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Aims: The primary objective of the study is to examine the simultaneous use of machine learning 
with complex modeling processes and to compare their accuracy with that of the frequency ratio 
method, a simple statistical method, in northern Tehran. Due to its milder climate compared to 
Tehran City, residential areas and gardens have developed, leading to increased road construction 
and, in turn, a rise in landslide incidents. 
Material & Methods: A landslide distribution map was prepared using Google Earth and field 
survey data. Twelve factors were selected as conditioning factors. Generalized linear models, 
multivariate adaptive regression splines, and frequency-ratio models were applied to generate 
susceptibility maps. The ROC curve was used for model validation. The areas of the susceptibility 
classes were also calculated for three models.
Findings: The FR and GLM models achieved good accuracy, while the MARS model demonstrated 
very good accuracy. The areas under the ROC curves were 0.771, 0.767, and 0.822 for the FR, GLM, 
and MARS models, respectively. The susceptibility classes show that 37%, 44%, and 44% of the 
study area have high and very high susceptibility in the FR, GLM, and MARS models, respectively. 
Conclusion: The calculated susceptibility area indicates that the region is very susceptible to 
landslides, warranting careful attention in regional planning and development. Geographical da-
tasets and landslide susceptibility maps provide valuable resources for sustainable planning in 
the area, land-use planning, and identification of vulnerable regions.
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Introduction
Landslides cause enormous losses of 
ecological resources, property, and human 
life. In mountainous regions, mass movement 
and landslides represent major erosional 
processes. Large volumes of soil and 
sediment can enter the river system through 
landslides, causing debris flows in 
mountainous areas [1]. Infrastructure damage 
is caused by the transportation of soil and 
rocks by landslides along the slope 
(breakdown of the gas, water, and sewage 
systems, settlement, and communication 
lines). From January 2004 to December 
2016, an average of 400 fatal landslides 
occurred annually, resulting in 55,997 
deaths worldwide [2]. Human activities cause 
most fatal landslides, and their frequency 
has been steadily increasing over time [2]. 
Landslides account for about 5.08% of all 
global environmental disasters, with nearly 
53.88% of events occurring in Asia [3]. Due to 
its geological conditions, soil characteristics, 
and poor land management, Iran is highly 
susceptible to landslides. According to 
reports in Iran, 187 people were killed in 
landslide events, and many infrastructures, 
including 252.67 km of main roads, 6 km of 
railroads, 3 km of forest roads, and 46 km of 
rural roads, were damaged between 1982 
and 2007. Until 2007, the estimated damage 
from mass movements, particularly 
landslides, was 126893 billion Rials in Iran 
[4]. For example, a landslide in Farsan City, 
Iran (April 1, 1998), resulted in 54 deaths, 
destroyed 40 hectares of farmland, and 
caused the loss of 1,300 livestock [5]. 
Watershed management relies heavily on 
zonation of landslide-prone areas, which are 
critical for assessing environmental threats. 
Landslide susceptibility maps are helpful 
because they continuously display the 

spatial probability of landslides based on the 
influencing factors. A susceptibility map 
shows which regions are susceptible to 
future landslides by simulating landslide 
probabilities, thereby providing more 
references for landslide hazard assessments 
[6, 7]. The most effective strategies for reducing 
landslide hazards are appropriate 
monitoring, accurate assessment, and 
identification of landslide-vulnerable areas. 
Policymaking and management in the area 
utilize landslide susceptibility maps. Because 
landslide occurrence is controlled by 
complex interactions among factors such as 
tectonics, hydrology, vegetation, geology, 
precipitation, temperature, and erosion, 
reliable analytical methods are essential for 
assessing slope instability. 
It is challenging to determine historical 
landslide locations, and the processes that 
cause landslides are complex and ambiguous; 
consequently, assessing landslide 
susceptibility remains difficult [8]. Although 
landslide-sensitive areas have been mapped 
using various methods, no single method 
has proven entirely suitable. The 
performance of a model varies by location, 
and its efficacy differs across regions. For a 
specific study area, the error rates of several 
methods are compared to overcome this 
restriction, and the optimal model is the one 
that achieves the highest accuracy [3]. 
Advances in Geographic Information 
Systems (GIS) and remote sensing techniques 
have facilitated the integration of spatial and 
non-spatial datasets, enabling more robust 
landslide susceptibility analyses at multiple 
scales [9].
There are various techniques for landslide 
susceptibility analysis, such as qualitative, 
physical, quantitative, and semi-quantitative 
models. Statistical and machine learning 
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techniques are particularly effective for 
quantitatively analyzing the bivariate and 
multivariate correlations between landslides 
and effective factors. These methods 
estimate the probability of landslide 
occurrence based on a landslide distribution 
map. Machine learning approaches are more 
accurate and yield better outcomes than 
other quantitative models [3]. Numerous 
studies have examined landslide 
susceptibility using a range of qualitative 
and quantitative methods. Some of these 
models are frequency ratios [10], weight of 
evidence [11, 12], information value [12], logistic 
regression [3], fractal models [6], expert-
knowledge-based models, such as the 
analytical hierarchy process [13], and many 
machine learning techniques. In this study, a 
simple bivariate statistical model (Frequency 
Ratio) and two more complex machine 
learning models (Generalized linear model 
and multivariate adaptive regression spline) 
were applied to produce a landslide 

susceptibility map.
Many studies have utilized machine learning 
for landslide susceptibility assessment in 
various regions. In this context, Li et al. [14] 
used a random forest to create landslide 
susceptibility in Henan Province, China. 
Zhang et al. [15] used a class-weighted method, 
an integrated machine learning model 
(LightGBM and random forests), and 
conventional machine learning (logistic 
regression) to examine landslide 
susceptibility in Yunyang County, Chongqing, 
China. Guo et al. [16] used four data-mining 
techniques for landslide susceptibility 
assessment. These findings indicate that 
data-mining techniques are accurate models 
in Lantian County, China. Zhang et al. [17] used 
SVM, RF, logistic regression, and gradient 
boosting for landslide susceptibility analysis 
in the Conghua, China. Rai et al. [9] applied 
several machine-learning models to assess 
landslides in India. 
A statistical model of the frequency ratio has 

Figure 1) Location of the Gharah Kahriz Watershed in Markazi Province and Iran.

Sea of Oman
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also been widely used. For example, Asmare 
[13] applied frequency ratio and AHP models 
for landslides assessment in Choke Mountain, 
NW Ethiopia. Ahmad et al. [18] used frequency 
ratio and AHP to assess the landslide 
susceptibility in a part of Pakistan. The finding 
revealed that the frequency ratio is better 
than the AHP. Yuvaraj and Dolui [19] and Bisht 
et al. [20] used the frequency ratio model to 
map landslide susceptibility in India. 
The Tehran metropolitan area lies within 
the Alborz Mountains and is bounded by 
the Mosha, North Tehran, and Taleghan 
faults. The development of the Tehran 
residential area on the steep slopes of the 
North Tehran Fault has increased the risk 
of disasters, including floods, earthquakes, 
severe erosion, and landslides. The presence 
of geological formations such as marl, 
sandstone, shale, claystone, and siltstone, 
along with sufficient rainfall to saturate 
the soil, has also increased the region's 
susceptibility to landslides. The existence 
of landslide susceptibility, the high price of 
land in this highland region, and population 
density were the main reasons for this 
study. This research addresses the following 
questions: Which area is more susceptible? 
Which modeling approach provides the 
highest accuracy? How is landslide density 
distributed across conditioning factors?
The simultaneous application of machine 
learning to complex modeling processes and 
the comparison of their accuracy with the 
frequency-ratio method, a simple statistical 
model, are considered the main innovations 
of this research. The primary goal of the study 
is to create a landslide susceptibility map 
using ML techniques and a simple bivariate 
statistical method (frequency ratio) and to 
select the appropriate model for this task 
in northern Tehran. The models used in this 

research included the frequency ratio, GLM, 
and MARS. The selection of these models 
was based on their acceptable accuracy in 
many prior studies. ML techniques usually 
provide acceptable accuracy, but they 
are complex models, and the modeling 
process with them is complicated. Bivariate 
statistical models are straightforward and, 
if they achieve acceptable accuracy, are very 
practical and have a simple working method. 
Since model performance is highly region-
dependent, it cannot be definitively stated 
which model type (simple versus complex) 
will yield higher accuracy in a specific 
area. Therefore, the primary innovation 
of the research is a systematic comparison 
of these two paradigms and an evaluation 
of their accuracy in selecting the optimal 
model for northern Tehran. Also in this 
research, the landslide density for different 
classes of conditioning factors is calculated. 
By calculating the landslide density, the 
susceptibility of each specified class is 
determined, which is valuable for regional 
management and planning.

Materials & Methods
Study Area
The study area is situated in the north of 
Tehran at 35° 47′ 30″ and 35° 58′ N latitude 
and 10′28°51″ and 51° 48′ 20″ E longitude, 
covering an area of approximately 305 Km2 
(Figure 1). The altitude varies between 
1619 and 3645 m a.m.s.l. Land use in the 
area includes rangeland, forest, agricultural 
orchards, residential areas, and water 
bodies. The major faults in northern Tehran 
include Purkan-Vardij, north of Tehran, 
Emamzadeh Davood, and Mosha-Fasham 
[21]. Complex geological structures with 
diverse lithological formations characterize 
the region. According to data from Fashan 
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station, the mean yearly rainfall is about 
700 mm. Due to its milder climate compared 
to Tehran City, urban expansion, including 
the construction of gardens and roads, has 
occurred in this area, leading to an increase 
in landslide incidents. Overall, the complex 
geological conditions, active faults, and steep 
slopes favor the occurrence of landslides in 
northern Tehran.

 

Figure 1) Location of the study area in Tehran and Iran.

Methodology
The following steps describe the research 
process: (1) investigation of landslide 
distribution; (2) landslide susceptibility 
assessment using GLM, MARS, and 
frequency ratio models; and (3) accuracy 

assessment of these three models using ROC 
curves to identify the model most suitable 
for northern Tehran. Figure 2 illustrates the 
research methodology flowchart. 
Data Preparation
Landslide Inventory Mapping
The primary inputs for creating landslide 
susceptibility maps are the landslide and 
non-landslide datasets. In this study, each 
point on the map was assigned a binary value: 
indicates the presence of a landslide, while 0 
represents its absence. Historical documents, 
field surveys, and Google Earth of northern 
Tehran were used to create landslide 
inventory maps. To ensure comprehensive 
coverage, field surveys were conducted 
throughout the region to document both 
recent and historical landslide occurrences. 
Because the mechanisms and conditioning 
factors of different types of mass movements 
vary, only landslide events were considered 
in this stage. In the research area, 120 
landslides were reported, covering an area 
of 1360–100,000 m2. Approximately 30% 
of the landslides were randomly selected 
for validation, and the remaining 70% were 
utilized for modeling. The landslides cover 
an area of 2.45 km2, representing about 
0.8% of the total study area. 
Data Collections
The conditioning factors of a landslide should 
be complete, operational, fundamental, 
measurable, and non-uniform [19]. There 
are no fixed guidelines for determining 
the optimal number of landslide control 
variables to predict landslide susceptibility, 
as this depends on factors such as the size 
and type of landslide, the landscape, and 
data accessibility. A review of the literature, 
field surveys, and considerations of data 
availability led to the selection of 12 factors 
that constituted the spatial database of 

Sea of Oman
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landslide conditioning factors (Figure 3). 
Combinations of geological (lithological units 
and faults), morphological (slope degree, 
aspect, and curvature), and land-use factors 
are among the most commonly utilized in 
this field. The quality of the data mentioned 
above plays a vital role in machine learning 
models, as it affects their efficiency.
First, a 10 m resolution DEM was generated 
from a 1:25000-scale digitized topographic 
map. Elevation factors have been used in many 
studies as the primary factors influencing 
landslide occurrence. Various elevations 
affect other environmental factors such as 
temperature, rainfall, and human activity 
[16]. Using the DEM, slope, slope length, slope 
aspect, TWI, profile curvature, and plan 

curvature were derived. Because slope and 
slope instability are closely related, slope 
is a key factor in susceptibility mapping, 
influencing the dynamic characteristics of 
landslides and the collapse process. Aspect 
affects factors such as solar radiation, 
temperature, hydrological processes, and 
land cover [22]. Length of slope (LS) refers to 
the topographic condition of an area and can 
be expressed as Eq. (1) [23]

  Eq. (1)
	   
where fl denotes flow accumulation, the 
pixel size used was 10 m, and θ represents 
the slope degree.

Figure 2) The flowchart of the research for the landslide susceptibility mapping.
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The TWI describes the soil moisture and 
flow accumulation. High TWI indicates high 
infiltration, and these areas are more prone 
to landslides because water infiltration and 
soil saturation create conditions for them 
to occur. [3]. Changes in ground slope are 
indicated by profile curvature, which can 

be used to predict landslides. The contour 
curvature is described by plane curvature, 
which affects runoff volume [24]. 
The drainage network was extracted 
using a topographic map. The buffer tool 
in ArcGIS (https://www.esri.com) was 
used to determine the distance from the 

Figure 3) Maps of conditioning factors in the north of Tehran.
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streams. Generally, landslide susceptibility 
decreases with increasing distance from 
drainage channels [20]. Highly fractured rocks 
near faults are less stable under seismic 
activity, and proximity to faults significantly 
increases landslide risk. Distances from 
the faults and road maps were calculated 

using GIS. A land-use map was produced 
from LANDSAT 8 images (2023) using an 
integrated ENVI technique. In general, land-
use and land-cover characteristics influence 
the resistance of slopes to landslides. Plant 
roots can protect steep slopes and are usually 
considered soil protectors [19]. A lithological 

Figure 3 Continued) Maps of conditioning factors in the north of Tehran.
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map (scale 1:100000) was prepared in 
the GIS environment using a geology map 
from the Geological Survey of Iran. The 
lithological conditions in northern Tehran 
were grouped into seven main categories 
(Table 1). Lithology is a key factor in 
landslide susceptibility assessments [25]. It is 
generally accepted that lithological features 
significantly affect the permeability and 
strength of the material, thereby influencing 
landslides [19]. The general characteristics of 
all base maps are summarized in Table 2.
The correlation among the conditioning 
factors was assessed using a multicollinearity 
test in SPSS. A VIF value below five and 
a tolerance value above 0.1 indicate an 
acceptable level of independence among 
variables [26]. The computed multicollinearity 
statistics are presented in Table 3. There 
was no correlation between factors in this 
research.
Landslide Susceptibility Mapping
Frequency Ratio (FR)
The correlation between landslide 
occurrences and conditioning factors can 
be inferred by comparing the proportions 
of landslide areas within each factor class. 
The discrepancy in each score between 
the landslides and conditioning factors in 
each class can be easily explained by the 
frequency ratio [19]. The FR value shows the 
strength of association between landslides 
and a particular class of conditioning factors. 
The frequency ratio was determined using 
Eq. (2) [16] in the ArcGIS environment:
	

	 Eq. (2)    

where Ni indicates the number of landslides 
in class i of a conditioning factor. N0 displays 
the total number of landslides, Si is the area 
of class i of this factor, and S0 is the total 

area of the region. A FR value greater than 
1 indicates that the landslide density in 
that class is higher than the average density 
of the region. FR values below 1 indicate 
a lower density of landslides within that 
class [16]. The calculated FR weights were 
incorporated into the ArcGIS environment 
to create a susceptibility map.
Generalized Linear Model (GLM)
The GLM is a statistical approach used 
to describe the relationship between the 
dependent and the independent variables. 
Additionally, it resembles a multiple 
regression approach [27]. The GLM model 
is introduced for maximum-likelihood 
modeling. Regression provides the basis 
for defining the GLM algorithm and can 
demonstrate how the components differ [28]. 
The GLM was fitted with a binomial family 
and a logit link, which is appropriate for 
binary (landslide/non-landslide) data and 
allows straightforward interpretation in 
terms of odds ratios. GLM displays a linear 
predictor as Eq. (3) [29]:
	

	 Eq. (3)

where E(Y), Xβ, and g are the expected 
values of Y, the linear predictor, and the link 
function, respectively.
The variance is a function of μ:
	

	 Eq. (4)

where Bayesian models can be used to 
estimate the β parameter.
Multivariate Adaptive Regression Spline 
(MARS)
The MARS approach is a nonparametric, 
data-driven method for modeling complex, 
nonlinear relationships between dependent 
and independent variables [30]. Eq. (5) defines 
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Table 1) Lithology of northern Tehran.

Group Lithology Group Lithology

A

Young Alluvia Fans 

D

Tuffaceous 

Old Alluvial Fans Shales and Siltstone

Talus Deposits Green Tuffs 

Young and Old Terraces, Residual Soils

E

Gypsum

Conglomeratic Terraces Marl, Sandstone, Gypsum

Morain Thick-Bedded Polygenetic Conglomerate

Scree Andesitic–Dacitic Rocks, Pyroclastic, Tuffs

Young Terraces

F

Thin-Bedded Limestone

Old terraces Thin-Bedded To Massive Limestone

B

Sandstone Marly limestone, marl 

Miocene Deposits (Conglomerate, Sandy 
Marl, Miliolidus limestone) Sandstone, Siltstone, Clay Stone

Sandstone, Mudstone, Siltstone Dolomitic Limestone

Conglomerate, Gypsum Massive Limestone

Conglomerate, Tuff Platy Limestone, 

Sandstone, Green Tuff Marly Limestone

Tuffaceous Sandstone Medium-Bedded Limestone

Tuffite Sandstone Gray Limestone 

Red Conglomerate Gray Massive Dolomitic Limestone

Medium-Thin-Bedded Limestone Black Limestone, Clayey Marl Intercalations

Green Micaceous Shales Intraclastic Limestone

Conglomerate, Gypsum Dolomitic Limestone

C

Gray Laminated Mudstone Sandstone, Shale

Calcareous and Siliceous Shale Trilobite-Bearing Limestone, Marl

Shale and Tuffaceous Sandstone

G

White Quartzite, Quartzitic Sandstone 

Tuff Breccia Red Arkosic Sandstone

D

White and Green Tuff Breccia Siltstone and Shale

Rhyolitic Tuff Black Massive Dolomite

Massive Green Tuff Basic and Intermediate Sills

conglomerate, and Limestone Leuosyenite Porphyry

Rhyolitic Tuff Dacitic Dikes

Bituminous Siltstone and Shale Brown Shale and Siltstone 
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this as a weighted basic function:

n
F(x)=a + a f (x)0 i ii=1

∑ 	 Eq. (5)

where fi(x), n, and f0(x) are the basic functions, 
basic function number, and coefficient of a0. 
Ordinary least squares (OLS) is employed 
to compute every coefficient, whereas the 
basic functions are calculated using Eq. (6).
                dif (x)= S (X -t )f1i fi v(f,i) fi

 ∏   
    	     Eq. (6)

 
where di is the variable number in the ith basic 
function Sji, Xv(j,i) is the vth variable, 1 ≤ v(j,i) ≤ d, 
and tji is the knot location of the corresponding 
variable [31]. Specifically, the MARS model was 
developed with 12 independent variables and, 

after pruning, retained 14 basic functions, 
selected using the minimum generalized 
cross-validation (GCV5) criterion.
Both machine learning models (GLM and MARS) 
were implemented in R, and the resulting 
coefficients were imported into ArcGIS to 
produce landslide susceptibility maps.
Accuracy Assessment
Model performance was evaluated to identify 
the most suitable method for landslide 
susceptibility mapping in northern Tehran. 
The ROC and the area under the curve were 
used to assess model quality. Approximately 
70% of the mapped landslides were used 
to map susceptibility during the modeling 
process. 30% of the landslides were reserved 
for model verification. Eq. (7) was used to 

Table 3) Determine the Correlation between the study factors affecting landslide susceptibility assessment of 
Tehran Province.

Model Std. Error Beta t-Value Sig. Level Tolerance VIF
Constant 0.079 - -19.735 0.000 - -

Plan Curvature 0.005 -0.005 -0.392 0.695 0.640 1.563
LS 0.000 -0.042 -2.729 0.006 0.402 2.486

Lithology 0.046 -0.008 -0.755 0.450 0.926 1.080
Land-Use 0.011 0.149 13.657 0.000 0.808 1.238

Distance to Fault 0.000 -0.061 -5.892 0.000 0.905 1.105
Elevation 0.000 0.395 26.646 0.000 0.438 2.282

TWI 0.005 0.170 9.599 0.000 0.307 3.260
Distance to Drainage 0.000 0.070 6.396 0.000 0.803 1.246

Slope 0.001 0.228 14.492 0.000 0.387 2.587
Aspect 0.017 0.109 10.486 0.000 0.886 1.128

Distance to Road 0.000 -0.263 -18.475 0.000 0.475 2.104
Profile Curvature 0.005 -0.020 -1.912 0.056 0.838 1.193

Table 2) Specifications of Base Maps.

Map Data source Format Resolution Preprocessing

Topographic Map National Cartography Center of Iran Vector 1:25000 -
Drainage Network National Cartography Center of Iran Vector 1:25000 Distance Calculation
Roads National Cartography Center of Iran Vector 1:25000 Distance Calculation
Faults Iranian Geological Survey Vector 1:100000 Distance Calculation
Lithological Map Iranian Geological Survey Vector 1:100000 Convert to Raster

LANDSAT 8 Images USGS Raster - Classification
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determine the ROC curve.

TP+ TNAUC=
PN

∑ ∑ 	 Eq. (7)

where P and N are landslide and non-landslide 
points. The true positive and true negative 
classes are denoted as TP and TN, respectively 
[20]. In addition, sensitivity, specificity, Cohen's 
kappa index, and fourfold cross-validation were 
utilized to validate the models [32]. The Landslide 
Density Index (LDI) was also used to evaluate 
the accuracy of the prepared maps. The density 
of landslides within each susceptibility class 
is used to determine the LDI. Higher landslide 
densities in high-susceptibility zones indicate 
greater model accuracy [33]. 

Findings 
Frequency Ratio Model
To create a map of susceptibility using the FR 
model, total conditioning factor maps were 
classified,  and the weight of each class was 
then calculated using equation 2 (Table 4). 
Finally, the FR values were entered into the 
GIS, and landslide susceptibility was mapped.

Figure 4) Map of landslide susceptibility made with 
the FR model.
GLM and MARS Model
After implementing the GLM and MARS in R, the 

resulting susceptibility values were imported 
into GIS to produce a susceptibility map. Using 
the natural break technique [11], maps were 
divided into low, moderate, high, and very high 
susceptibility categories (Figures 5 and 6). 

Figure 5) Map of landslide susceptibility made with 
the GLM model.

Figure 6) Map of landslide susceptibility made with 
the MARS model.

Accuracy Assessment of the Models 
The area under the ROC curve (AUC) for FR, 
GLM, and MARS was 0.755, 0.751, and 0.808, 
respectively (Figure 7 and Table 5). The 
relationship between the models' accuracy 
and AUC was expressed as follows: weak 
(0.5–0.6), moderate (0.6–0.7), well (0.7–0.8), 
very well (0.8–0.9), and excellent (0.9–1) [34]. 
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Table 4) Frequency ratio of each conditioning factor class.

Factor Attributes Ni Si FR

Elevation/DEM (meter)

<1970 260 602502 0.305

1970-2240 1018 924465 0.780

2240-2500 1260 709088 1.259

2500-2900 1291 588169 1.555

>2900 474 225196 1.492

Slope (degree)

<8 7 189502 0.026

8_17 99 363668 0.193

17-25 655 583483 0.796

25-40 3158 1668809 1.341

>40 384 243958 1.115

Aspect

F 7 6223 0.797

N 258 260458 0.702

NE 675 299325 1.598

E 690 353907 1.382

SE 665 423269 1.113

S 605 502041 0.854

SW 476 516904 0.653

W 579 382869 1.072

NW 344 304424 0.801

Plan Curvature (m⁻¹)

<-0.01 2121 1380146 1.089

-0.01-0.01 212 146865 1.023

>0.01 1970 1522409 0.917

Profile Curvature (m⁻¹)

<-1 611 461350 0.939

-1-1 3007 2103494 1.013

>1 685 484576 1.012

LS (meter)

<18 655 1184200 0.392

18-35 2432 1281467 1.345

35-130 1208 557881 1.535

>130 8 25872 0.219

TWI

<4.5 792 885979 0.634

4.5-6 2291 1325557 1.225

6-11.5 1217 767749 1.123

>11.5 3 70135 0.030

Distance to Road (m)

<400 1647 1302590 0.896

400-900 1326 778475 1.207

900-1500 751 511394 1.041

1500-2200 298 306047 0.690

>2200 281 150914 1.120
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Figure 7) ROC curve of the models used in the study area.

Table 5) Statistical indices for the applied models.

Model Area Standard 
Error

Asymptotic 95 % 
Confidence Interval
Lower 
Bound

Upper 
Bound

GLM 0.751 0.008 0.735 0.767
MARS 0.808 0.007 0.794 0.822

FR 0.755 0.008 0.710 0.771

The results of the sensitivity, specificity, 
fourfold cross-validation, and Cohen’s kappa 
index are presented in Figures 8 and 9.
The findings demonstrated that the MARS 
model's accuracy was very good (0.808). 
The MARS model exhibited the highest 
accuracy. The LDI values for the GLM, 
MARS, and FR models were 1.58, 2.93, and 

Table 4 Continued) Frequency ratio of each conditioning factor class.

Distance to Stream (m)

<70 698 954692 0.518

70-160 1363 998164 0.968

160-250 1157 597970 1.371

250-370 996 407788 1.731

>370 89 90806 0.695

Distance to Fault (meter)

<450 2116 1340322 1.119

450-1000 1156 886078 0.925

1000-1700 929 608864 1.081

>1700 102 214156 0.338

Geology/Lithological Units

A 749 516807 1.027

B 243 170290 1.011

C 2286 1728364 0.937

D 282 201520 0.992

E 490 307915 1.128

F 111 53752 1.463

G 138 70765 1.382

Land-Use

Agriculture-Garden 195 339423 0.407

Forest 472 117512 2.846

Rangeland 3617 2555951 1.003

Residential 15 29108 0.365

Waterbody 0.01 7426 0.001
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1.63, respectively. The LDI results were 
also consistent with the ROC curve results, 
identifying the MARS model as the most 
accurate. The accuracies of the FR and 
GLM models were good (0.755 and 0.751, 
respectively) in northern Tehran. 
Areas of the Susceptibility Classes
The region's landslide susceptibility can be 
demonstrated by comparing the areas of the 
susceptibility classes. A large portion of the 
area in high-susceptibility classes indicates 
the region's overall susceptibility. The areas 
of the susceptibility classes were calculated 
using susceptibility maps (Table 6). The 
results show that approximately 37% (FR) 
to 44% (MARS) of the study area has high to 
very high susceptibility in the models.
 
Table 6) Area of total susceptibility classes for applied model.

Model Susceptibility Classes Area (km2)

Low Moderate High Very High

FR 77.982 112.742 64.014 50.203

GLM 81.476 88.487 81.504 53.475

MARS 86.995 81.768 75.998 60.181

Discussion 
Based on the weight derived from the FR 
model (Table 4), the elevation class of 2,500-
2,900 was identified as the most susceptible. 
Lower elevations in the study area generally 
have lower slopes, and areas with very high 
elevations (>2900 m) are almost uninhabited. 
Therefore, the effect of human endeavors, 
such as road construction, on the instability 
of geological bodies is limited. Similarly, 
Mosaffaie et al. [35] reported that intermediate 
elevation zones in the Alamut watershed 
exhibited higher landslide susceptibility. 
Elevation is one of the most significant 
landslide-driving factors and can intentionally 
alter the quantity, number, intensity, and 

extent of landslides. Elevation indirectly 
controls several landslide-related variables, 
including temperature, precipitation, frost 
effects, and ice melting. Consistent with these 
findings, Pourghasemi et al. [36] identified 
elevation and land use as the two most 
important factors affecting landslides in Iran. 
Hong [37] showed that elevation was the most 
significant conditioning factor for landslides 
in Yongxin County, China. The analysis of 
landslide density by slope class showed that 
the 25-40° slope class had the highest FR 
values. Slope maps are commonly used in 
landslide research because landslides are 
directly related to slope steepness. Slope 
steepness can significantly reduce soil 
cohesiveness and increase the shear stress. 
When slopes exceed 25°, the likelihood of a 
landslide may increase [38]. Gentle slopes are 
expected to experience fewer landslides 
because of the low shear stresses [19]. On very 
steep slopes (greater than 40°), the frequency 
of landslides decreased again because the 
slope has remained steep today, mainly due 
to the lack of potential for landslides. The 
shallow soil depth and the lack of sufficient 
soil for landslides to occur may also explain 
the decrease in landslides in these areas. 
Previous studies have also shown the 
importance of slope [9, 16, 19]. The slope aspect 
analysis revealed that the northeastern and 
eastern slopes had the highest FR values. The 
northeastern and east slopes usually receive 
less moisture, resulting in weaker vegetation 
and greater susceptibility to landslides. The 
aspect is a key factor that governs the 
occurrence of landslides through its effects 
on solar radiation, moisture, seepage 
direction, rainfall, and other critical factors 
[24]. Other researchers, including Dai et al. [25] 
and Yuvaraj and Dolui [19], have emphasized 
the significance of the slope aspect. Among 



Landslide Susceptibility Assessment using ...

ECOPERSIA                                                    	                                                          Fall 2025, Volume 13, Issue 4

422

other topographic parameters, plan 
curvature less than -0.01, profile curvature 
-1 to 1, slope length of 35-130, and TWI of 
4.5-6 demonstrated the highest sensitivity 
to landslides. These factors affect water 
retention and runoff, thereby influencing 
landslides. Asmare [13], Guo et al. [16], 
Chowdhury et al. [3], and Rai et al. [9] also 
pointed out the importance of these factors 
in their studies. For the distance from the 
stream, the frequency ratio was highest in 
the 160-370 meter class. Streams and rivers 
can alter the groundwater distribution and 
erode hillsides. Therefore, a significant 
factor influencing this is the distance 

between them [9, 14, 16, 20]. Generally, it is 
expected that the distance less than the 
stream will have higher susceptibility. 
However, it was observed that the 
susceptibility of classes less than 160 is not 
higher than that of classes from 160 to 370. 
The reason is bank erosion of the stream, 
which prevents soil accumulation and 
landslide formation. Also, within a very 
short distance of streams, there is usually 
good vegetation cover, which helps prevent 
landslides. A distance of 400-900 m from the 
road showed the highest landslide 
susceptibility. The road alters the region's 
physiographic conditions and imposes 

Figure 8) Fourfold plots of FR, GLM, and MARS models.
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greater weight on the region due to vehicle 
traffic. Road construction across hilly, steep 
terrain weakens the rock mass and increases 
the risk of landslides [39]. Roads also 
significantly affect hydrological response, 
leading to changes in runoff and soil 
degradation [28]. Very close to roads, 
protective structures, and stabilization 
measures may reduce landslide occurrence, 

while areas slightly farther away (400–900 
m) experience greater instability. As shown 
in Table 4, areas within 450 m of faults are 
highly susceptible to landslides. Roback et 
al. [40] explained that landslides largely 
depend on the number and density of the 
active faults. Li et al. [14] and Ahmad et al. [18] 
introduced faults as major contributors to 
landslide occurrence.

Figure 9) Fitting performance measures of FR, GLM, and MARS models.
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Investigating the frequency of landslides in 
geological formations showed that Group 
F formations (limestone, marly limestone, 
marl, sandstone, shale, clay stone, siltstone, 
dolomites, black limestone, clayey marl 
intercalations, and trilobite-bearing 
limestone) were the most susceptible to 
landslides. These salt-bearing, fine-grained 
materials readily absorb water, leading to a 
loss of strength and slope failure. Therefore, 
these formations in northern Tehran are 
more susceptible to landslides. Lithology 
is a crucial factor as it affects the physical 
properties of soils and rocks, such as their 
permeability and strength. Hence, many 
researchers have used this factor in their 
studies and have emphasized its role in 
landslide occurrence [9, 37]. Among the land-
use categories in northern Tehran, forests 
showed the highest susceptibility. Forests 
are usually located on steep slopes where 
other landslide conditions are present, which 
is why they are among the most susceptible 
to landslides. In bivariate models, because it 
is not possible to consider the simultaneous 
effects of all factors, the weight assigned to 
a category can be unexpected, reflecting the 
dominance of other factors in that category. 
For example, it is generally expected that 
landslides will be less frequent in forests, 
but because other factors dominate, this 
land use class has shown high susceptibility.
The validation of the models showed that 
the MARS model has the highest accuracy 
in the study area. The MARS model's 
superior performance can be attributed 
to its versatility, precision, and efficiency 
in modeling both continuous and binary 
outcomes. The primary advantages of the 
MARS model are its additive and interactive 
structure, and reduced number of variable 
interactions. In addition, the MARS model 

can be applied in a forward and backward 
stepwise procedure [41]. Other researchers, 
including Zheng et al. [42], Mohammady [43], 
and Rai et al. [9], also confirmed the model's 
accuracy in their studies. In general, machine 
learning techniques have acceptable 
accuracy in susceptibility mapping and 
have been used in many geo-environmental 
studies. Numerous datasets can be handled, 
generalized, and accurately represented by 
machine-learning algorithms [44]. Despite their 
advantages, machine-learning techniques 
require a solid understanding of predictive 
variables because they have demonstrated 
relationships between landslide conditioning 
variables and landslides. Therefore, these 
models can be used by any researcher with 
expertise in statistics and machine learning 
[9]. These models, like many other models, 
also have limitations. The major drawback of 
machine learning is its reliance on training 
data [9].
The frequency-ratio approach, widely used in 
landslide research, can capture the nonlinear 
relationship between the basic environment 
and landslide susceptibility. The most 
significant benefit of the frequency ratio model 
is its ease of use. Therefore, various researchers 
have used this model and confirmed its 
accuracy despite its simplicity [10, 12, 16, 17, 19]. For 
example, Mosaffaie et al. [45] used the Statistical 
index, frequency ratio, and AHP to assess 
the landslide susceptibility in the Shahroud 
watershed, Qazvin. The results indicated that 
the accuracy of the two statistical models 
exceeded that of the AHP model.
One of the most common natural phenomena 
in mountainous regions is landslides, 
which abruptly alter local terrain and 
cause significant damage to agricultural 
lands, roads, residential areas, and other 
infrastructure. Hence, reducing landslide 
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losses is an essential research topic [34]. 
Susceptibility analysis of these areas is 
crucial for building highway corridors, 
developing infrastructure, and preventing 
and reducing landslide-related disasters. 
The calculated area indicates that the region is 
highly susceptible to landslides, underscoring 
the need for careful attention to this natural 
hazard. Geographical datasets and landslide 
susceptibility maps will be helpful for 
sustainable hill planning in the area, land-
use planning, and identification of vulnerable 
regions. The use of the susceptibility map 
in land use planning and multi-hazard 
assessment has been proposed in other 
studies, including Salehpour Jam et al. [46] and 
Salehpour Jam et al. [47] in the Alamut watershed 
and the Razmian region, respectively. Similarly, 
his study contributes to this growing body 
of knowledge by offering insights that help 
stakeholders, policymakers, and the scientific 
community make informed decisions. We can 
utilize low-susceptibility zones for upcoming 
development projects by identifying them, 
whereas mapping high- and very-high-
susceptibility zones requires reducing the risk 
to infrastructure and life. Landslides cause 
damage to residential areas and infrastructure, 
including roads, every year. The best solution 
to prevent damage is to identify susceptible 
areas and control development in these areas. 
A landslide susceptibility map can serve as a 
fundamental tool for land-use planning, risk 
analysis for infrastructure development, and 
other policies in this region. Paying attention 
to the landslide susceptibility map will play 
a significant role in preventing capital waste 
and preserving natural resources and the 
environment. It is recommended that, in multi-
hazard assessments, landslides be considered 
an important hazard in northern Tehran, 
alongside other hazards. 

Conclusion
Due to its geological and topographic 
conditions, the north of Tehran is continually 
exposed to landslides. Hence, a precise and 
accurate map of landslide susceptibility is 
essential for natural resource managers, 
policymakers, and land-use planners to 
develop and apply applicable mitigation 
measures. A landslide susceptibility map for 
northern Tehran was prepared using two 
machine learning models (GLM and MARS) 
and a bivariate statistical model (Frequency 
ratio). The findings indicated that the 
FR and GLM models demonstrated good 
accuracy, while the MARS model showed 
very good accuracy in the study area. The 
areas of the susceptibility classes were 
calculated, and approximately 37% (FR) to 
44% (MARS) of the region has high or very 
high susceptibility in the models. These 
findings indicate that the region is highly 
prone to landslides, warranting immediate 
attention and careful management. Effective 
watershed management depends on the 
identification, categorization, and zonation 
of landslide-prone areas, which are critical 
elements in assessing environmental 
threats. Geographical datasets and landslide 
susceptibility maps will be helpful for 
sustainable hill planning in the area, 
land-use planning, and identification of 
vulnerable regions. The evaluation of the 
models' accuracy indicates their suitability 
for northern Tehran, but this research has 
certain limitations that can be addressed in 
future research. The use of soil data such as 
depth, texture, and chemical composition 
is recommended for future research. 
Another limitation is the absence of rainfall 
data as a conditioning factor. Due to the 
limited number of rainfall stations and the 
challenges of spatial interpolation, it is 
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recommended that rainfall be derived from 
satellite data for future studies. Additionally, 
future work should explore other modeling 
approaches, including multivariate models 
and expert opinion-based models, to identify 
the most suitable model for the region with 
greater confidence. Continuous monitoring 
of new landslides is also recommended to 
enhance validation of susceptibility maps, 
as comparing newly occurring landslides 
with predicted highly susceptible zones 
would provide stronger evidence of model 
reliability.
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