0-30cm depth under A. scoparia in the Dareshahr City forest west of Iran. Soil samples were processed in the laboratory to extract and identify spores and fungi, determine spore frequency, and to measure physicochemical soil properties.
Findings: The results of two-way indicator species analysis (TWINSPAN) classification showed that arbuscular mycorrhizal fungi symbiotic with A. scoparia in the study could be classified into two groups. The evaluation of indicator species in each group using the importance value method and significance of indicator values based on Monte Carlo tests (p<0.01) showed that Rhizophagus fasciculatus and Funneliformis caledonium (Indicator value= 90 and 89, respectively) were prominent in the first group and Funneliformis mosseae, Claroideoglomus drummondii, and Glomus gigantea (Indicator value= 95, 93, and 81, respectively) were representative of the second group.
Conclusion: The presence-absence, symbiosis rate and spore density of arbuscular mycorrhizal fungi species associated with Almonds changes with varying physicochemical soil properties that can be modeled using certain soil attributes.
Full-Text [PDF 808 kb]   (91 Downloads)    
Article Type: Original Research | Subject: Nature and Landscape Conservation
Received: 2019/07/16 | Accepted: 2019/10/18 | Published: 2020/03/14
* Corresponding Author Address: Forest Science Department, Agriculture & Natural Resources Faculty, Ilam University, Pajohesh Street, Ilam, Iran.

1. Batič F, Kalan P, Kraigher H, Šircelj H, Simončič P, Vidergar-Gorjup N, et al. Bioindication of different stresses in forest decline studies in Slovenia. Water Air Soil Pollut. 1999;116(1-2):377-82. [Link] [DOI:10.1023/A:1005274122159]
2. Bonada N, Prat N, Resh VH, Statzner B. Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Ann Rev Entomol. 2006;51:495-523. [Link] [DOI:10.1146/annurev.ento.51.110104.151124]
3. Zhao J, Shao Y, Wang X, Neher DA, Xu G, Li ZA, et al. Sentinel soil invertebrate taxa as bioindicators for forest management practices. Ecol Indic. 2013;24:236-9. [Link] [DOI:10.1016/j.ecolind.2012.06.012]
4. Woodruff JG. Tree nuts: Production, processing, products. 2nd Edition. Westport: AVI Publishing Co. Inc.; 1979. [Link]
5. Abbey M, Noakes M, Belling GB, Nestel PJ. Partial replacement of saturated fatty acids with almonds or walnuts lowers total plasma cholesterol and low-density-lipoprotein cholesterol. Am J Clin Nutr. 1994;59(5):995-9. [Link] [DOI:10.1093/ajcn/59.5.995]
6. Tehranifar AM. Almond nurture. Tehran: Jahad Daneshgahi Publications; 1998. [Persian] [Link]
7. Lee JE, Eom AH. Effect of organic farming on spore diversity of arbuscular mycorrhizal fungi and glomalin in soil. Mycobiology. 2009;37(4):272-6. [Link] [DOI:10.4489/MYCO.2009.37.4.272]
8. Augé RM. Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci. 2004;84(4):373-81. [Link] [DOI:10.4141/S04-002]
9. Göhre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 2006;223(6):1115-22. [Link] [DOI:10.1007/s00425-006-0225-0]
10. Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1998;198(1):97-107. [Link] [DOI:10.1023/A:1004347701584]
11. Fuchs B, Haselwandter K. Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza. 2004;14(4):277-81. [Link] [DOI:10.1007/s00572-004-0314-5]
12. Füzy A, Biró B, Tóth T, Hildebrandt U, Bothe H. Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol. 2008;165(11):1181-92. [Link] [DOI:10.1016/j.jplph.2007.08.010]
13. Vannette RL, Hunter MD. Plant defence theory re‐examined: Nonlinear expectations based on the costs and benefits of resource mutualisms. J Ecol. 2011;99(1):66-76. [Link] [DOI:10.1111/j.1365-2745.2010.01755.x]
14. Escudero V, Mendoza R. Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza. 2005;15(4):291-9. [Link] [DOI:10.1007/s00572-004-0332-3]
15. Dickinson CH. Decomposition of litter in soil. In: Dickinson CH, Pugh GJ, editors. Biology of plant litter decomposition. Cambridge: Academic Press; 1974. pp. 633-58. [Link] [DOI:10.1016/B978-0-12-215002-9.50018-6]
16. Diederichs C, Moawad AM. The potential of VA mycorrhizae for plant nutrition in the tropics. Angewandte Botanik. 1993;67(3-4):91-6. [Link]
17. Koske RE. Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia. 1987;79(1):55-68. [Link] [DOI:10.1080/00275514.1987.12025370]
18. Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16(5):299-363. [Link] [DOI:10.1007/s00572-005-0033-6]
19. Kernaghan G. Mycorrhizal diversity: Cause and effect?. Pedobiologia. 2005;49(6):511-20. [Link] [DOI:10.1016/j.pedobi.2005.05.007]
20. Lakshmipathy R, Balakrishna AN, Bagyaraj DJ. Abundance and diversity of AM fungi across a gradient of land use intensity and their seasonal variations in Niligiri Biosphere of the Western Ghats, India. J Agric Sci Technol. 2012;14(4):903-18. [Link]
21. Cheeke TE, Schütte UM, Hemmerich CM, Cruzan MB, Rosenstiel TN, Bever JD. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with B acillus thuringiensis toxin genes. Mol Ecol. 2015;24(10):2580-93. [Link] [DOI:10.1111/mec.13178]
22. Palta Ş, Lermi AG, Beki R. The effect of different land uses on arbuscular mycorrhizal fungi in the northwestern Black Sea Region. Environ Monit Assess. 2016;188(6):350. [Link] [DOI:10.1007/s10661-016-5350-z]
23. Bouamri R, Dalpé Y, Serrhini MN, Bennani A. Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. in Morocco. Afr J Biotechnol. 2006;5(6):510-6. [Link]
24. McLean EO. Soil pH and lime requirement. In: American Society of Agronomy, Soil Science Society of America. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison: American Society of Agronomy, Soil Science Society of America; 1982. pp. 199-224. [Link]
25. Bremner JM. Nitrogen-total. In: American Society of Agronomy. Methods of soil analysis part 3-chemical methods. Madison: American Society of Agronomy; 1996. pp. 1085-121. [Link]
26. Watanabe FS, Olsen SR. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil 1. Soil Sci Soc Am J. 1965;29(6):677-8. [Link] [DOI:10.2136/sssaj1965.03615995002900060025x]
27. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29-38. [Link] [DOI:10.1097/00010694-193401000-00003]
28. Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 1963;46(2):235-44. [Link] [DOI:10.1016/S0007-1536(63)80079-0]
29. Schenck NC, Perez Y. Manual for the identification of VA mycorrhizal fungi. 3rd Edition. Gainesville: Synergistic Publications; 1990. [Link]
30. Ayalew L, Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 2005;65(1-2):15-31. [Link] [DOI:10.1016/j.geomorph.2004.06.010]
31. Moradi Behbahani S, Moradi M, Basiri R, Mirzaei J. Sand mining disturbances and their effects on the diversity of arbuscular mycorrhizal fungi in a riparian forest of Iran. J Arid Land. 2017;9(6):837-49. [Link] [DOI:10.1007/s40333-017-0028-0]
32. Mirzaei J, Moradi M. Relationships between flora biodiversity, soil physiochemical properties, and arbuscular mycorrhizal fungi (AMF) diversity in a semi-arid forest. Plant Ecol Evol. 2017;150(2):151-9. [Link] [DOI:10.5091/plecevo.2017.1249]
33. Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol. 2014;23(8):2118-35. [Link] [DOI:10.1111/mec.12706]
34. Wu Q, Zou Y. Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philipp Agric Sci. 2009;92(1):33-8. [Link]
35. Veresoglou SD, Caruso T, Rillig MC. Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil. 2013;368(1-2):507-18. [Link] [DOI:10.1007/s11104-012-1531-x]
36. Mirzaei J, Moradi M. Biodiversity of arbuscular mycorrhizal fungi in Amygdalus scoparia Spach plantations and a natural stand. J For Res. 2017;28(6):1209-17. [Link] [DOI:10.1007/s11676-017-0392-9]
37. Bouffaud ML, Creamer RE, Stone D, Plassart P, Van Tuinen D, Lemanceau P, et al. Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biol Biochem. 2016;103:464-70. [Link] [DOI:10.1016/j.soilbio.2016.09.022]
38. Hempel S, Renker C, Buscot F. Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol. 2007;9(8):1930-8. [Link] [DOI:10.1111/j.1462-2920.2007.01309.x]
39. Moradi M, Naji HR, Imani F, Moradi Behbahani S, Ahmadi MT. Arbuscular mycorrhizal fungi changes by afforestation in sand dunes. J Arid Environ. 2017;140:14-9. [Link] [DOI:10.1016/j.jaridenv.2017.01.006]
40. Karaarslan E, Uyanoz R. Occurrence of arbuscular mycorrhizal fungi in some native plants grown on saline soils around the lake Tuz in Turkey and its relations with some physical and chemical properties of soil. Sci Res Essays. 2011;6(20):4238-45. [Link]
41. Pande M, Tarafdar JC. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol. 2004;26(3):233-41. [Link] [DOI:10.1016/j.apsoil.2003.12.009]
42. Schellenbaum L, Müller J, Boller T, Wiemken A, Schüepp H. Effects of drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol. 1998;138(1):59-66. [Link] [DOI:10.1046/j.1469-8137.1998.00892.x]
43. Palenzuela J, Azcon-Aguilar C, Figueroa D, Caravaca F, Roldán A, Barea J. Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil. Biol Fertil Soils. 2002;36(2):170-5. [Link] [DOI:10.1007/s00374-002-0520-2]
44. Panwar J, Tarafdar JC. Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ. 2006;65(3):337-50. [Link] [DOI:10.1016/j.jaridenv.2005.07.008]
45. Gui H, Hyde K, Xu J, Mortimer P. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Sci Rep. 2017;7:42184. [Link] [DOI:10.1038/srep42184]
46. Read DJ, Perez‐Moreno J. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?. New Phytol. 2003;157(3):475-92. [Link] [DOI:10.1046/j.1469-8137.2003.00704.x]