Volume 7, Issue 4 (2019)                   ECOPERSIA 2019, 7(4): 203-210 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akhzari D, Shayganfar A. The Interaction of Artemisia persica Allelopathy, Drought and Arbuscular Mycorrhizal Fungi on Growth and Physiological Indices of Ferula haussknechtii H. Wolff ex Rech.f.. ECOPERSIA 2019; 7 (4) :203-210
URL: http://ecopersia.modares.ac.ir/article-24-33007-en.html
1- Watershed and Rangeland Management Department, Natural Resources & Environmental Science Faculty, Malayer University, Malayer, Iran , d_akhzari@yahoo.com
2- Landscape Engineering Department, Agriculture Faculty, Malayer University, Malayer, Iran
Abstract:   (4630 Views)
Aims: Ferula L. is one of the largest genera from Apiaceae family with about 180 species, which grow in semi-arid rangelands. One of the challenges associated with this genus in their natural habitats is drought and additionally in case of Ferula haussknechtii H. Wolff ex Rech.f. species is allelopathy caused by companion with Artemisia persica Boiss.
Materials & Methods: The present study aimed to investigate the roles of Arbuscular Mycorrhizal (AM) fungi in the growth, physiological characteristics, nutrient uptake, and survival of Ferula haussknechtii H. Wolff ex Rech. F. grown under the interactive influences of drought and allelopathy stress conditions. Four levels of allelopathy stress, three levels of drought stress, and two mycorrhizal treatments (AM and Non-AM) were applied to the pots in a completely randomized design with a factorial arrangement.
Findings: Based on ANOVA results (p≤5%), the survival capacities of the Non-AM inoculated plants were significantly less than those of the AM inoculated plants for all allelopathic and drought stress levels. The maximum values of survival capacity were seen in AM×FC×A1 treatment as 75% and the lowest survival capacity was observed in Non-AM×30%FC×A4 as 29%. In general, AM fungi inoculation significantly increase the root:shoot ratios and mycorrhizal dependency values (p≤5%). Based on ANOVA results, the highest and lowest values for root:shoot ratios were observed as 0.71 and 0.27 for Non-AM×30%FC×A4 and AM×FC×A1 treatments, respectively. Drought stress and allelopathic conditions have a destructive effect on total chlorophyll content. The maximum and minimum proline content (0.21 and 0.04) was observed in treatment of AM incubated with highest level of drought and allelopathic and in Non-AM incubated with lowest level of drought and allelopathic, respectively.
Conclusions: AM fungi inoculation had a significant positive effect on total nitrogen and phosphorus content in plant tissues but a significant negative effect on total nitrogen and phosphorus content was observed in drought and allelopathic stress treatments.

Full-Text [PDF 777 kb]   (1403 Downloads)    
Article Type: Original Research | Subject: Rangeland Ecosystems
Received: 2019/05/16 | Accepted: 2019/09/8 | Published: 2019/12/21
* Corresponding Author Address: Watershed and Rangeland Management Department, Natural Resources & Environmental Science Faculty, Malayer University, Malayer, Iran. Postal Code: 6571995863

References
1. Lloret F, Peñuelas J, Estiarte M. Effects of vegetation canopy and climate on seedling establishment in Mediterranean shrubland. J Veg Sci. 2005;16(1):67-76. [Link] [DOI:10.1111/j.1654-1103.2005.tb02339.x]
2. Cheng Z, Targolli J, Huang X, Wu R. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed. 2002;10(1-2):71-82. [Link] [DOI:10.1023/A:1020329401191]
3. Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol. 2009;166(11):1207-17. [Link] [DOI:10.1016/j.jplph.2009.01.001]
4. Jafari M. Evaluation of salt tolerance in some Iranian rangeland grasses. J Iran Inst Rangel For Res. 1994;1:28-31. [Persian] [Link]
5. Besra R, Besra A. Mechanisms of tolerance of plants to environmental stresses. Kafi M, Mahdavi Damghani A, Translators. 2nd Edition. Mashhad: Ferdowsi University; 2012. p. 504. [Persian] [Link]
6. Seigler DS. Chemistry and mechanisms of allelopathic interactions. Agron J. 1996;88(6):876-85. [Link] [DOI:10.2134/agronj1996.00021962003600060006x]
7. Farajollahi A, Tavili A, Gholinejad B, Darini J, Pouzesh H. Investigation and compare the allelopathic effects for different tissues of Peganum harmala in different amounts on the Bromus tectorum germination and growth characteristics. Ecopersia. 2012;1(1):53-62. [Link]
8. Putnam AR. Allelopathy: State of the science. In: Putnam AR. The science of allelopathy. Putnam AR, Tang CS, editors. 1st Edition. Hoboken: Wiley; 1986. pp. 1-19. [Link]
9. Salls KA, Bannister KKS. Allelopathic characteristics of artemisia tridentata and purshiatridentata and implications for invasive species management. Nev State Undergrad Res J. 2014;1(1):7-12. [Link] [DOI:10.15629/6.7.8.7.5_1-1_F-2014_1]
10. Matizha W, Dahl BE. Factors affecting weeping lovegrass seedling vigor on shinnery oak range. Rangel Ecol Manag. 1991;44(3):223-7. [Link] [DOI:10.2307/4002946]
11. Bouwmeester HJ, Roux Ch, Lopez-Raez JA, Becard G. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 2007;12(5):224-30. [Link] [DOI:10.1016/j.tplants.2007.03.009]
12. Chandanie WA, Kubota M, Hyakumachi M. Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience. 2005;46(3):201-4. [Link] [DOI:10.1007/S10267-005-0230-3]
13. Khan IA, Ayub N, Mirza SN, Nazimi SM, Azam M. Synergistic effect of dual inoculation (Vesicular-Arbuscular Mycorrhizae) on the growth and nutrients uptake of Medicago sativa. Pak J Bot. 2008;40(2):939-45. [Link]
14. Mirzaei J, Noorbakhsh N, Karamshahi A. Identification of arbuscular mycorrhizal fungi associated with Crataegus pontica C. Koch from Ilam province, Iran. Ecopersia. 2014;2(4):767-77. [Link]
15. Kapoor R, Giri B, Mukerji KG. Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol. 2004;93(3):307-11. [Link] [DOI:10.1016/j.biortech.2003.10.028]
16. Abdel-Fattah GM, El-Haddad SA, Hafez EE, Rashad YM. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiol Res. 2011;166(4):268-81. [Link] [DOI:10.1016/j.micres.2010.04.004]
17. Hedge IC, Lamond JM, Rechinger KH. Ferula. In: Unknown Authors. Flora Iranica. Graz: Akademische Druck-u Verlagsanstalt; 1991. [Link]
18. Manivannan P, Abdol Jaleel C, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GMA, et al. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B Biointerfaces. 2007;59(2):141-9. [Link] [DOI:10.1016/j.colsurfb.2007.05.002]
19. Rustaiee A, Sefidkon F, Tabatabaei SMF, Omidbaigi R, Mirahmadi SF. Chemical polymorphism of essential oils from five populations of Thymus daenensis Celak. subsp. daenensis endemic to Iran. J Essent Oil Res. 2011;23(3):6-11. [Link] [DOI:10.1080/10412905.2011.9700450]
20. Al-Karaki Gh, McMichael B, Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 2004;14(4):263-9. [Link] [DOI:10.1007/s00572-003-0265-2]
21. Perez C, Pérez-García F, Fernández H, Revilla MA. The levels of GA3 and GA20 may be associated with dormancy release in Onopordum nervosum seeds. Plant Growth Regul. 2002;38(2):141-3. [Link] [DOI:10.1023/A:1021210217659]
22. Campanelli A, Ruta C, Morone-Fortunato I, De Mastro G. Alfalfa (Medicago sativa L.) clones tolerant to salt stress: In vitro selection. Cent Eur J Biol. 2013;8(8):765-76. [Link] [DOI:10.2478/s11535-013-0194-1]
23. Plenchette C, Fortin JA, Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant Soil. 1983;70(2):199-209. [Link] [DOI:10.1007/BF02374780]
24. Metzner R, Litwin G, Weil G. The relation of expectation and mood to psilocybin reactions: A questionnaire study. Psychedelic Rev. 1965;5:3-39. [Link]
25. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205-7. [Link] [DOI:10.1007/BF00018060]
26. Kjeldahl J. Neue method zur bestimmung des stickstoffs in organischen Körpern. Zeitschrift für analytische Chemie. 1883;22(1):366-82. [Link] [DOI:10.1007/BF01338151]
27. Jackson ML. Soil chemical analysis: Advanced course. 2nd Edition. Madison: Parallel Press; 2005. p. 895. [Link]
28. Jefferson LV, Pennacchio M. Allelopathic effects of foliage extracts from four Chenopodiaceae species on seed germination. J Arid Environ. 2003;55(2):275-85. [Link] [DOI:10.1016/S0140-1963(03)00028-4]
29. Augé RM, Moore JL, Cho K, Stutz JC, Sylvia DM, Al-Agely AK, et al. Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J Plant Physiol. 2003;160(10):1147-56. [Link] [DOI:10.1078/0176-1617-01154]
30. Escudero A, Albert MJ, Pita JM, Pérez-García F. Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol. 2000;148(1):71-80. [Link] [DOI:10.1023/A:1009848215019]
31. Lawrence JG, Colwell A, Sexton OJ. The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am J Bot. 1991;78(7):948-58. [Link] [DOI:10.1002/j.1537-2197.1991.tb14498.x]
32. Afzal B, Bajwa R, Javaid A. Allelopathy and VA mycorrhizae VII: Cultivation of Vigna radiata and Phaseolus vulgaris under allelopathy stress caused by Imperata cylindrica. Pak J Biol Sci. 2000;3(11):1926-8. [Link] [DOI:10.3923/pjbs.2000.1926.1928]
33. Bajwa R, Shafique Sh, Shafique S, Javaid A. Effect of foliar spray of aqueous extract of Parthenium hysterophorus on growth of sunflower. Int J Agric Biol. 2004;6(3):474-8. [Link]
34. Bukolova TP. A study of the mechanism of action of water-soluble substances of weeds on cultivated plants. Physiol Biochem Basis Plant Interact Phytocenoses. 1971;2:66-9. [Link]
35. Barkosky RR, Calavera J, Culbertson A. Caffeic acid induced changes in plant water balance and photosynthesis in leafy spruge. Programs and Absracts, 2nd World Congress on Allelopathy, 8-13 August, 1999, Lakehead University, Thunder Bay, Ontario, Canada. Thunder Bay: Lakehead University; 1999. p. 56. [Link]
36. Kefeli VI, Turetskaya RK. Comparative effect of natural growth inhibitors, narcotics and antibiotics on plant growth. Fiziol Rast. 1967;14:796-803. [Link]
37. Yamane A, Nishimura H, Mizutani J. Allelopathy of yellow fieldcress (Rorippa sylvestris): Identification and characterization of phytotoxic constituents. J Chem Ecol. 1992;18(5):683-91. [Link] [DOI:10.1007/BF00994606]
38. Thorne MA, Frank DA. The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecol. 2009;200(2):205-15. [Link] [DOI:10.1007/s11258-008-9445-7]
39. Cantrell IC, Linderman RG. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil. 2001;233(2):269-81. [Link] [DOI:10.1023/A:1010564013601]
40. Kumar A, Sharma S, Mishra S. Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul. 2010;29(3):297-306. [Link] [DOI:10.1007/s00344-009-9136-1]
41. Smirnoff N. Antioxidant systems and plant response to the environment. In: Smirnoff N, editor. Environment and plant metabolism: Flexibility and acclimation. Didcot: BIOS Scientific publishers; 1995. p. 270. [Link]
42. Tang M, Chen H, Huang JC, Tian ZQ. AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biol Biochem. 2009;41(5):936-40. [Link] [DOI:10.1016/j.soilbio.2008.11.007]
43. Ibrahim AH, Abdel-Fattah G, Eman FM, Abd El-Aziz MH, Shohr AE. Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. Phyton. 2011;51(2):261-76. [Link]
44. Garg N, Manchanda G. Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp.(pigeonpea). J Agron Crop Sci. 2009;195(2):110-23. [Link] [DOI:10.1111/j.1439-037X.2008.00349.x]
45. Raza MAS, Saleem MF, Ashraf MY, Ali A, Asghar HN. Glycinebetaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plant. Soil Environ. 2012;31(1):67-71. [Link]
46. Saberi M, Niknahad-Gharmakher H, Heshmati G, Barani H, Shahriari A. Effects of different drought and salinity levels on seed germination of citrullus colocynthis. Ecopersia. 2017;5(3):1903-17. [Link]
47. Kolesnichenko MV, Aleikina MM. The rate of protein biosynthesis and absorption of mineral substances by the roots of oak and ash growing together in the forest. Fiziol Rast Mosk. 1976;23:127-31. [Russian] [Link]
48. Ebrahimi M, Ricki Maryshany AR, Shirmohammadi E. Effect of extract of fast growing species Trifolium alexandrium L. on germination, photosynthetic pigments and nutrient uptake of Prosopis cineraria (L.) Druce. Ecopersia. 2016;4(3):1493-503. [Link] [DOI:10.18869/modares.ecopersia.4.3.1493]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.