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Aims: This study aims to evaluate the hydrological impacts of check dam systems under 
climate and land-use change scenarios in an arid watershed, and to assess their role in 
enhancing water balance and resilience.
Materials & Methods: The Soil and Water Assessment Tool (SWAT) was calibrated and validated 
with observed streamflow data from the Gharah Kahriz Watershed, Markazi Province, Iran. Four 
simulation scenarios were designed: (1) climate change without check dams, (2) climate change 
with check dams, (3) land-use change without check dams, and (4) land-use change with check 
dams. Future climate scenarios under RCP 2.6, 4.5, and 8.5 pathways were generated using the 
LARS-WG stochastic weather generator. The model was calibrated with observed daily data from 
2005–2021 as the baseline period, and monthly change factors derived from bias-corrected GCM 
outputs were applied to simulate daily weather data for 2021–2098. Simulations were conducted 
for near (2021–2040), mid (2041–2070), and far (2071–2098) future periods, and the results 
were aggregated to assess long-term climatic trends. Land-use maps for 1990, 2000, 2010, and 
2020 were generated from multi-temporal Landsat imagery. Supervised classification techniques 
were applied to distinguish major land-use categories, supported by ground truth data and 
accuracy assessment. The resulting maps provided a consistent spatial framework for analysing 
land-use dynamics and their impacts over the study period.
Findings: In this study, the SWAT model was executed under two conditions—before and after 
the construction of check dams — using baseline period data, including the 2020 land-use 
map and existing climatic records. The results indicate that annual mean runoff increased by 
17%, 24%, and 25% under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively, compared to 
the baseline period. The mean monthly runoff in 2000 and 2010 was higher than in 1990 and 
2020. The inclusion of check dams reduced annual runoff by 53.8 mm (43%), while increasing 
evapotranspiration by 35.4 mm (27%) and groundwater recharge by 18.4 mm (40%).
Conclusion: Check dams substantially mitigate surface runoff while enhancing subsurface 
recharge and evapotranspiration, thereby improving watershed resilience under changing 
climatic and land-use conditions. These results highlight the importance of integrating check dam 
systems into watershed management strategies, especially for: optimizing water-harvesting and 
recharge programs in arid and semi-arid basins; designing adaptive land and water management 
policies that account for future climate uncertainty; and guiding investment priorities for nature-
based solutions to sustain water resource management.
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Introduction 
Climate and land-use changes have 
profoundly influenced the distribution and 
availability of water resources [1,2]. Climate 
change arises from both anthropogenic 
activities and natural processes [3], while 
land-use and land-cover change (LUCC), 
driven by human development, can 
adversely affect watershed hydrology by 
altering surface runoff, infiltration, and 
evapotranspiration. These impacts are 
particularly significant in arid and semi-arid 
regions, where the frequency and intensity 
of floods and droughts have increased. 
Understanding rainfall–runoff processes 
is therefore essential for effective water 
resource management, as climate change and 
LUCC are key drivers of hydrological cycle 
variability [4]. Global warming, one of the most 
critical environmental challenges, intensifies 
extreme rainfall events and modifies 
hydrological processes worldwide [5,6].
To mitigate these effects, various structural 
interventions have been implemented to 
reduce water-induced erosion on sloped 
lands [7, 8, 9]. Among these, check dams are 
widely used to slow down surface runoff, 
enhance water retention, and control gully 
erosion [10, 11, 12, 13]. They also play a vital role 
in reducing sediment transport, improving 
water quality, and modifying streamflow 
regimes within catchments [14, 15, 16, 17, 18]. 
Specifically, check dams are designed to 
reduce peak discharge, extend the time of 
concentration, retain floodwaters, and trap 
sediment, thereby stabilizing watershed 
hydrology [19, 20, 21].
Remote sensing (RS) and hydrological 
modelling are powerful tools for assessing 
environmental changes and their impacts 
on water systems. Advances in GIS and 
RS technologies have facilitated the 
development of spatially distributed models 
capable of simulating watershed-scale 
hydrological behaviour [22]. Among these 

models, the Soil and Water Assessment Tool 
(SWAT) has proven particularly effective 
for simulating the impacts of LUCC, climate 
change, and structural interventions on 
watershed processes using hydrological 
response units (HRUs) [23,24]. Previous 
research has demonstrated the utility 
of SWAT for evaluating the hydrological 
effects of check dams, land-use, and climate 
variability. For instance, Sun et al. (2020), 
using the SWAT model in the Nam Rom River 
basin, reported that structural interventions 
significantly reduced streamflow [22], while 
Shahid et al. (2021) in the Gilgit watershed 
found that increased precipitation under 
changing land-use conditions led to higher 
runoff [25]. Similarly, Yuan et al. (2022) in 
Wangmaogou (WMG) catchment concluded 
that check dams effectively reduced peak 
flows and prolonged flood durations, thereby 
enhancing watershed flood regulation 
capacity [26].
A review of the available literature indicates 
that no such study has been conducted in 
this region to date. While some research 
has examined the role of check dams, their 
influence on the hydrological behaviour 
of watersheds in Iran has received limited 
attention. Moreover, existing studies rarely 
integrate multiple drivers of hydrological 
change. In particular, the combined impacts 
of climate change, land-use dynamics, and 
watershed management practices on runoff 
generation remain largely unexplored. 
Addressing this gap is crucial for developing 
more effective water resource management 
strategies under changing environmental 
conditions. To support sustainable watershed 
management, it is essential to evaluate the 
effects of LUCC and climate change on water 
resources at the regional scale [27,28]. 
The specific objectives of this study are 
to (1) evaluate the impacts of climate and 
land-use changes on runoff generation in 
an arid watershed using the SWAT model, 
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(2) quantify the influence of check dam 
infrastructure on the water budget, and 
(3) analyse the role of check dams in water 
redistribution under future LUCC and 
climate scenarios. In this study, we used 
Representative Concentration Pathways 
(RCPs) because they remain widely used 
in hydrological and watershed studies, 
facilitating comparisons with previous 
research.

Material & methods
Study Area
The Gharah Kahriz Watershed (33°49′–
34°04′ N, 49°33′–49°50′ E) is located south 
of Arak city in Markazi Province, Iran (Figure 
1). The watershed spans approximately 
38240 hectares, with elevations ranging 
from 1790 to 3093 meters above mean sea 
level and a mean slope of 23%. The mean 
annual rainfall is about 341 mm, with 
nearly 70% occurring between November 
and April. The mean annual temperature 
in the region is 11.55 °C, which classifies 
the region as semi-arid according to the 

Martonne aridity index.
This study evaluated the hydrologic 
performance of check dams using the SWAT 
model. The model was first calibrated 
and validated under current land-use and 
climate conditions. Subsequently, hydrologic 
simulations were performed under four 
distinct scenarios, including  (1) climate 
change without check dams, (2) climate 
change with check dams, (3) land-use change 
without check dams, and (4) land-use change 
with check dams. The overall methodological 
framework is illustrated in Figure 2.
Data Collection
The required data included daily rainfall 
and temperature data, land-use maps, and 
topographic and soil data. A 12.5-meter 
resolution Digital Elevation Model (DEM) 
was used. Land-use maps for the years 
1990, 2000, 2010, and 2020 were developed 
using Landsat imagery classification. 
Future climate scenarios under RCP 2.6, 
4.5, and 8.5 pathways were generated using 
the LARS-WG stochastic weather generator. 
The model was calibrated with observed 

Figure 1) Location of the Gharah Kahriz Watershed in Markazi Province and Iran.

Oman Sea
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daily data from 2005–2021 as the baseline 
period, and monthly change factors derived 
from bias-corrected GCM outputs were 
applied to simulate daily weather data for 
2021–2098. Simulations were conducted 
for near (2021–2040), mid (2041–2070), 
and far (2071–2098) future periods, and 
the results were aggregated to assess long-
term climatic trends. The accuracy of the 
land-use maps was evaluated using an 
error matrix approach based on reference 
data derived from high-resolution Google 
Earth imagery and field observations. A 
stratified random sampling method was 
applied to select validation points for each 
land-use class. For each map, a confusion 
matrix was constructed to compare the 
classified pixels with reference data, 
from which overall accuracy, producer’s 
accuracy, user’s accuracy, and the Kappa 
coefficient were calculated. The overall 
classification accuracy exceeded 85%, 
and the Kappa coefficient was greater 
than 0.80, indicating strong agreement 
between the classified maps and reference 
data. These results confirm that the 
classification outputs were sufficiently 
accurate for subsequent hydrological 
modeling and change analysis. To assess 
precision, the classification procedure was 
repeated with different training samples, 
and the resulting accuracies varied by 
less than 3%, indicating consistent and 
reliable classification performance. Soil 
data were extracted from the FAO soil 
map. Daily climate and streamflow data 
(2005–2021) were obtained from Arak, 
Gavar, and Karahroud meteorological and 
hydrological stations within the study area. 
The investigations revealed 10 large check 
dams within the watershed (Figure 2). The 
impacts of these structures were simulated 
during the modeling process using reservoir 
characteristics. Their characteristics are 
presented in Table 1.

Table 1) Characteristics of check dams in the Gharah 
Kahriz Watershed.

Reservoir Volume (m³)Height (m)Check Dam
514054161
260914122
388958113
226187144
485576145
116748126
405792127
74328128
58146119
997681210

SWAT Model Description
The Soil and Water Assessment Tool (SWAT) 
is a semi-distributed, process-based model 
widely used to simulate runoff and watershed 
hydrology on both small and large spatial 
scales [29]. It operates on a daily time step and 
evaluates the impacts of land-use, management 
practices, and structural interventions on 
sediment, water, and nutrient dynamics 
over long periods. The basic modelling unit 
in SWAT is the Hydrological Response Unit 
(HRU). The SWAT model simulates watershed 
hydrology based on several key assumptions 
includes 1) hydrological processes: The 
model assumes that precipitation, runoff, 
infiltration, evapotranspiration, and baseflow 
are the primary processes governing water 
movement in the watershed; 2) spatial 
discretization: The watershed is divided 
into sub-basins and further into hydrologic 
response units (HRUs), which are assumed 
to be homogeneous in terms of  land-use, 
soil type, and slope; 3) temporal scale: 
Hydrological processes are simulated on a 
daily time step, assuming that this resolution 
is sufficient to capture rainfall-runoff 
dynamics in the study area; 4) land-use and 
soil properties: land-use characteristics 
and soil properties are considered static 
within each simulation period, except when 
explicitly modified to reflect changes over 
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time; 5) surface runoff generation: The model 
uses the Curve Number (CN) method to 
estimate surface runoff, assuming that runoff 
is primarily a function of  land-use, soil type, 
and antecedent moisture; 6) groundwater 
processes: Baseflow is modelled using a 
shallow aquifer concept, with the assumption 
that groundwater contribution to streamflow 
can be approximated by linear reservoir 
equations [29, 30]. These assumptions allow 
SWAT to simulate the integrated effects of 
climate, land-use, and management practices 
on watershed hydrology while recognizing 
that model simplifications may limit its 
ability to capture very short-term, localized, 
or extreme events. 

In this study, the watershed, covering 
approximately 38,000 ha  ,was divided into 
167 Hydrologic Response Units (HRUs) 
generated from unique combinations of land-
use, soil type, and slope class. To minimize 
spatial overlap and maintain hydrological 
realism, HRUs were defined using a 10% 
threshold [30, 31]. 
The hydrological component of the SWAT 
model is based on the following water 
balance equation:

s

t

t 0 day s
(

urf a eep gw i
i 1)

S E )Q WW S QW (R
=

− −+ −= −∑
	

Eq. (1) 

where  is the final soil water content (mm),  is 
the initial soil water content (mm),  is daily 

Figure 2) Conceptual framework of the study design.
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precipitation (mm),  is daily surface runoff (mm),  
is daily evapotranspiration (mm),  is percolation 
from the soil profile to the vadose zone (mm), 
and  is groundwater return flow (mm) [32]. 
Model Calibration and Validation
The SWAT model was calibrated for the 2007–
2008 period and validated for 2005–2006 
using daily observed streamflow data. These 
calibration (2007–2008) and validation 
(2005–2006) periods were selected based on 
the availability and continuity of reliable daily 
observed streamflow data for the watershed. 
Check dams constructed in the watershed 
during the reference period were incorporated 
into the model setup. Calibration, sensitivity 
analysis, and uncertainty assessment were 
performed using the Sequential Uncertainty 
Fitting (SUFI-2) algorithm implemented in 
SWAT-CUP [33].
The model's uncertainty was quantified 
using the 95% Prediction Uncertainty 
(95PPU) band. Model performance was 
evaluated using the P-factor (percentage of 
observed data within the 95PPU band) and 
the R-factor (band thickness relative to the 
standard deviation of observations). 
Additionally, Objective Functions Coefficient of 
Determination (R2), Nash–Sutcliffe efficiency 
(NSE), and Percent Bias (PBIAS) metrics were 
used to assess model accuracy (Eq. 2-4):

( )( )

( ) ( )

2n

i i
i 12

n n2 2

i i
i 1 i 1

O O S S
R

O O S S

=

= =

 − −  =
− −

∑

∑ ∑
	

Eq. (2)
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=

=

−
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−

∑
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Eq. (3)

( )
n

i i
i 1

n

i
i 1

O S
PBIAS 100

O

=

=

−
= ×
∑

∑ 	

Eq. (4)

where  is observed data, is simulated data,  
is the mean observed data, is the mean 
simulated data, and n is the number of data.
Simulation Scenarios
In this study, four main scenarios were 
evaluated:
S0 (Baseline): Model calibration and 
validation using observed data (2005–2021) 
and 2020 land-use considering check dams.
S1 (Climate Change): SWAT simulations 
using climate projections under RCP 2.6, 
4.5, and 8.5, keeping land-use fixed at 2020, 
considering check dams.
S2 (land-use Change): Simulations with 
historical land-use maps (1990, 2000, 2010, 
and 2020) and constant climate conditions 
considering check dams.
S3 (Check Dam Impacts): Comparing 
hydrological outputs with and without check 
dams under the same climate and land-use 
conditions. 
In this study, the impacts of ten large check 
dams within the watershed were examined. 
These structures were incorporated into 
the model based on their reservoir storage 
characteristics, primarily by representing 
them as reservoirs with specified storage 
volumes and surface areas within the 
model framework. The dams were not 
explicitly modelled as physical structures 
within individual HRUs, nor were 
channel parameters such as roughness or 
conductivity modified to simulate their 
presence. The effects of dam height and 
number were not the focus of this study and 
were therefore not analysed separately.
 
Findings
Climate and Land-Use Change 
Future climate scenarios under the RCP 
2.6, RCP 4.5, and RCP 8.5 pathways were 
generated using the LARS-WG stochastic 
weather generator. The results indicate that 
both minimum and maximum temperatures 
are projected to increase across all three 
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scenarios, with the most significant increase 
under RCP 8.5. According to the simulations, 
annual rainfall is expected to decrease in 
all near-, mid-, and far-term periods under 
RCP 8.5. In contrast, rainfall is projected to 
increase across all three time periods under 
RCP 2.6. Under RCP 4.5, precipitation is 
expected to decrease during the near- and 
mid-term periods but increase in the far-
term period. Analysis of mean annual runoff 
in the watershed under different land-use 
conditions for 1990, 2000, 2010, and 2020 
revealed considerable temporal variation. In 
1990, approximately 72.58 mm of the total 
annual precipitation was converted into 
surface runoff. In contrast, the corresponding 
runoff depths for 2000, 2010, and 2020 were 
124.03, 122.34, and 69.87 mm, respectively. 
The assessment of surface runoff variations 
across different land-use types indicated 
that the mean annual runoff in the Gharah 
Kahriz Watershed in 2000 was higher than 
in 1990. During this period, agricultural 
lands declined while residential areas 
expanded, resulting in reduced infiltration 
capacity and increased runoff. In 2010, the 
areas of agricultural land and range land 
increased by 3.36% and 1.73%, respectively, 
compared to 2000, leading to a decrease in 
surface runoff. In 2020, the expansion of 
rainfed farming, range land, and irrigated 
agricultural areas, along with the reduction 
of barren lands, further decreased the mean 
annual runoff compared to 2010 and 1990.
Model Calibration and Validation
Sensitivity analysis using SUFI-2 in 
SWAT-CUP identified the most influential 
parameters for model calibration (Table 
2). The sensitivity analysis (Table 2) shows 
that the most sensitive parameters for 
streamflow simulation were CN2 (Curve 
Number), SOL_K (Saturated Hydraulic 
Conductivity), and ALPHA_BF (Baseflow 
Alpha Factor). These parameters strongly 
influence surface runoff, infiltration, and 

baseflow generation, which are the dominant 
hydrological processes in the watershed. On 
the other hand, parameters such as GW_
DELAY (Groundwater Delay), EPCO (Plant 
Uptake Compensation Factor), and SMFMN 
(Minimum Melt Factor for Snowmelt) were 
among the least sensitive. This can be 
explained by the hydroclimatic conditions of 
the study area: snow processes are limited, 
reducing the importance of SMFMN. At the 
same time, EPCO and GW_DELAY represent 
slower or less variable processes that have 
only minor effects on short-term fluctuations 
in daily streamflow.
Table 2) Parameters used in sensitivity analysis, their 
ranges, methods of adjustment, and the final best-fit 
values for calibrating the SWAT model.

Best 
Adjustment 

Value

Parameters Ranges
MethodParameter MaximumMinimum

9.169.199.13VSMFMN
0.1990.20.194VGW_REVAP

313.01313.1309VGW_DELAY
189.8190.7189VCH_K1

241.17241.6240.95VREVAPMN
0.6730.680.67RSOL_K
0.0710.0720.06RCN2

0.19110.19170.191VALPHA_BF
75.8376.0774.4VCH_K2
1.3431.3461.342RSOL_Z
0.4290.4410.424RSOL_AWC

0.00630.00640.0062VEPCO
465.41465.73465.4VGWQMN
0.31270.3150.3125RSOL_ALB

2.612.652.6RSOL_BD

Daily simulations were conducted from 
2005 to 2021, and model performance 
was evaluated using statistical indices. 
During the calibration period (2007–
2008), R² and NSE values were 0.57, with 
a PBIAS of 6.7%. In the validation period 
(2005–2006), R² was 0.67, NSE was 0.58, 
and PBIAS was 6.9% (Table 3). According 
to the results, the evaluation indicators 
(R² and NSE) performed slightly better 
during the validation period compared to 
the calibration period. Several factors can 
explain this result. First, the hydrological 
conditions during the validation years 
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(2005–2006) may have been more stable 
and less influenced by extreme events, 
which often increases model performance. 
Second, the calibration period (2007–2008) 
included greater streamflow variability 
and more extreme events, which generally 
make calibration more challenging and 
can slightly reduce indicator values. Third, 
the model performed well in validation, 
even better than in calibration, indicating 
that it was not overfit and was robust and 
transferable. Similar outcomes have been 
reported in previous SWAT applications, 
where validation statistics occasionally 
exceeded calibration results due to 
differences in hydrological variability 
between periods. These results indicate an 
acceptable agreement between observed 
and simulated streamflow values.

Table 3) Model performances for daily runoff simula-
tion during calibration and validation periods. 

Period R2 NSE P-Factor R-Factor PBIAS

Calibration 
(2007–2008) 0.57 0.57 0.27 0.08 6.7

Validation 
(2005–2006) 0.67 0.58 0.12 0.05 6.9

Figure 3 shows the visual comparison 
of observed and simulated flows, along 
with the 95PPU bands. The SWAT model 
demonstrated satisfactory performance 
in reproducing low to moderate flows and 
capturing the general trend of baseflow 
conditions, with the majority of observed 
values falling within the 95PPU band. 
However, peak discharges were simulated 
with lower accuracy, with several flood 
events either underestimated or shifted in 

Figure 3) Comparison of observed and simulated daily streamflow with 95% prediction uncertainty for calibra-
tion (a) and validation (b).
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timing. This limitation is commonly reported 
in SWAT applications, particularly in arid 
and semi-arid catchments, where the model 
tends to underperform in representing 
short-duration, high-intensity runoff events.  
Climate Change Scenario (S1)
Daily streamflow was simulated under RCP 
2.6, RCP 4.5, and RCP 8.5 scenarios for the 
period 2021–2098. The data were simulated 
for the near, mid, and far future periods, and the 
results were subsequently aggregated. These 
were compared with observed streamflow 
for the baseline period (2005–2021). In all 
future scenarios, simulated streamflow was 
higher than in the baseline period (Figure 4). 

Figure 4) Comparison of observed daily discharge 
(2005–2021) with simulated daily discharge (2021–
2098) under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios.

The most significant increases in monthly 
runoff occurred in January, February, and 
December, with the highest values under 
RCP 2.6. In contrast, monthly runoff in April 
was consistently lower than in the baseline 
period across all scenarios (Figure 5).

Figure 5) Comparison of observed monthly runoff 
(2005–2021) with simulated monthly runoff (2021–
2098) under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios.

Water Balance Components Under RCP 
Scenarios
Table 4 presents the key components of the 
water balance for each RCP scenario. RCP 2.6 
resulted in the highest annual precipitation 
(310.57 mm), but also the most significant 
evapotranspiration losses (248.69 mm). 
Groundwater recharge was lowest under 
RCP 2.6 (33.31 mm) and highest under RCP 
4.5 (59.09 mm). Surface runoff increased 
by 17%, 24%, and 25% under RCP 2.6, RCP 
4.5, and RCP 8.5, respectively, relative to the 
base period. While land-use change from 
bare land to range land typically leads to 
increased infiltration and reduced runoff, the 
observed increase in runoff in this scenario 
is likely influenced by changes in rainfall 
intensity associated with climate change. The 
increased rainfall under this scenario may 
have outweighed the infiltration benefits of 
land-cover change, leading to higher runoff 
volumes despite the shift to range land. 
These findings suggest that climate change 
will intensify runoff generation, particularly 
under more severe emission scenarios.

Table 4) Water balance components under RCP 
scenarios.

Components (mm) RCP 2.6 RCP 4.5 RCP 8.5

Rainfall 310.57 302.4 291.2

Evapotranspiration 248.69 213 208.3

Recharge 33.31 59.09 52.35

Surface Runoff 28.57 30.31 30.55

Land-Use Change Scenario (S2)
Land-use maps for 1990, 2000, 2010, and 
2020 were classified into five categories: 
agricultural/garden lands, dry farming, 
bare land, range land, and residential areas 
(Figure 6). Following the classification of the 
land-use map, the accuracy and validity of the 
classified images were assessed (Table 5). 
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Table 5) Accuracy coefficient of classification of 
land-use map.

Accuracy 
Coefficients 1990 2000 2010 2020

OA 92.1 92.3 99.2 97.6

Kappa 0.9 0.89 0.99 0.97

Over time, the area of bare land declined, 
while range lands and dry-farming areas 
expanded. Simulations showed a difference in 
mean daily discharge between 1990 and 2000 
(3.25 m3.s−1), while a decrease in discharge 
was observed from 2010 to 2020 (Figure 
7). Monthly runoff was highest in April and 
lowest during the dry summer months (June–
September), as shown in Figure 8. 

Figure 7) Simulated mean daily discharge of 
the Gharah Kahriz Watershed based on land-use 
conditions in 1990, 2000, 2010, and 2020.

 (a) (b)

(c) (d)

Figure 6) land-use maps of the Gharah Kahriz Watershed for 1990 (a), 2000 (b), 2010 (c), and 2020 (d).
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Figure 8) Simulated monthly runoff response to 
land-use changes in the Gharah Kahriz Watershed.

As presented in Table 6, land-use changes 
influenced the water balance. From 1990 to 
2020, evapotranspiration increased by 27 
mm, and groundwater recharge rose from 
58.8 mm to 65.6 mm. Surface runoff showed 
an overall decreasing trend, from 76.9 mm 
in 1990 to 73.1 mm in 2020, despite slight 
increases in 2000 (124.11 mm) and 2010 
(122.37 mm). This reduction is attributed 
to increased vegetative cover and improved 
land management practices over time. 
These findings underscore the critical role 
of land-use planning in shaping watershed 
hydrology and regulating runoff dynamics.

Table 6) Water balance components under different 
land-use conditions. 

(mm) Components
Land-Use Maps

1990 2000 2010 2020

Evapotranspiration 165 133.3 138.37 162
Recharge 58.8 43.29 39.96 65.6

Surface Runoff 76.9 124.11 122.37 73.1

* Rainfall in all scenarios was considered constant at 300.7 mm

Check Dam Scenario (S3)
The impact of check dams was evaluated by 
comparing model outputs with and without 
the structures, under identical climate and 
land-use conditions (2020). Figure 9 shows 
that the mean daily discharge decreased 
for flows below 4 m3.s-1 in the presence of 
check dams, whereas higher flows were less 
affected. As shown in Figure 9, check dams 
were effective in reducing low to moderate 
flows (<4 m³. s−1), but their impact on higher 

flows was limited. This reflects structural 
limitations, as check dams have relatively 
small storage capacity and can be quickly 
exceeded during high-intensity rainfall 
events. Once the dams reach capacity, their 
ability to mitigate peak flows diminishes 
significantly. This highlights the need 
for integrated watershed management 
strategies that combine check dams with 
other structural and non-structural flood 
control measures to address extreme flood 
events effectively.

Figure 9) The mean daily discharge before and after 
the check dam construction. 

The 27% increase in evapotranspiration (ET) 
observed in Table 6 is primarily attributed 
to two factors: (i) enhanced soil moisture 
availability due to the water retention effect 
of check dams, which promotes vegetation 
growth and increases transpiration, and (ii) 
direct evaporation from the surface of the 
impounded water behind the check dams. Both 
mechanisms contribute to the overall rise in ET.
Monthly discharge also declined when check 
dams were included in the simulation. The 
most significant reductions occurred in April 
(31%) and November (61%) (Figure 10). 
Figure 10 shows a substantial decrease in 
monthly runoff following the construction 
of check dams, with the most pronounced 
reductions occurring in April (31%) and 
November (61%). This indicates their 
effectiveness in moderating seasonal flood 
peaks. In addition, low-flow conditions during 
dry months became more stable, suggesting 
enhanced baseflow resulting from increased 
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infiltration and groundwater recharge. These 
findings demonstrate that check dams not 
only attenuate runoff extremes but also 
enhance water storage and regulation within 
the hydrological cycle. Overall, the figure 
highlights the dual role of check dams in flood 
mitigation and in strengthening hydrological 
resilience in the Gharah Kahriz Watershed.

Figure 10) Mean monthly runoff before and after the 
construction of check dams. 

Table 7 presents the water balance components 
before and after check dam construction. 
Annual runoff decreased by 53.8 mm (43%), 
evapotranspiration increased by 35.4 mm 
(27%), and groundwater recharge improved by 
18.4 mm (40%).

Table 7) Water balance components under watershed 
operations

Components (mm)
Before 

Check Dams 
Construction

After the 
Check Dams 
Construction

Evapotranspiration 129.7 165.13

Recharge 45.88 64.27

Surface Runoff 125.12 71.3

These results suggest that check dams 
substantially modify watershed hydrology 
by slowing runoff, enhancing infiltration, and 
increasing water storage. Such modifications 
contribute to sustainable water management 
in arid regions. These findings align with 
previous research [34, 35, 36,37,38,39,40], which 
emphasized the importance of check dams in 
increasing soil moisture and promoting local 
groundwater recharge.

Discussion
Climate change can substantially alter 
hydro-meteorological parameters, leading 
to shifts in rainfall intensity, frequency, and 
distribution that directly affect watershed 
hydrology [39]. In this study, simulations under 
RCP 2.6, 4.5, and 8.5 scenarios indicated 
increases of 17%, 24%, and 25% in annual 
mean runoff, respectively, compared with the 
baseline period, confirming that intensified 
precipitation under climate forcing enhances 
surface runoff generation, as also reported by 
Shahid et al. (2021) in the Gilgit Watershed 
[25]. Concurrently, land-use changes over 
the past three decades, particularly the 
expansion of agricultural areas and the 
reduction of rangelands, have modified 
infiltration and runoff dynamics. The 
model results showed higher runoff during 
2000 and 2010, when bare and degraded 
lands were more extensive, highlighting 
the sensitivity of hydrological processes to 
land-cover conversion. When check dams 
were introduced into the system, surface 
runoff was reduced by approximately 43%, 
while evapotranspiration and groundwater 
recharge increased by 27% and 40%, 
respectively, demonstrating their efficiency 
in mitigating runoff peaks and enhancing 
water retention. These outcomes align with 
studies by Sun et al. (2020) and Zahedikhah 
et al. (2024), who reported that check dams 
effectively reduce streamflow and sediment 
yield [37, 41], and with Xu et al. (2013), 
who found improved subsurface storage 
following dam construction [35]. In combined 
climate and land-use change scenarios, 
check dams notably dampened amplified 
runoff responses, reducing hydrological 
extremes and promoting system resilience. 
Comparatively, the influence of climate 
change on runoff generation was found to 
be more pronounced than that of land-use 
change; however, their combined effects 
were synergistic, underscoring the need 
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for integrated watershed management that 
combines adaptive land-use planning with 
structural measures such as check dams 
to sustain water resources under future 
climate variability.

Conclusion 
This study applied the SWAT model to evaluate 
the hydrological impacts of check dam systems 
under various climate and land-use change 
scenarios in an arid watershed. The key 
findings can be summarized as follows:
- Climate change impacts: Surface runoff is 
expected to increase under both RCP 4.5 and 
RCP 8.5 scenarios, highlighting the potential 
for more frequent or intense flood events.
- Land-use change effects: Alterations in 
land-cover influence the water balance 
by modifying evapotranspiration, surface 
runoff, and groundwater recharge.
- Check dam effectiveness: The construction 
of check dams substantially reduces runoff 
peaks, stabilizes low flows, and enhances 
groundwater recharge, demonstrating their 
dual role in flood mitigation and water storage.
This study highlights how climate and 
land-use changes jointly impact watershed 
hydrology, increasing water stress in arid 
regions. Check dams effectively reduce 
runoff extremes and enhance baseflow, 
making them vital for climate resilience. 
Sustainable water management requires 
integrating climate adaptation, land-use 
planning, and structural measures like 
check dams. Stakeholders should prioritize 
strategic check dam placement, community 
engagement, and complementary 
conservation practices. Applying these 
recommendations can improve water 
sustainability and resilience in arid 
catchments facing environmental change.
Research Suggestions and Study Limitations:
This study provides valuable insights into the 
hydrologic impacts of check dams but is limited 
by data availability, particularly for long-term, 

high-resolution climatic and hydrological 
records. Additionally, the effects of dam height 
and number were not separately analysed, 
which could influence localized hydrological 
responses. Future research should focus on 
incorporating finer-scale temporal and spatial 
data, evaluating the cumulative impacts 
of multiple structural and non-structural 
measures, and assessing the socio-economic 
benefits of check dams. Moreover, exploring 
climate change scenarios with a broader 
range of models and downscaling techniques 
would strengthen predictions of watershed 
responses under future conditions.
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