Volume 6, Issue 2 (2018)                   ECOPERSIA 2018, 6(2): 101-109 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahantab E, Jafari M, Motesharezadeh B, Tavili A, Zargham N. Remediation of Petroleum-Contaminated Soils using ‎Stipagrostis plumosa, Calotropis procera L., and Medicago sativa ‎under Different Organic Amendment Treatments. ECOPERSIA. 2018; 6 (2) :101-109
URL: http://ecopersia.modares.ac.ir/article-24-15070-en.html
1- ‎Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, ‎University of Tehran, Karaj, Iran
2- ‎Department of Soil Science, Faculty of Agricultural Engineering & Technology, University of Tehran, ‎Karaj, Iran , moteshare@ut.ac.ir
3- ‎Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, ‎Karaj, Iran
Abstract:   (4752 Views)
Aims: The contamination of soils and groundwater by toxic, hazardous organic pollutants is a widespread environmental problem. The use of vegetation for the treatment of contaminated soils is an attractive and cost-effective alternative, especially for petroleum-contaminated soils.
Materials and Methods: Three species including Calotropis procera L., Stipagrostis plumosa, and Medicago sativa were selected. To evaluate the abilities of S. plumosa, M. sativa, and C. procera in the degradation of petroleum hydrocarbons, a greenhouse study was conducted with two trial factors: (1) Urban waste compost and (2) biochar (each 0, 1, and 2%). At the end of the experiment, aerial and underground parts of the plants were collected, and some important soil properties and plant morphological characteristics were measured. The total amount of hydrocarbons was measured by gas chromatography, Flame Ionization type, Agilent 7890A model.
Findings: The results showed that the strongest hydrocarbon reduction by C. procera, S. plumosa, and M. sativa was 62.5%, 57.3%, and 53.5%, respectively. The results also demonstrated that control/biochar 2% had the highest/lowest (21922/14511 mg/kg) hydrocarbon level left in the soil. Therefore, biochar 1% or 2% is the best treatment for the remediation of petroleum-contaminated soils. C. procera L. is a good potential candidate to be cultivated for the phytoremediation of petroleum-contaminated soils.
Conclusion: Overall, using the amendment seedbed including biochar and urban waste compost treatments is suitable to promote phytoremediation of petroleum hydrocarbons. Biochar and urban waste compost provide optimal conditions for plant growth and at least help to promote the process phytoremediation. Regarding plant species diversity in Iran and petroleum contamination, application of phytoremediation may apply with effective and applied solution in soils contaminated.
Full-Text [PDF 323 kb]   (804 Downloads)    
Article Type: مقاله Ø§Ø³ØªØ®Ø±Ø§Ø Ø´Ø¯Ù‡ از پایان نامه | Subject: Aquatic Ecology
Received: 2017/06/17 | Accepted: 2018/07/17 | Published: 2018/07/17
* Corresponding Author Address: Faculty of Agricultural Engineering & Technology, University of Tehran, Karaj, Iran.‎

1. Hentati O, Lachhab R, Ayadi M, Ksibi M. Toxicity assessment for petroleum-contaminated soil using ‎terrestrial invertebrates and plant bioassays. Environ Monit Assess. 2013;185(4):2989-98.‎ [Link] [DOI:10.1007/s10661-012-2766-y]
2. Stark JS, Snape I, Riddle MJ. The effects of petroleum hydrocarbon and heavy metal contamination of ‎marine sediments on recruitment of Antarctic soft-sediment assemblages: A field experimental investigation. ‎J Exp Mar Bio Ecol. 2003;283(1-2):21-50.‎ [Link] [DOI:10.1016/S0022-0981(02)00449-5]
3. Jurelevicius D, Alvarez VM, Marques JM, de Sousa Lima LR, de Almeida Dias F, Seldin L. Bacterial ‎community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-‎containing microcosms. Appl Environ Microbiol. 2013;79(19):5927-35.‎ [Link] [DOI:10.1128/AEM.02251-13]
4. Pizarro‐Tobías P, Niqui JL, Roca A, Solano J, Fernández M, Bastida F, et al. Field trial on removal of ‎petroleum‐hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation. ‎Environ Microbiol Rep. 2015;7(1):85-94.‎ [Link]
5. Askary M, Noori M, Biegi F, Amini, F. Evaluation of the Phytoremediation of Robinia pseudoacacia L. in ‎Petroleum-contaminated soils with emphasis on the some heavy metals. J Cell Tissue. 2012;2(4):437-42. ‎‎[Persian]‎ [Link]
6. Alavi Bakhtiarvand SN, Ahmadimoghadam M, Parseh I, Jafarzadeh N, Chehrazi M, Chorom M. Assessment ‎of Phytoremediation efficiency on reducing oilhydrocarbons from clay-silt soil using Aeluropus littaralis. Iran ‎J Health Environ. 2014;7(1):73-84. [Persian]‎ [Link]
7. Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems–A review. Mitig Adapt ‎Strategy Glob Change. 2006;11(2): 403-27.‎ [Link]
8. Rees F, Germain C, Sterckeman T, Morel JL. Plant growth and metal uptake by a non-hyperaccumulating ‎species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils ‎amended with biochar. Plant soil. 2015;395(1-2):57-73.‎ [Link] [DOI:10.1007/s11104-015-2384-x]
9. Tejada M, Hernandez MT, Garcia C. Soil restoration using composted plant residues: Effects on soil ‎properties. Soil Till Res. 2009;102(1):109-17.‎ [Link] [DOI:10.1016/j.still.2008.08.004]
10. Abbasi H, Pourmajidian MR, Fallah A. Comparison of lead uptake by four seedling species (Acer ‎cappadocicum, Fraxinus excelsior, Thuja orientalis and Cupressus arizonica). ECOPERSIA. 2016; 4(4):1617-‎‎29.‎ [Link]
11. Dominguez-Rosado E, Pichtel RJ. Phytoremediation of soil contaminated with used motor oil: II. ‎Greenhouse studies. Environ Eng Sci. 2004;21(2):169-80.‎ [Link] [DOI:10.1089/109287504773087345]
12. Jahantab E, Jafari M, Motasharezadeh B, Tavili A, Zargham N. Evaluation of tolerant plants species to ‎heavy metals in oil polluted region (case study: Pazanan Gachsaran). J Rangel Sci. 2016;10(4):409-25. ‎‎[Persian]‎ [Link]
13. Kaimi E, Mukaidani T, Tamaki M. Screening of twelve plant species for phytoremediation of petroleum ‎hydrocarbon-contaminated soil. Plant Prod Sci. 2007;10(2):211-18.‎ [Link] [DOI:10.1626/pps.10.211]
14. Liuzinas RK, Jankeviius K, Salkauskas M, Rasomaviius V, Gudzinskas Z, Sinkeviien Z. Phytoremediation of ‎polluted soil at two sites in the district of Klaipeda (Lithuania). Soil Remediat Tech. 1999;17:134-145‎‏.‏ [Link]
15. Chehregani Rad A, Malayeri BE, Mohsenzadeh F, Shirkhani Z. Screening for plants and rhizospheral fungi ‎with bioremediation potency of petroleum-polluted soils in a Tehran oil refinery area. Toxicological & ‎Environmental Chemistry. 2014;96(1):84-93.‎ [Link]
16. Merkl N, Schultze-Kraft R, Infante C. Assessment of tropical grasses and legumes for phytoremediation of ‎petroleum-contaminated soils. Water Air Soil Pollut. 2005;165(1-4): 195-209.‎ [Link] [DOI:10.1007/s11270-005-4979-y]
17. Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, et al. ‎Phytoremediation of petroleum-polluted soils: Application of Polygonum aviculare and its root-associated ‎‎(penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf. ‎‎2010;73(4):613-19.‎ [Link]
18. Sparks DL. Methods for soil analysis. No 5. SSSA Book series. ‎ [Link]
19. Hutchinson SL, Schwab AP, Banks MK. Phytoremediation of aged petroleum sludge: Effect of irrigation ‎techniques and scheduling. J Environ Qual. 2001;30(5):1516-22.‎ [Link]
20. Minai-Tehrani D, Herfatmanesh A, Azari-Dehkordi F, Minuoi S. Effect of salinity on biodegradation of ‎aliphatic fractions of crude oil in soil. Pak J Biol Sci. 2006; 9(8):1531-5.‎ [Link] [DOI:10.3923/pjbs.2006.1531.1535]
21. McCutcheon SC, Schnoor JL. Phytoremediation: Transformation and control of contaminants. New ‎Jersey:John Wiley & Sons; 2004.‎ [Link]
22. Bramley-Alves J, Wasley J, King CK, Powell S, Robinson SA. Phytoremediation of hydrocarbon ‎contaminants in subantarctic soils: An effective management option. J Environ Manage. 2014;142:60-9.‎ [Link] [DOI:10.1016/j.jenvman.2014.04.019]
23. Doni S, Macci C, Peruzzi E, Arenella M, Ceccanti B, Masciandaro G. In situ phytoremediation of a soil ‎historically contaminated by metals, hydrocarbons and polychlorobiphenyls. J Environ Monit. ‎‎2012;14(5):1383-90.‎ [Link] [DOI:10.1039/c2em11016d]
24. Muratova AY, Golubev SN, Dubrovskaya EV, Pozdnyakova NN, Panchenko LV, Pleshakova EV, et al. ‎Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem. Appl ‎Soil Ecol. 2012;56:51-7.‎ [Link]
25. Qin G, Gong D, Fan MY. Bioremediation of petroleum-contaminated soil by biostimulation amended with ‎biochar. Int Biodeterior Biodegradation. 2013;85:150-55.‎ [Link] [DOI:10.1016/j.ibiod.2013.07.004]
26. Wang MC, Chen YT, Chen SH, Chien SC, Sunkara SV. Phytoremediation of pyrene contaminated soils ‎amended with compost and planted with ryegrass and alfalfa. Chemosphere. 2012;87(3):217-25.‎ [Link] [DOI:10.1016/j.chemosphere.2011.12.063]
27. Feng L, Zhang L, Feng L. Dissipation of polycyclic aromatic hydrocarbons in soil amended with sewage ‎sludge compost. Int Biodeterior Biodegradation. 2014;95:200-7.‎ [Link] [DOI:10.1016/j.ibiod.2014.04.012]
28. Ayotamuno JM, Kogbara RB, Agele EA, Agoro OS. Composting and phytoremediation treatment of ‎petroleum sludge. Soil Sediment Contam. 2010;19(6):686-95.‎ [Link] [DOI:10.1080/15320383.2010.515627]
29. Hickman ZA, Reid BJ. The co-application of earthworms (Dendrobaena veneta) and compost to increase ‎hydrocarbon losses from diesel contaminated soils. Environ Int. 2008;34(7):1016-22.‎ [Link] [DOI:10.1016/j.envint.2008.03.004]
30. Stewart K, Karppinen E, Siciliano S. Northern biochar for Northern remediation and restoration. ‎Proceedings of the 2013 Northern Latitudes Mining Reclamation Workshop and 38th Annual Meeting of the ‎Canadian Land Reclamation Association; 2013 September 9-1; Whitehorse, Canada.‎ [Link]
31. Jahantab E, Jafari M, Motasharezadeh B, Tavili A, Zargham N. Evaluation of the phyto-remediation of ‎rangeland plants in soils contaminated with petroleum, with an emphasis on heavy metal Ni. Environ Sci. ‎‎2016;14(3):107-22. [In Persian]‎ [Link]
32. Singer JW, Kohler KA, Liebman M, Richard TL, Cambardella CA, Buhler DD. Tillage and compost affect ‎yield of corn, soybean, and wheat and soil fertility. Agron J. 2004;96(2):531-7.‎ https://doi.org/10.2134/agronj2004.5310 [Link] [DOI:10.2134/agronj2004.0531]
33. Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E. Effect of cow manure biochar on maize ‎productivity under sandy soil condition. Soil Use Manage. 2011;27(2):205-12.‎ [Link] [DOI:10.1111/j.1475-2743.2011.00340.x]
34. Fellet G, Marchiol L, Delle Vedove G, Peressotti A. Application of biochar on mine tailings: Effects and ‎perspectives for land reclamation. Chemosphere. 2011;83(9):1262-7.‎ [Link] [DOI:10.1016/j.chemosphere.2011.03.053]
35. Agassi M, Levy GJ, Hadas A, Benyamini Y, Zhevelev H, Fizik E, et al. Mulching with composted municipal ‎solid wastes in Central Negev, Israel: I. Effects on minimizing rainwater losses and on hazards to the ‎environment. Soil Till Res. 2004;78(1):103-13.‎ [Link]
36. Bresson LM, Koch C, Le Bissonnais Y, Barriuso E, Lecomte V. Soil surface structure stabilization by ‎municipal waste compost application. Soil Sci Soc Am J. 2001;65(6):1804-11.‎ [Link] [DOI:10.2136/sssaj2001.1804]

Add your comments about this article : Your username or Email:

Send email to the article author