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Aims: Among natural disasters, flooding is recognized as a particularly destructive 
phenomenon that is increasingly occurring, posing a significant threat to urban infrastructure 
and surrounding land-uses. As a result, assessing flood characteristics, such as depth, velocity, 
and the extent of inundation, across different return periods is essential. This research aimed 
to develop and analyze the flood hazard map for Dorud City using the two-dimensional HEC-
RAS model within the RAS Mapper environment. 
Materials & Methods: Initially, flood hydrographs for return periods of 2, 5, 10, 20, 50, 100, 
200, and 500 years were predicted using the HEC-HMS hydrological model and the Frequency 
Storm methodology. These hydrographs were input into the two-dimensional HEC-RAS 
hydraulic model for flood hazard mapping and analysis. Geometric data (perimeters and 
break lines) and upstream/downstream boundary conditions were outlined in RAS Mapper 
using a 12.5-meter resolution Digital Elevation Model (DEM). Flood depth and velocity maps 
were subsequently generated for the specified return periods. Finally, flood hazard maps 
were created using the Australian Institute for Disaster Resilience (AIDR) method within RAS 
Mapper, utilizing the depth and velocity maps produced. 
Findings: The results show that the flood inundation areas for the 50-, 100-, 200-, and 500-
year return periods are 9.587, 9.685, 9.708, and 9.761 km2, respectively. A significant portion 
of the flood-prone area is situated within the high to very high hazard zones. 
Conclusion: Furthermore, the AIDR analysis indicates that these areas are unsafe for all 
buildings, vehicles, and individuals, highlighting the urgent need to implement flood control 
measures to mitigate human and financial losses while promoting sustainable watershed 
management.
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NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, 
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Introduction
Flooding denotes the inundation of 
floodplains due to a river's channel capacity 
exceedance [1]. This hydrologic event can 
induce substantial socioeconomic and 
ecological impacts [2]. Floods, a natural hazard 
that is increasingly prevalent due to 
anthropogenic impacts on natural systems, 
cause substantial damage to urban 
infrastructure, socioeconomic services, and 
economic stability [3-6]. Studies indicate that 
1.81 billion people (approximately 23% of 
the global population) are exposed to flood 
hazards and associated damages [7]. Iran has 
witnessed a series of catastrophic fluvial 
inundations in recent years. These events are 
not solely attributable to the exacerbating 
effects of climate change; anthropogenic 
factors stemming from suboptimal watershed 
management practices have played a 
significant role. Specifically, the expansion of 
urban and rural settlements, combined with 
unsustainable grazing pressures and 
deforestation, has resulted in a significant 
decline in the hydraulic conveyance capacity 
of riverine systems. Illustrative examples 
include the devastating floods of March and 
April 2019, which impacted 25 out of the 
nation's 31 provinces [8]. The provinces of 
Golestan, Ilam, Lorestan, and Khuzestan 
sustained particularly severe damage, 
resulting in over 77 fatalities and an estimated 
$2.2 billion in infrastructural losses across 
both urban and rural landscapes [9]. The 
escalating concentration of infrastructural 
development and socioeconomic capital 
within fluvial corridors and adjacent 
floodplains has amplified the exigency for 
robust flood assessment and estimation 
protocols to mitigate consequential impacts 
[10-11]. Given the heightened frequency of 
inundation events in recent decades and the 
inherent challenges in absolute prevention, 
implementing novel riparian zone 
management strategies and emphasizing 

flood resilience across diverse land-use and 
residential areas has become paramount [12-

13]. While hydraulic structures play a role in 
flood control, comprehensive pluvial risk 
mitigation necessitates a robust geospatial 
database of inundation hazard mapping [8]. A 
fundamental aspect of effective flood hazard 
management involves delineating inundation-
prone areas through hazard mapping to 
mitigate potential damage. However, this 
crucial step in developing nations often 
receives insufficient attention due to 
limitations in accessing high-resolution DEM 
(LiDAR) for accurate geospatial analysis [9,14]. 
Two primary methodologies exist for 
analyzing flood characteristics in River 
floodplains to assess hazards: the integration 
of Geographic Information Systems, remote 
sensing imagery, and historical records, and 
the application of numerical models for 
simulating riverine flow across these 
inundation zones. The latter approach is 
preferentially employed due to its enhanced 
capacity to scrutinize flood attributes and 
yield more precise prognostications [15]. 
Numerical flood models are categorized into 
one-dimensional (1D) and two-dimensional 
(2D) schematizations. While 1D models, such 
as SOBEK 1D, HEC-RAS 1D, and MIKE 1D, 
simplify flood propagation as unidirectional 
flow, neglecting lateral dynamics prevalent in 
real-world fluvial systems, 2D models account 
for flow in both longitudinal and transverse 
channel dimensions, rendering them more 
suitable for complex urban inundation 
scenarios [16]. Among numerical models 
employed in fluvial hydraulics, the Hydrologic 
Engineering Center's River Analysis System 
(HEC-RAS), developed by Brunner [17], stands 
as a prevalent tool for flood hazard simulation, 
adept at modeling steady and unsteady flow 
regimes, sediment transport, and 
temperature-dependent water quality 
assessments within watershed systems [18]. 
Numerous national and international 
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investigations have leveraged the HEC-RAS 
hydraulic model for River Flood hazard 
mapping within diverse watershed 
management paradigms. Selected pertinent 
research includes the study by Desalegn and 
Mulu, which utilized HEC-RAS and GIS for 
delineating flood zones in the Fetam River 
Watershed of Ethiopia. This research 
demonstrated that settlement areas and 
agricultural lands constitute significantly 
high-hazard zones across the entirety of the 
analyzed flood return periods [19]. In a study 
focusing on Ethiopia's upper Awash River 
watershed, Namara et al. employed integrated 
HEC-RAS and HEC-GeoRAS methodologies to 
generate flood inundation maps. Their 
findings indicated a progressive increase in 
the spatial extent of flooding, with inundated 
areas of 71.475, 76.630, 89.150, 100.290, 
105.160, and 109.462 km2 corresponding to 
2-, 5-, 10-, 25-, 50-, and 100-year flood return 
intervals, respectively [20]. Hidayah et al.'s 
investigation, titled "Riverine Flood Hazard 
Mapping of the Pasuruan River in Indonesia 
Utilizing the HEC-RAS Model," elucidated that 
augmenting the flood recurrence interval 
from a biennial to a decennial scale engenders 
a discernible 37% escalation in the spatial 
extent of flood inundation within the 
delineated floodplain [21]. Peker et al.'s 
investigation into the Göksu River in Turkey, 
employing HEC-RAS and HEC-GeoRAS models 
for flood inundation mapping across varying 
return periods, identified a maximum flow 
depth of 10 meters and a peak flow velocity of 
0.7 m.s-1 within the fluvial reach under 
scrutiny [22]. Allah et al.'s investigation within 
the Swat River Watershed, employing the 
HEC-RAS hydraulic model, revealed that an 
increased flood recurrence interval is 
associated with a heightened fluvial 
inundation hazard within the study area [23]. 
Sayyad et al.'s research prepared a flood 
hazard map for the Suk-e-Cham River in 
Kashan, leveraging the HEC-RAS and RAS 

Mapper models. Their findings indicated that 
under a 100-year flood return period, 
approximately 41.5% and 4.5% of the 
Khancheh and Baronagh villages fall within 
the medium to very high flood risk 
classification [24]. Moradi et al.'s investigation 
generated a fluvial inundation map for the 
Kordan River within Alborz Province. Their 
research outcomes demonstrated that under 
return periods of 10, 25, 50, 100, 200, 500, 
and 1000 years, approximately 8, 17, 25, 32, 
41, 53, and 64 hectares of residential, 
industrial, and fallow lands adjacent to the 
riverine corridor would be susceptible to 
flood encroachment [25]. In a hydrological 
assessment conducted by Esfandiari Darabad 
et al., employing the HEC-RAS model for 
morphological flood simulation in the 
Nooranchai River, Ardabil Province, the 
findings indicate that within a 200-year flood 
return period, approximately 329 hectares of 
urban and rural topographies are susceptible 
to inundation, potentially incurring 
substantial hydraulic losses [26]. Bay et al. 
developed a River Flood hazard map for the 
Qarachai Riverine reach in Golestan Province. 
Their research outcomes evinced that with 
augmented flood recurrence intervals across 
the watershed, the spatial extent, inundation 
depth, and concomitant flood risk escalate [27]. 
Vafaei et al. posited in their hydrographic 
investigation, "Flood Hazard Assessment of 
Ferdowsi University of Mashhad Campus 
Utilizing HEC-RAS and HEC-GeoRAS Models," 
that inundation events exceeding a 25-year 
recurrence interval at the terminal outfall of 
the campus and the Water and Electricity 
Canal Conduit precipitate deleterious impacts 
[28]. In a hydrologic investigation focusing on 
the delineation of a shrimp aquaculture site's 
inundation extent within Hormozgan 
Province, Vakili et al. ascertained that for a 
100-year recurrence interval flood event, the 
peak discharge rates in designated drainage 
networks 1, 2, 3, 4, and 5 would be 86, 49, 60, 
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85, and 255 m³. S-1, respectively [29]. A review 
of the existing literature substantiates the 
robust performance of the Hydrologic 
Engineering Center's River Analysis System 
(HEC-RAS) in generating inundation maps 
and subsequently appraising flood risk. 
Consequently, the present research also 
employed the HEC-RAS model for flood 
hazard delineation and analysis. However, 
given that accurate flood hazard mapping and 
its subsequent rigorous analysis necessitate 
two-dimensional hydrodynamic modeling, an 
aspect underrepresented in prior 
investigations, this study utilized two-
dimensional HEC-RAS modeling within the 
RAS Mapper environment to generate and 
analyze flood hazard maps for the Tireh 
Dorud River. This research aims to forecast 
flood hydrographs for recurrence intervals 
ranging from 2 to 500 years and analyze the 
two-dimensional flood hazard map by 
integrating inundation depth and flow 
velocity for the aforementioned return 
periods in the Tireh Dorud River within 
Lorestan Province.

Materials & Methods
Study Area
The urbanized area of Dorud, spanning 
1,781 hectares, is the third most populous 
conurbation in Lorestan Province. It 
is geographically situated within the 
longitudinal range of 48° 58' 46" E to 49° 5' 
45" E and has a latitudinal span of 33° 28' 
38" N to 33° 32' 45" N (Figure 1). The city of 
Dorud, situated in a temperate mountainous 
climate, experiences the highest magnitude 
of precipitation within Lorestan province, 
with a mean annual rainfall of approximately 
686 mm. Peak influxes are registered during 
the autumnal and early vernal months of 
October, November, December, and March, 
respectively. The Tireh Dorud River, the 
paramount fluvial system within Dorud 
City, extends for 11.314 km, with 3.716 km 

traversing the urban matrix. The residual 
segments are situated in the upstream 
and downstream reaches of Dorud. This 
riverine continuum constitutes a critical 
component of the Dez Watershed, ultimately 
discharging into the Persian Gulf [30]. 
Following the 2019 Dorud fluvial inundation 
event, a crisis management report identified 
infrastructural impairments affecting urban 
utilities, rural habitations, agricultural lands, 
and transportation arteries, which were 
quantified to have a fiscal burden exceeding 
395.8769 billion Tomans.
Data Collection and Analysis
The present research aims to analyze a two-
dimensional inundation hazard map for the 
Tireh Dorud River within Lorestan Province, 
considering return periods of 2, 5, 10, 20, 
50, 100, 200, and 500 years. Consequently, 
to achieve the objectives mentioned above, 
hydrologic and hydraulic modeling were 
implemented utilizing HEC-HMS and HEC-
RAS, respectively. Subsequently, inundation 
hazard maps corresponding to the specified 
recurrence intervals were generated 
and categorized within the RAS Mapper 
environment through the AIDR methodology. 
Figure 2 illustrates the flowchart of the 
research.

Figure 1) The location of the study area in Iran and 
Lorestan Province.
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Estimation and analysis of the flood hazard of Tireh 
Dorud River
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Figure 2) Flowchart for the research steps.

HEC-HMS Hydrological Modeling Generating 
Flood Hydrographs using HEC-HMS and 
Frequency Storm Methodology
The present investigation employed 
the Frequency Storm methodology [31], 
leveraging the HEC-HMS hydrologic model, 
to predict and evaluate flood hydrographs 
across various recurrence intervals (2, 5, 
10, 20, 50, 100, 200, and 500 years). The 
Frequency Storm methodology generates a 
synthetic storm from statistical precipitation 
data. This method explicitly computes a 
hyetograph for each subbasin utilizing 
collected data. The Frequency Storm 
methodology features a Component Editor 
that holds parameter data for all subbasins 
within the Meteorological Model, along with 
distinct Component Editors for individual 
subbasins. The comprehensive Component 
Editor for the Meteorological Model 
encompasses parameter data detailing storm 
characteristics. This method is compatible 
with partial or annual-duration precipitation 
depth-duration data. When the computed 
flow output requires a different basis than 
the input precipitation, an Annual-Partial 
Ratio conversion factor can be applied. The 
Storm Duration dictates the precipitation 
event's length and must exceed the Intensity 
Duration. Regional historical storms can 
inform the selection of an appropriate Storm 

Duration. Conversely, the Intensity Duration 
defines the shortest storm period, typically 
aligning with the simulation time step, and 
must be less than the total storm duration. 
If the Simulation Duration surpasses the 
storm duration, subsequent time periods 
will register zero precipitation [32]. For this 
purpose, the requisite data for the HEC-
HMS model, encompassing precipitation, 
discharge, DEM, soil, and Land-use, were 
initially procured. Notably, this investigation 
employed a DEM exhibiting a spatial 
resolution of 12.5 meters. At the same time, 
soil and land-use datasets were sourced from 
the Global Hydrologic Soil Groups website 
and the Esri 2020 Land-Cover database. 
Subsequently, the three constituents of the 
basin model, meteorological model, and 
control specifications were formulated for the 
designated area of inquiry [33]. In the present 
research, for the computation of basin model 
components, the Soil Conservation Service 
curve number method was employed for loss 
estimation, the unit hydrograph method for 
rainfall-runoff transformation, the recession 
method for baseflow separation, and the 
Muskingum method for flow routing [34-35]. 
For the derivation of the Curve Number map, 
2022 Sentinel-2 land-use and hydrologic 
soil group maps were synergistically 
employed [36-37]. Subsequently, hyetograph 
methodologies and six-hour maximum 
precipitation data were used to quantify 
the meteorological component. Within 
the Control Specifications, simulation 
initialization and termination temporal 
parameters were input into the model, 
followed by model execution. Following 
the introduction of initial datasets into the 
model and the acquisition of preliminary 
outputs, the model calibration and validation 
phases were executed, consistent with prior 
investigations, utilizing two distinct events [38-

39]. The model calibration and validation were 
implemented for the periods of February 24 
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to March 1, 2020, and March 24 to March 
30, 2019, respectively, to mitigate possible 
errors and refine the modeling process. The 
performance metrics Percent Bias (PBIAS), 
Root Mean Square Error (RMSE), and Nash-
Sutcliffe Efficiency (NSE) coefficient were 
employed for the comparative analysis 
of observed and simulated data within 
the hydrological modeling framework [40-

41]. Flood hydrographs across recurrence 
intervals of 2, 5, 10, 20, 50, 100, 200, and 500 
years were projected and estimated using 
the calibrated model in conjunction with the 
Frequency Storm methodology.
Parameter Uncertainty Estimation using 
Monte Carlo Methodology
The robustness and credibility of 
flood forecasts are contingent upon 
a comprehensive integration of all 
inherent sources of uncertainty within 
hydrological estimations. Among these, 
parametric uncertainty within hydrologic 
modeling frameworks is a primary driver 
of inaccuracies in flood hydrograph 
prediction [42]. This investigation employs 
a Monte Carlo simulation approach to 
rigorously characterize and propagate the 
uncertainty embedded within the predicted 
hydrograph. At its core, the Monte Carlo 
methodology involves the stochastic 
generation of plausible model realizations, 
derived from a probabilistic representation 
of uncertainty scenarios intrinsic to the 
watershed. Each uncertain input variable 
is iteratively sampled from its designated 
probability distribution function, enabling 
the computation of model outputs across 
an extensive ensemble of scenarios. 
This iterative procedure facilitates the 
examination of output variability and the 
sensitivity of model responses to parametric 
perturbations. A notable challenge within 
the Monte Carlo paradigm is the selection 
of appropriate probabilistic distributions 
for input variables. Due to data scarcity and 

the absence of comprehensive temporal 
records for specific parameters, a uniform 
distribution was used as a surrogate for 
the underlying probabilistic behavior 
[43]. The analysis specifically targeted 
the uncertainty quantification of three 
key hydrological parameters: The Curve 
Number (CN), the Recession coefficient, 
and the Muskingum routing coefficient.
HEC-RAS 2D Hydraulic Modeling Geometric 
Data Representation in RAS Mapper
In the present investigation, a 12.5-meter 
resolution DEM was obtained from ALOS 
PALSAR 12.5m DEM and utilized for 
delineating geometric data, Including 
Perimeter, Break lines, and boundary 
condition lines. The methodological 
approach involved delineating the two-
dimensional floodplain and flow path within 
the RAS Mapper environment. Subsequently, 
based on the DEM, the demarcated 
floodplain and flow path were discretized 
into a computational mesh for hydrodynamic 
modeling, as depicted in Figure 3. The 
methodological approach involved 
delineating the Perimeters and Breaklines 
within the RAS Mapper environment. 
Subsequently, based on the DEM, the 
demarcated Perimeters and Breaklines 
were discretized into a computational mesh, 
as depicted in Figure 3, for hydrodynamic 
modeling [44]. It is pertinent to note that 
contemporary iterations of HEC-RAS 
incorporate an integrated module termed 
RAS Mapper, which endows the software 
with the intrinsic capacity for geometric 
data delineation, thereby obviating the 
necessity for the supplementary HEC-
GeoRAS extension within the hydrodynamic 
modeling workflow [45]. Subsequently, 
upstream and downstream boundary 
conditions were defined. A flow hydrograph 
and normal depth were employed to 
ascertain these conditions for the upstream 
and downstream extents [46, 47].
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Figure 3) Geometric data (Perimeters, Breaklines, 
and Boundary Condition) structuring and 2D mesh 
generation within the RAS Mapper environment.

Manning's n Coefficient Estimation
A critical parameter in hydrodynamic 
modeling, Manning's roughness coefficient 
influences flow velocity and flood 
inundation extent within the fluvial system 
[8]. This coefficient quantifies the resistance 
exerted by the riverbed roughness and 
floodplain materials upon the flow path. 
Its magnitude can vary considerably 
depending upon factors encompassing 
hydraulic conditions, channel sinuosity, 
riverine geomorphology, bed material grain 
size distribution, as well as anthropogenic 
(Like creating obstacles in the flow path 
by humans) and natural (Vegetation) 
influences within the watershed context [9, 

48-49]. Within this investigation, Manning's 
roughness coefficient map was generated 
by acquiring a 2020 land-cover map 
for the area of interest from the Esri 
database, derived from Sentinel-2 imagery. 
Subsequently, leveraging the generated 
land-use/land-cover map in conjunction 
with the Natural Resources Conservation 
Service (NRCS) methodology and Chow's 
suggested values (Figure 4), the spatial 
distribution of Manning's n was established 
[50-51], with resultant roughness coefficients 
for each land-cover category detailed in 
Table 1.

Figure 4) Land-use and Manning roughness coefficient 
maps in the study area.

Table 1) Land-use characteristics and Manning 
roughness coefficient of the study area.

Row Land-use Manning Roughness 
Coefficient

1 Water Body 0.035

2 Agriculture 0.035

3 Residential Area 0.15

4 Rangeland 0.035

5 Orchard 0.15

6 Bare land 0.03
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2D HEC-RAS Hydraulic Modeling for AIDR-
Based Inundation Hazard Mapping
The two-dimensional Hydraulic Engineering 
Center's River Analysis System (HEC-RAS) 
constitutes a prevalent computational 
hydraulics software developed by the US Army 
Corps of Engineers' Hydrologic Engineering 
Center [52]. This sophisticated tool enables users 
to perform analyses of unsteady and steady 
flow regimes for fluvial systems [53]. Leveraging 
physically based governing equations, this 
model provides a more realistic representation 
of the system, owing to the predominance of 
the horizontal dimension over the vertical [54, 55]. 
While one-dimensional models exhibit efficacy 
in simulating in-channel processes, limitations 
arise upon overbank flow inundating the 
floodplain, necessitating higher-dimensional 
approaches for comprehensive flood hazard 
assessment [53]. In the present investigation, 
two-dimensional unsteady hydraulic modeling 
via HEC-RAS version 6.5 was employed to 
delineate flood inundation extents for various 
return periods. The numerical model was 
executed to compute flow depth and velocity 
for recurrence intervals of 2, 5, 10, 20, 50, 100, 
200, and 500 years, subsequently generating 
flood hazard maps. Notably, flood hazard maps 
encompass various delineations, including 
flood inundation maps, flood depth and velocity 
variations, flood wave propagation velocity, and 
flood hazard zonation. Diverse methodologies 
exist for generating flood hazard maps across 
varying return periods. These encompass 
approaches employed by Australia (AIDR), 
NSW, FEMA, the Netherlands, and probabilistic 
flood inundation modeling [56]. Drawing upon 
propositions by researchers such as Smith 
et al. and Costabile et al., the Australian 
methodology (AIDR) demonstrates superior 
applicability for flood hazard categorization 
compared to the aforementioned approaches 
[54, 57]. Consequently, the Australian method 
(AIDR) was adopted in the present research 
for generating and classifying flood hazard 

maps. The AIDR methodology combines 
flow depth and velocity (depth × velocity) to 
generate and categorize flood hazard maps for 
various return periods. It ultimately classifies 
the flood hazard into six distinct categories 
(H1-H2-H3-H4-H5-H6) [24, 58, 59], as presented 
in Table 2. Ultimately, by implementing AIDR 
hazard classification algorithms within the 
RAS Mapper environment (Figure 5), flood 
hazard maps were derived across categories 
H1 to H6 for recurrence intervals of 2, 5, 10, 
20, 50, 100, 200, and 500 years.

Table 2) AIDR table for hazard classification.

Flood 
Hazard

Hazard 
Level Hazard Description

H1 No Flood 
Hazard

Generally safe for vehicles, 
people, and buildings

H2
Very Low 

Flood 
Hazard

Unsafe for small vehicles

H3 Low Flood 
Hazard

Unsafe for vehicles, 
children, and the elderly

H4
Moderate 

Flood 
Hazard

Unsafe for vehicles and 
people

H5 High Flood 
Hazard

Unsafe for vehicles and 
people. All the building 
types are vulnerable to 

structural damage. Some 
less robust building types 
are vulnerable to failure.

H6
Very High 

Flood 
Hazard

Unsafe for vehicles and 
people. All building types 
are considered vulnerable 

to failure.

Findings
Generation of Flood Hydrographs for 
Varying Recurrence Intervals
Within the scope of this investigation, the 
HEC-HMS model underwent sequential 
calibration and validation for the temporal 
windows spanning February 24, 2020, to 
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March 2, 2020, and March 24, 2019, to March 
31, 2019, respectively. Figure 6 elucidates the 
observed and simulated hydrographs for the 
respective calibration and validation epochs. 
After calibration and validation of the model, 
the obtained statistical measures, including 
PBIAS, RMSE, and Nash-Sutcliffe efficiency 
coefficient, were 0.94, 0.2, and 0.969 for the 
calibration period and 14.15, 0.5, and 0.78 
for the validation period, respectively. Table 
3 presents the model performance metrics 
for the calibration and validation phases. 
After calibrating and validating the HEC-
HMS model, employing the calibrated model 
structure and optimized parameter sets, 
flood hydrographs for recurrence intervals 
of 2, 5, 10, 20, 50, 100, 200, and 500 years 
were estimated utilizing the Frequency 
Storm methodology. Tabulated in Table 4 are 
the peak discharge estimations derived from 

the Frequency Storm methodology across 
varying recurrence intervals, revealing a 
discharge of 321.2 m³.s-1 for the 50-year 
event, 338.1 m³.s-1 for the 100-year event, 
354.2 m³.s-1 for the 200-year event, and 
373.5 m³.s-1 for the 500-year event.

Table 3) HEC-HMS model performance metrics for 
calibration and validation.

Stage Calibration Validation

Statistical 
Period

February 24th, 
2020, to March 

2nd, 2020

March 24th, 2019, 
to March 31st, 

2019

PBIAS 0.94 14.15

RMSE 0.2 0.5

Nash-
Sutcliffe 0.969 0.780

Figure 5) AIDR hazard classification algorithms within the RAS Mapper environment.
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Table 4) Peak discharge and Runoff depth estimation 
across varying recurrence intervals.

Return 
Period 
(Years)

Peak Discharge 
(m³.s-1)

Runoff Depth 
(mm)

2 210.2 70.43

5 254.2 82.48

10 278.0 88.98

20 298.1 94.44

50 321.2 100.78

100 338.1 105.37

200 354.2 109.80

500 376.5 115.89

Uncertainty Analysis of Parameter Variability 
in Flood Hydrograph Prediction
The Monte Carlo simulation technique was 
deployed to quantify the aggregate effect of 
all parameters influencing the uncertainty 
of the simulated flood hydrograph. A 
thousand iterative model realizations were 
performed, wherein each pertinent input 
parameter was systematically varied across 
its pre-defined range. Table 5 summarizes 
the statistical indicators of peak discharge 
uncertainty, delineating the contributions 
from the Curve Number (CN), Recession, 
and Muskingum routing coefficients. The 

results indicate that the CN, Recession, 
and Muskingum parameters contributed 
to peak discharge uncertainty at rates of 
approximately 0.72%, 2.10%, and 8.36%, 
respectively. These findings highlight the 
relative influence of key watershed response 
parameters on the robustness of hydrological 
predictions when accounting for parametric 
uncertainty.

Table 5) Statistical indicators of parameter 
uncertainty analysis in the peak discharge of the 
predicted flood hydrograph.

Statistical 
Criteria

Curve 
Number Recession Muskingum

Min 392.49 367.2 348.93

Max 448.40 524.87 1606.30

Mean 417.23 432.00 784.27

Standard 
Deviation 11.25 34.14 246.83

CV (%) 2.70 7.90 31.47

Uncertainty 
Range 55.91 157.64 1257.37

Uncertainty 
(%) 0.72 2.10 8.36

Flood inundation mapping in HEC-RAS 
and flood zone delineation
After geometric data (Perimeters, 
Breaklines, and Boundary Condition 

Figure 6) Hydrograph of observational and simulated data using the HEC-HMS Model.
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Lines) delineation within the RAS Mapper 
environment and the incorporation of 
frequency Storm-derived flood hydrographs 
into the HEC-RAS model, flood inundation 
maps for 2, 5, 10, 20, 50, 100, 200, and 500-

year recurrence intervals were generated. 
Corresponding flood depth and velocity 
maps were produced. Figure 7 illustrates 
the extent of flood depth and velocity 
across varying recurrence intervals. Table 

Figure 7) Flood inundation depth and velocity zonation across varying recurrence intervals.
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6 presents the flood inundation area across 
varying recurrence intervals.
AIDR-Based Flood Hazard Zonation 
Generation Within the RAS Mapper 
Environment
Flood hazard maps for recurrence intervals 
of 2, 5, 10, 20, 50, 100, 200, and 500 years 
were delineated for the Tireh Dorud River 
in Dorud, leveraging the AIDR methodology 
and RAS Mapper scripting. This entailed 
utilizing HEC-RAS output maps of inundation 
depth and flow velocity. Subsequently, 
flood-prone areas were categorized into 
six distinct hazard classes: safe, very low 
hazard, low hazard, moderate hazard, high 
hazard, and very high hazard (H1, H2, H3, 
H4, H5, and H6) [3,54]. The resultant spatial 
distribution and quantitative attributes 
are presented in Figure 8 and Table 7, 
respectively. The findings reveal that across 
all analyzed recurrence intervals within 
the study area, the predominant flood 
hazard category corresponds to the very 

high hazard (H6). Specifically, the spatial 
extent classified as very high flood hazard 
constitutes 53.369%, 53.915%, 56.393%, 
56.054%, 56.023%, 56.867%, 56.863%, 
and 57.305% of the total floodplain for 
the 2, 5, 10, 20, 50, 100, 200, and 500-year 
events, respectively.

Table 6) Areal extent of flood inundation across 
varying recurrence intervals.

Row Flood Return 
Periods (Years)

Flood depth 
(km2)

1 2 8.848

2 5 8.867

3 10 9.616

4 20 9.696

5 50 9.795

6 100 9.810

7 200 9.846

8  500 9.852

Figure 8) Generation of AIDR-based flood hazard maps within the RAS Mapper environment for recurrence 
intervals of 2, 5, 10, 20, 50, 100, 200, and 500 years.
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Table 7) AIDR-based flood hazard categorization across recurrence intervals of 2, 5, 10, 20, 50, 100, 200, and 500 years.

Return Period (Years) Hazard Classification Area (km2) Area (%)

2 

H1 0.244 2.689

H2 0.157 1.726

H3 0.551 6.068

H4 0.779 8.584

H5 2.502 27.564

H6 4.845 53.369

5 

H1 0.142 1.549

H2 0.160 1.748

H3 0.636 6.964

H4 0.769 8.414

H5 2.504 27.410

H6 4.926 53.915

10 

H1 0.338 3.597

H2 0.171 1.818

H3 0.561 5.978

H4 0.660 7.039

H5 2.362 25.175

H6 5.292 56.393

20 

H1 0.275 2.895

H2 0.153 1.618

H3 0.652 6.870

H4 0.712 7.503

H5 2.377 25.060

H6 5.316 56.054

50 

H1 0.280 2.921

H2 0.146 1.522

H3 0.688 7.178

H4 0.700 7.303

H5 2.402 25.053

H6 5.371 56.023
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Discussion
Generation of Flood Hydrographs
According to the statistical criteria obtained, 
including PBIAS, RMSE, and Nash-Sutcliffe 
efficiency coefficient, the model demonstrates 
very good and good performance during the 
calibration and validation periods [60-61]. The 
peak discharge estimations derived from 
the Frequency Storm methodology across 
varying recurrence intervals demonstrate an 
escalating trend in peak discharge and runoff 
volume with increasing return periods, a 
finding congruent with the investigations 
of Namara et al [20]. The strong model 
performance, evinced by robust PBIAS, 
RMSE, and Nash-Sutcliffe coefficients, is 
crucial for reliable hydrological projections. 

This validates the escalating peak discharge 
trend with increasing return periods, 
mirroring recent studies on climate-driven 
extreme events [62]. Such congruence 
reinforces the model's predictive utility 
for flood hazard assessment. Uncertainty 
analysis revealed that the Muskingum 
coefficients demonstrate a greater degree 
of variability in comparison to the Curve 
Number and Recession coefficients. This 
heightened variability is likely a function 
of the intricate hydraulic interactions and 
dynamic geomorphic conditions prevalent 
across various channel segments. These 
factors are critical in governing the processes 
of flood routing, and their variability, in 
turn, disproportionately influences the 

Table 7 continued) AIDR-based flood hazard categorization across recurrence intervals of 2, 5, 10, 20, 50, 100, 200, 
and 500 years.

Return Period (Years) Hazard Classification Area (km2) Area (%)

100 

H1 0.349 3.601

H2 0.149 1.536

H3 0.520 5.374

H4 0.789 8.149

H5 2.370 24.473

H6 5.508 56.867

200 

H1 0.336 3.462

H2 0.090 0.922

H3 0.593 6.111

H4 0.791 8.150

H5 2.378 24.492

H6 5.520 56.863

500

H1 0.203 2.079

H2 0.231 2.368

H3 0.588 6.024

H4 0.776 7.948

H5 2.370 24.276

H6 5.593 57.305
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uncertainty surrounding peak discharge 
estimations throughout the watershed 
[63]. The outcomes of the Monte Carlo 
simulation unveil a pronounced divergence 
in the contributions of Muskingum and 
Curve Number (CN) parameters to peak 
discharge uncertainty. This phenomenon 
mirrors their distinct roles within the 
hydrological modeling paradigm. The CN 
coefficient, which epitomizes the surface 
characteristics and infiltration capacity of 
the watershed, accounted for a mere 0.72% 
of the total peak discharge uncertainty. This 
marginal contribution suggests that the 
model exhibits a low degree of sensitivity 
to fluctuations in this particular parameter. 
Such model stability can be attributed to 
the relatively homogeneous hydrological 
attributes of the study watershed, where 
CN variations fail to induce substantial 
changes in the overall watershed response. 
Consequently, this finding implies that a 
high level of precision in CN estimation may 
exert a lesser influence on the accuracy 
of peak discharge predictions when 
compared to other parameters. Conversely, 
the Muskingum routing coefficients were 
identified as the predominant source of 
uncertainty, contributing a significant 8.36%. 
This result corroborates the notion that the 
model is highly sensitive to changes in these 
parameters. The heightened sensitivity is 
defensible, as these coefficients directly 
govern the intricate processes of flood wave 
routing, including storage, translation, and 
attenuation, within the channel network. The 
hydrodynamic and geomorphic dynamics of 
stream channels, such as variations in slope, 
roughness, and cross-sectional geometry, 
exert a direct influence on these coefficients, 
causing any imprecision or uncertainty 
within them to be expeditiously reflected in 
the peak flow forecasts [64-65].
Flood Inundation Mapping in HEC-RAS
Based on the derived results, the spatial 

extent of flood depth and velocity exhibits a 
consistent pattern across all considered flood 
recurrence intervals, potentially attributable 
to the urban land-use characteristics of the 
region and its location within the floodplain 
[3]. Furthermore, the findings indicate a more 
extensive flood inundation in the upstream 
and midstream reaches of the study area, 
potentially stemming from the gentler slope 
gradient in the upper stream zone compared 
to the downstream section, coupled with the 
presence of alluvial plains in the upstream 
zone, a congruence observed in the research 
of Desalegn and Mulu [19]. The areal extent 
of flood inundation for recurrence intervals 
indicates a positive correlation between 
increasing return periods and the spatial 
expansion of flood-prone areas, a finding 
consistent with the research of Goswami et 
al. [66]. This observed constancy highlights 
how anthropogenic landscape modifications 
and inherent geomorphological attributes 
significantly influence hydraulic responses 
[3]. Notably, the role of urbanization in 
accelerating runoff and shaping flood 
propagation aligns with recent insights. The 
upstream inundation expansion, linked to 
gentler slopes and alluvial plains, reinforces 
principles of fluvial geomorphology, where 
topographic energy dictates flood extent. 
Slope inclination significantly impacts 
runoff generation and flood risk. Gentle 
slopes promote slower overland flow, 
allowing for increased soil saturation and 
water accumulation, which elevates flood 
levels and inundation duration. Conversely, 
steeper slopes facilitate rapid runoff, 
minimizing infiltration excess. Agricultural 
activities, such as intensive tillage, lead to 
soil compaction and reduced infiltration, 
while the removal of vegetative cover and 
wetlands diminishes the watershed's natural 
flood storage capacity. Effective floodplain 
management and soil conservation 
policies, including conservation tillage and 
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cover cropping, are crucial for mitigating 
downstream flood impacts by enhancing the 
watershed's hydrologic response. Moreover, 
the positive correlation between recurrence 
intervals and flood-prone areas emphasizes 
the non-linear increase in hazard footprints, 
necessitating adaptive hazard management 
strategies [67-68].
AIDR-Based Flood Hazard Zonation 
Generation
Based on the derived results, a greater 
spatial extent in the upstream reaches of the 
study area is susceptible to flood inundation, 
primarily due to the presence of agricultural 
lands. This phenomenon is attributed to the 
lower flow velocities across these cultivated 
areas, which leads to waterlogging and 
impedes timely floodwater recession [69]. 
Furthermore, in the central reaches of the 
study area, the presence of the Tireh Dorud 
River and subsequent overbank flooding 
during precipitation events have resulted 
in flood spillover beyond the channel 
conveyance. Consequently, local inhabitants 
have witnessed severe inundation episodes 
in the recent decade, notably the 2019 
flood event, which substantially damaged 
urban infrastructure [70]. In March-April 
2019, flooding in Dorud County caused 
significant damage, impacting 19 urban 
and 318 rural residential units, along 
with approximately 600 commercial and 
industrial establishments in Dorud City. 
Post-disaster assessments of affected areas 
like Dehno and Amirabad corroborate their 
classification within very high flood hazard 
zones, aligning with floodplain delineation 
studies. This analysis further reveals that 
agricultural land practices in upstream areas, 
characterized by reduced flow velocities, 
exacerbate waterlogging and prolong the 
duration of inundation. Such susceptibility 
aligns with recent research highlighting 
how agricultural modifications can intensify 
flood duration and impact local hydrology. 

The central reaches' vulnerability, tied to 
the Tireh Dorud River's overbank flooding 
and historical events like the 2019 flood, 
underscores the critical role of riverine 
geomorphology and extreme precipitation 
in urban flood resilience [71].

Conclusion
Inundation events, originating from 
extreme hydro-climatic natural processes 
that overwhelm the absorptive capacity 
of floodplains, lead to the significant 
perturbation of ecological systems and 
critical biotic zones due to their destructive 
impacts. This hazard represents a principal 
natural calamity within the Iranian territory, 
characterized by the recurrent annual 
manifestation of substantial flooding in at 
least one locale, resulting in considerable 
economic detriments and significant human 
casualties, with the potential for amplification 
through both inherent geomorphic 
factors (topography) and anthropogenic 
modifications (urbanization and 
agricultural practices). Given the occasional 
deliberate and un-engineered alterations 
to the riparian buffers and fluvial corridors 
traversing urbanized zones, contravening 
extant legal frameworks and technical 
specifications, the precise delineation of 
inundation characteristics and the extent 
of floodwater encroachment across varying 
recurrence intervals, a process termed flood 
zonation, assumes paramount significance 
for mitigating adverse flood impacts 
and formulating effective management 
strategies within high-hazard areas. The 
research findings indicate that, within this 
study, uncertainty arising from Muskingum 
routing parameters is demonstrably more 
critical than that associated with surface 
response parameters such as Curve Number 
(CN). This highlights the imperative of 
dedicating greater effort to the meticulous 
data collection and precise calibration of 
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flood routing parameters. Consequently, 
to enhance the accuracy of peak discharge 
forecasts, research endeavors and resources 
should be primarily directed toward refining 
the estimation of Muskingum coefficients 
over CN. This strategic focus will substantially 
improve modeling efficiency and facilitate 
more informed flood control management 
decisions. Based on the findings obtained 
within the upper and mid-reach segments 
of the delineated study area, a consequence 
of diminished gradient relative to the 
downstream sector is that the spatial extent 
of inundation is notably more expansive. 
Considering the prevalent land-use patterns 
in these zones, predominantly characterized 
by agricultural and residential activities, 
a substantial area remains susceptible to 
flood hazards across all analyzed recurrence 
intervals. Specifically, during the 2, 5, 10, 20, 
50, 100, 200, and 500-year return periods, 
areas of 9.077, 9.137, 9.383, 9.484, 9.587, 
9.685, 9.708, and 9.761 km2, respectively, are 
projected to be at hazard of fluvial inundation. 
Furthermore, considering the derived 
outcomes across all recurrence intervals, a 
substantial proportion exceeding 50% of the 
flood-prone area is classified within the very 
high-hazard stratum, rendering these zones 
precarious for all structures, conveyances, 
and individuals. Urban morphology critically 
exacerbates flood risk by impeding natural 
hydrological processes. Channel constraints, 
resulting from urban development near 
waterways, reduce channel capacity and 
force overbank flow. Concurrently, high 
building density replaces permeable 
surfaces with impermeable surfaces, 
drastically increasing surface runoff and 
overwhelming urban drainage systems. 
This combination of reduced infiltration 
and constrained flow creates a feedback 
loop, thereby elevating flood hazards and 
underscoring why these areas consistently 
rank as "unsafe for all." This finding mandates 

the immediate prioritization of resources 
toward these zones, shifting the focus 
from non-structural measures to decisive 
structural interventions. Such engineering-
based solutions, including the construction 
of levees, floodwalls, and retention basins, 
are essential for physical mitigation. 
Furthermore, the data necessitate a review of 
land-use policies to restrict development in 
high-risk areas and serve as a critical prompt 
for public preparedness and awareness. 
Consequently, it is recommended that the 
prevention of non-engineered construction 
within the riparian corridors and fluvial 
systems be prioritized, alongside the 
implementation of protective revetments 
and alternative flood control methodologies 
to avert infrastructure damage within the 
study perimeter. Addressing flood hazards 
effectively requires a dual approach, 
integrating non-structural and structural 
strategies to counteract the amplifying 
effects of urbanization and agriculture. Non-
structural tactics involve rigorous floodplain 
zoning and land-use planning, prioritizing 
nature-based solutions like riparian buffer 
restoration and wetland creation to enhance 
natural flood attenuation, alongside 
promoting sustainable agricultural practices 
and developing robust early warning systems 
for community preparedness. Concurrently, 
structural interventions include targeted 
flood protection infrastructure (e.g., 
revetments, floodwalls), optimized urban 
drainage enhancements incorporating 
green infrastructure, and the establishment 
of controlled floodways. Ultimately, the 
success of these measures hinges on a 
collaborative Integrated Water Resource 
Management (IWRM) framework, tailoring 
solutions to specific geomorphological and 
anthropogenic contexts.
Limitations and Uncertainties of the 
Research
This study's findings are contextualized by 
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several inherent limitations and sources of 
uncertainty, primarily stemming from the 
modeling approach and the availability of 
data. The Monte Carlo simulation revealed 
that the Muskingum routing coefficients are 
the predominant source of uncertainty in the 
flood hydrograph generation, contributing 
a substantial 8.36% to the overall peak 
discharge variability. This highlights a 
fundamental limitation of the model's ability 
to fully capture the intricate hydrodynamic 
and geomorphic dynamics of the channel 
network. While the model simplifies these 
complex processes, its high sensitivity to 
Muskingum parameters underscores that 
model performance is highly contingent 
on the precision of these specific inputs. 
Conversely, the minimal contribution of the 
Curve Number (CN) (0.72%) suggests that 
the model is less sensitive to variations in 
surface-level parameters within the studied 
watershed. Furthermore, the accuracy of the 
flood inundation maps is directly tied to the 
resolution of the available Digital Elevation 
Model (DEM), which may not capture all 
intricate micro-topographical features that 
influence water flow.
Recommendation for Policy and Planning
The results of this research offer critical 
insights for effective flood hazard 
management and strategic planning. The 
identified vulnerability of the upstream 
and midstream reaches, primarily due to 
gentler slopes and prevalent agricultural 
and residential land-uses, mandates a 
review of existing land-use zoning policies. 
Policymakers should prioritize restricting 
development in these areas classified within 
the very high-hazard stratum. To enhance 
flood resilience, a dual approach integrating 
non-structural and structural interventions 
is recommended. Non-structural measures, 
such as riparian buffer restoration and the 
implementation of robust early warning 
systems, are essential for proactive 

mitigation. Concurrently, targeted structural 
interventions, including the construction of 
revetments and floodwalls, are necessary in 
high-risk zones, particularly along the Tireh 
Dorud River. Given the high sensitivity of 
the model to the Muskingum coefficients, 
future efforts should prioritize meticulous 
field surveys to obtain more accurate data 
for these parameters, thereby improving 
the reliability of peak discharge forecasts. 
Ultimately, these recommendations advocate 
for a comprehensive and Integrated Water 
Resource Management (IWRM) framework 
that tailors solutions to the specific 
geomorphological and anthropogenic 
context of the watershed.
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