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Aims: The black grouse (BG) is classified as Near Threatened (NT) by the IUCN due to
limited knowledge regarding their optimal habitat conditions. This lack of information has
contributed to its inclusion in the endangered species list. The current research examines
land-use changes in this species’ habitat within the Arasbaran forests of Iran and assesses
how conservation efforts have impacted forest cover by quantifying land features.
Materials & Methods: This study analyzed land cover changes in the Arasbaran Region
using cloud-free Landsat images from 1987, 2000, 2010, and 2022, obtained from the USGS.
The data, preprocessed with Level-1 corrections, were enhanced using vegetation indices
like NDVI, GNDVI, MSAV], and EVI. Atmospheric corrections were applied using the FLAASH
model, and areas above 1500 meters were delineated using DEM layers. Four land cover
classes—forest, rangeland, agriculture, and bareland—were identified through field surveys
and satellite imagery. Land-use maps were created using ENVI's maximum likelihood
classification algorithm and validated with accuracy metrics. Temporal changes in metrics
from 1987 to 2022 were examined with ANOVA and Tukey’s test in SPSS, while PCA identified
sensitive variables in CANOCO.

Findings: The findings revealed that over the past 35 years, the forested area designated as
black grouse habitat increased by 22%. Consequently, the forest patch area decreased from
5,243 hectares in 1987 to 3,658 hectares in 2022. The most significant change was in forest
land, which expanded by approximately 8,907 hectares, mainly due to the conversion 0f9,819
hectares from rangeland to forest. From 2000 to 2010, 24.12% of the region experienced
changes, the most notable being an increase of 11,667 hectares in agricultural land, primarily
from the conversion of 8,195 hectares of rangeland. This has led to a reduction in forest edges
and an increase in habitat connectivity. Additionally, there has been a decline in rangeland,
agricultural land, and barren land within the BG habitat.

Conclusion: The findings indicate that agricultural lands have transitioned into barren
lands over the past 35 years, reflecting the success of protective measures. Furthermore, the
results suggest that habitat conditions for the optimal distribution of the BG species in the
study area are improving. However, more detailed investigations into population changes
of this bird over the past 35 years are needed to fully understand the impact of land-use
changes on its population dynamics.

Keywords: Arasbaran Forests; Black Grouse; Landscape Features; Land-Use.
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Introduction

In recent decades, the reduction of
biodiversity has become increasingly
apparent, recognized as one of the most
significant global changes %, drawing wide
attention from the international community
Bl One of the primary drivers of biodiversity
loss is habitat destruction through land-
use change . Protecting animal and plant
biodiversity requires identifying factors
affecting these indicators . Humans directly
impact land-use to meet their needs, altering
the landscape pattern. Land-use change is
a key factor that affects habitat conditions
and significantly influences the distribution
of wildlife species. In recent decades,
developing countries have experienced
unprecedented land-use changes that
continually reshape ecosystems and lead to
habitat loss and fragmentation . Habitat
loss threatens the diversity and populations
of animal species at both local and global
scales [¢l. Changes in protected wildlife areas
significantly impact ecological systems and
the distribution of wildlife species. These
alterations disrupt the flow of materials and
energy between habitat patches, ultimately
affecting the capacity and services that these
habitats provide [,

To effectively plan and manage human
activities that interfere with environmental
elements while achieving conservation goals,
itis necessary to determine land-use change
patterns 1. Satellite information technology
provides faster, more accurate, and more
cost-effective solutions for continuous
land cover monitoring than traditional
methods such as aerial photography,
ground surveys, or manual mapping. While
aerial photography can capture detailed
images, it is often more expensive and time-
consuming. Ground surveys, though precise,
require a significant workforce and can be
limited in coverage. In contrast, satellite
technology can monitor vast areas quickly

and regularly, allowing for real-time updates
and better analysis of land cover changes
over time 8, Utilizing land surface indicators
as measurable parameters or metrics that
reflect the condition and characteristics of
the Earth's surface alongside remote sensing
techniques enables quantitative evaluation
of land surface changes [°!. These indicators
include vegetation cover, soil moisture,
surface temperature, land cover types (e.g.,
urban, agricultural land, forested areas), and
more.

The black grouse (Lyrurus mlokosiewiczi
Taczanowski) is a valuable species found
exclusively in the Arasbaran forests of
Iran. It is categorized as endangered in
Iran and near-threatened globally [,
The species' distribution range includes
the Forest Mountains of Russia, Armenia,
Georgia, Azerbaijan, Turkey, and Iran [,
In the Arasbaran Region, BG exists within
and outside the Biosphere Reserve. Their
habitat comprises a combination of forest
and rangeland ecosystems, with nesting
occurring under bushes and rocks 2, BG
predominantly inhabits northern slopes
at altitudes above 1500 meters above
sea level 3. Habitat loss or degradation
due to human interventions such as land-
use change, livestock grazing, rural and
nomadic road construction, and hunting
poses the most significant threat to their
survival [1#-16}

Several studies have investigated BG
populations and factors influencing
this species in Iran and other countries.
Etzold (2005) described the habitat of
BG in Azerbaijan, attributing population
decline to human activities such as intense
grazing, vegetation burning, and habitat
destruction. Excessive grazing was identified
as the primary threat to the species in
Azerbaijan. Darvishi et al. (2014) examined
landscape pattern changes in BG habitat
in the Arasbaran Region (1987-2011).



Fragmentation of the landscape disrupted
BG habitat in Arasbaran. Kaboodvandpour
and Shiriazar (2019) identified topography,
land-use, slope, slope direction, and distance
from human settlements as essential
variables influencing BG habitat desirability
in these forests. Ghanbari and Turvey
(2022), based on local ecological knowledge
in the Arasbaran Region, noted a significant
decrease in BG population compared to other
wildlife, attributed to habitat destruction
from increased livestock grazing [7).

The literature review indicates declining BG
populations in the Arasbaran Region and
globally due to human activities. Detailed
studiesonitsthreatsare necessaryto prevent
species extinction. By controlling these
factors, the BG's regeneration process can be
supported. This study aims to evaluate and
quantify landscape changes in BG habitat
in the Arasbaran forests and to identify the
key indicators influencing these changes.
Recognizing the threats to BG habitats
underscores the need for effective planning
and management strategies to mitigate
human impacts and achieve conservation
goals. While previous studies have identified
human activities such as intense grazing and
habitat fragmentation as key threats to BG,
this research advances the understanding
by employing remote sensing to provide
real-time, accurate monitoring of land-use
changes over an extended period. It bridges
the gap between traditional methods and
modern technological approaches, offering
a more efficient and scalable solution for
continuous habitat evaluation. This is
crucial for developing effective conservation
strategies in the region. Continuous
monitoring of land-use change patterns is
crucial for this understanding. The research
will utilize satellite information technology
for its speed, accuracy, and cost-effectiveness
in monitoring land cover changes. The study
will quantitatively assess how land-use

changes impact habitat quality and species
distribution by integrating remote sensing
techniques with land surface indicators.
Ultimately, the goal is to inform conservation
strategies that can reduce habitat loss and
enhance the survival of BG in the region.

Materials & Methods

Study Area

Arasbaran forests are renowned for their
unique habitat, which supports high animal
and plant diversity, some of which are
endangered. Designated as a biosphere
reserve by UNESCO in 1976 (18, 19), these
forests receive annual rainfall ranging from
300 to 600 mm. The region also serves as
a seasonal home for nomadic communities
(201, With altitudes ranging from 450 to 2700
meters above sea level, the current research
focuses on the habitat of the BG situated at
an altitude of 1500 meters above sea level in
the Arasbaran Region ! (Figure 1).

Data Collection and Analysis

Cloud-free Landsat 5 TM and Landsat 8 OLI
images from September 1987, 2000, 2010,
and 2022 (Table 1) were utilized for this study.
These images, provided by the United States
Geological Survey (https://earthexplorer.
usgs.gov/) with L1 corrections, including
geometric and radiometric adjustments to
the raw data, underwent comprehensive
preprocessing for further analysis.

Table 1) Specifications of the used Landsat satellite
images.

Satellite Sen- Attainment Number Row/
Name sor Date ofBands  Path
Landsat5 TM 1987-09-21 7 33/168
Landsat5 TM 2000-09-08 7 33/168
Landsat5 TM 2010-09-04 7 33/168
Landsat8 OLI 2022-09-05 9 33/168

Arasbaran Land Cover Dynamics
In the Arasbaran Region, enhancing the
accuracy of land cover mapping-an essential
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Figure 1) The location of the BG habitat in the Arasbaran Region, East Azerbaijan Province, Iran.

process for environmental monitoring
and management—depends mainly on
using advanced vegetation indices. These
indices, derived from satellite imagery,
provide crucial insights into vegetation
health and distribution. One of the most
widely used indices in this context is the
Normalized Difference Vegetation Index
(NDVI) 221, NDVI calculates the difference
between near-infrared (NIR) and red light
reflected by vegetation, normalized by
their sum, effectively highlighting healthy,
dense vegetation areas. This makes NDVI
a powerful tool for distinguishing between
different land cover types, especially in
heterogeneous landscapes like Arasbaran,
where accurate delineation of forests,
grasslands, and other cover types is vital for
sustainable land-use planning.

In addition to NDVI, other specialized
vegetation indices are utilized to
address specific challenges in land cover
classification in the Arasbaran Region. For
example, the Green Normalized Difference
Vegetation Index (GNDVI) replaces the red
band with the green band, providing greater

sensitivity to variations in chlorophyll
content—essential for assessing plant vigor
and stress 23, The Modified Soil Adjusted
Vegetation Index (MSAVI) is designed to
minimize the influence of soil reflectance,
particularly in sparsely vegetated areas,
making it especially reliable in semi-arid
environments. Meanwhile, the Enhanced
Vegetation Index (EVI) improves upon
NDVI by reducing atmospheric interference
and soil background noise, offering better
performance in densely vegetated regions.
By integrating these indices, researchers can
significantly enhance the precision of land
cover maps in Arasbaran, leading to more
informed decisions regarding conservation
and resource management [24],

The geometric accuracy of the images
was evaluated by overlaying road layers
extracted from 1:25,000 topographic maps
onto the satellite imagery. Additionally, the
radiometric quality was verified by visually
inspecting individual bands and various
color composites on the screen.

The FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes)



atmospheric correction method was applied
tominimize atmosphericeffects.The FLAASH
model is a software package developed by
the Air Force Research Laboratory, Space
Vehicles Directorate (AFRLiVS), Hanscom
AFB, and Spectral Sciences, Inc. (SSI) to
support the analyses of visible-to-shortwave
infrared (Vis - SWIR) hyperspectral and
multispectral imaging sensors 1. FLAASH
derives its 'physics-based’ mathematics
from MODTRAN4 (227, For the FLAASH
parameter setting, any standard MODTRAN
model atmosphere and aerosol types can
be chosen to represent a scene, and a
unique MODTRAN solution is computed for
each image . It can correct the cascade
effect caused by diffuse reflection and is an
excellent atmospheric correction method
(291 The DEM layer isolated areas above 1500
meters altitude for further analysis.

The investigation and field surveys identified
four regional land cover classes: forest,
rangeland, agriculture, and bareland.
Representative samples were introduced into
the model to classify these areas. Using the
Google Earth database and satellite images
from different seasons, a series of points
were selected to capture various conditions
across the four land cover classes. Efforts
were made to ensure an even distribution of
training samples. A total of 275 samples were
collected, with 192 used for classification and
83 randomly selected for accuracy assessment.
A land-use map categorizing forest, rangeland,
agriculture, and bareland for areas above 1,500
meters in altitude was generated using the
maximum likelihood classification algorithm
in ENVI software 3032,

Accuracy Assessment

Confusion matrices were generated by
comparing the validation samples with the
land cover maps to assess the accuracy of the
Landsat data classification. These matrices
are used to calculate general validation
metrics such as Overall Accuracy (OA)

and the Kappa Coefficient (KC), as well as
individual metrics like User’s Accuracy (UA),
Producer’s Accuracy (PA), and the F-score
(FC) B3I, The user's accuracy (Eq. 1) reflects
the probability that a pixel has been correctly
classified. In contrast, Producer's Accuracy
(equation 2) indicates the likelihood that
a sample from the image belongs to the
correct class. Overall accuracy represents
the percentage of correctly classified pixels.
It is calculated by dividing the sum of the
diagonal elements of the confusion matrix
by the total number of pixels (Eq. 3). Due to
limitations in Overall Accuracy, the Kappa
Coefficient is often used, as it accounts for
the misclassified pixels. It compares the
accuracy of the classification to what would
be expected from a completely random
classification. KC values range from 0 to 1
(or 0% to 100%). A Kappa Coefficient above
80% indicates strong agreement, 40% to
80% indicates moderate agreement, and
below 40% is considered poor 3%,

Eq. (1)
Eq. (2)
Eq. (3)
Eq. (4)

where r is the number of rows, x_ is the
number of observations in row i and column
I, x, and x_ are the marginal totals for row i
and column i, respectively, and N is the total
number of samples.

Calculation of Land Surface Metrics
Several landscape metrics were selected to
characterize landscape features, including
the number of patches, patch density, most
extensive patch index, and total edge length
(Table 2). These metrics were extracted
from the land-use maps for each year using
Fragstats software.



This study comprehensively analyzed land-
use variety and changes to ensure accurate
results. The first step involved using data on
the number of patches (NP) for each land-use
type in each year. Several numerical indices
were calculated to assess the diversity of
land-uses annually, including Margalef
richness, Simpson's equitability, and the
Shannon-Wiener diversity index. Margalef
richness evaluates the number of distinct
land-use types, providing insights into
the overall variety. Simpson's equitability
measures the evenness of distribution
among land-use types, indicating uniformity.
The Shannon-Wiener index combines the
number and proportional distribution of
land-use types, offering a comprehensive
measure of diversity. Together, these indices
enable a detailed understanding of land-use
dynamics and changes over time, essential for
informed land management and conservation
strategies.

In the second step, parametric indices,
including diversity grading curves, were
used to analyze land-use diversity for each
year graphically. The numerical indicators of
land-use diversity were calculated annually,
and the diversity rating curves were plotted
using PAST software version 4.08.

A one-way analysis of variance (ANOVA)
was conducted to examine differences in
the studied metric indicators over time
(1987 to 2022) across different land-use
types. Tukey's test compared the average
metrics between the various land-use types
during the study periods. Both analyses

were performed using SPSS 24 software.
To identify the most critical and sensitive
variable metrics across land uses over time
(1987 to 2022), a principal component
analysis (PCA) was conducted in CANOCO
5.0 software.

Preparation of Nomadic Settlement Dis-
tribution Map

This research used Google Earth imagery and
field observations to create a distribution
map of nomadic settlements. This approach
enabled precise identification and mapping
of settlement locations. The high-resolution
images provided by Google Earth facilitated
the accurate detection of nomadic
settlements across extensive areas. Field
observations further validated the presence
and exact locations of the settlements
identified in the satellite images, ensuring
the reliability and accuracy of the data.
Duetodataavailability constraints, distribution
maps were specifically generated for 2010 and
2022. This temporal selection allowed for a
comparative analysis of settlement patterns
over 12 years, highlighting changes and trends
in the distribution of nomadic populations.

Findings

The resulting maps provide valuable insights
into the spatial dynamics of nomadic
settlements. They can inform planning and
policy decisions on land-use and resource
management in the studied areas. This study
offers a detailed analysis of land-use changes in
the Arasbaran forests, focusing on four key land
cover classes—forest, rangeland, agriculture,

Table 2) Landscape parameters used in the study (Fragstats Software Guide).

Metric name Explanation Range Unit
Number of patches (NP) The total numbetiac;fgzzcshes for a particu- NP >1
. It shows the percentage of the landscape
Largest patch index (LPI) tﬁlat COl}’llsiStS o {) oo lf)igges};c rih 100<0<LPI . Pe;‘centh
. It shows the number of patches in 100 Number of patches per
Patch density (PD) hectares. PD>0 100 ha
Total edge of patch (TEP) The total perimeter of patches of a class TPE>0 meter




Legend

Figure 2) Land-use maps in 1987, 2000, 2010, and 2022.

and bareland—across four snapshots, including
1987, 2000, 2010, and 2022.

Table 3 presents the validation results of
image classification for land-use across four
years: 1987, 2000, 2010, and 2022. For the
forest class, the User’s Accuracy remains
consistently high (91.67% to 100%) across all
years, with Producer’s Accuracy maintaining a
perfect 100%. Rangeland showed variability,
with User's Accuracy ranging from 77.78%
to 94.12% and Producer's Accuracy between
82.35% and 88.89%. Agriculture exhibits
more fluctuation, with User's Accuracy ranging
from 63.64% to 87.5%, while Producer's
Accuracy improves from 69.23% in 1987
to 86.67% in 2022. Bareland shows a slight
decline in Producer's Accuracy, but User's
Accuracy remains relatively stable, ranging
from 84.21% to 94.44%. Overall classification
accuracy remains above 85% in all years, with
Kappa coefficients consistently above 0.80,
indicating substantial agreement between the
classified maps and ground truth data. Figure 2
displays the land-use maps for the four studied

classes—forest, rangeland, agriculture, and
bareland—at altitudes above 1,500 meters in
the Arasbaran forests across four years.
The region's total area at elevations above
1,500 meters is 96,865 hectares. Based on
the land classification results across the
four years studied, forest cover consistently
occupied the most considerable portion of
this area. Forested land reached its peak in
2000 and 2022 (Figure 3).

The number of changes in land use across the
region, measured in hectares over three time
periods, is summarized in Table 4. According
to the results, forest and rangeland areas
increased during the first period (1987-
2000), decreased in the second period
(2000-2010), and then increased again in
the third period (2010-2022). Agricultural
land area declined in the first period but
increased in the second and third periods.
Bareland decreased during the first and
second periods but increased in the third.
From 1987 to 2000, 20.22% of the region
changed. The most significant change was in



Figure 3) The area of the studied land-uses in the Arasbaran Region.

forest land, which expanded by approximately
8,907 hectares, mainly due to the conversion
of 9,819 hectares from rangeland to forest.
From 2000 to 2010, 24.12% of the region
experienced changes, the most notable being
an 11,667-hectare increase in agricultural land,
primarily from the conversion of 8,195 hectares
of rangeland. Finally, between 2010 and 2022,
20.7% of the area changed, with forest land
showing the most significant increase-6,492
hectares-mainly due to the conversion of 6,646
hectares from rangeland to forest.
Measures of the Landscape of the Land
Figure 4 presents the patch count analysis
results for four land cover types—forest,
rangeland, agriculture, and bareland—in
1987, 2000, 2010, and 2022.

Figure 4) The results of calculating the number of
patches (NP) in four Inad-use classes in 1987, 2000,
2010, and 2022.

Table 5 presents the results of patch
density (PD) and total patch edge (TEP)
measurements for five land-use types—
forest, rangeland, agriculture, and
bareland—over 1987, 2000,2010,and 2022.
Patch density (PD) indicates the number of
patches per unit area, and total patch edge
(TEP) represents the total boundary length
of all patches within a land-use type. Forest
land shows a decline in patch density from
1987 to 2000, followed by a gradual increase
in 2022, while its total edge also decreases
over time but starts to rise again by 2022.
Rangeland shows a fluctuating trend in patch
density and total edge, increasing in 2000
and 2022. Agriculture exhibits a decrease
in patch density and total edge after 2000,
while bareland shows an overall increase in
patch density, with a rise in the total patch
edge between 1987 and 2022. These results
highlight the dynamic changes in land-use
patterns over the 35 years.

Figure 5 illustrates the calculation of the
Largest Patch Index (LPI) for four land-use
classes-forest, rangeland, agriculture, and
bareland-across the years 1987, 2000, 2010,
and 2022. The LPI represents the percentage
of the landscape occupied by the largest
patch within each land-use type, providing
insights into landscape dominance and
fragmentation. Over the years, the forest
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Forest 8907 9.20 -6473 -6.68 6492 6.70

Agriculture -7785 -8.04 11667 12.04 -4714 -4.87

Forest no change 24807 25.61 28672.00 29.00 28343.7 31.26

Forest to agriculture 45.7 0.05 102.7 0.11 13.4 0.01

Rangeland no change 13450 13.9 15657 16.16 14709 16.22

Rangeland to agriculture 1713 1.77 8195 8.46 2476.5 2.73

Agriculture no change 8258.5 8.53 10090 10.42 13588 14.98

Agriculture to rangeland 7831 8.08 1573.7 1.62 3936 4.34

Bareland, no change 12400 12.8 9627 9.95 9006 9.93

Bareland to rangeland 4625 4.77 2186 2.26 1380 1.52
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Table 5) The results of the calculation of patch density measurements and total patch edge in five land-uses

during 1987-2022

Land-use Patch Density (PD) Total Edge of Patch (TEP)
1987 2000 2010 2022 1987 2000 2010 2022
Forest 5.5 3.0 3.1 3.8 5146350 3555630 3839670 4251270
Rangeland 9.7 11.6 8.6 12.9 10002510 9819000 8465910 8049330
Agriculture 13.3 13.6 9.9 9.9 9780480 6999180 9077280 7554870
Bareland 10.0 12.5 14.4 12.7 6930630 7202640 6821100 7774770

land-use shows a fluctuating trend in LP]I,
with significant increases in 2000 and
2022, indicating larger contiguous forest
patches during these periods. Rangeland
and agriculture show varied trends, with
both land-use types experiencing shifts
in dominance at different times. Bareland
exhibits more stability, with moderate
changes in LPI throughout the periods.
These trends highlight the shifting landscape
composition and the changing dominance of
different land uses over time.

Figure 5) The results of calculating the largest patch
index (LPI) in four land-use classes in 1987, 2000,
2010, and 2022.

Numerical Diversity Indices of the Land-
Use Type in Different Years

Table 6 presents the indicators of equitability,
richness, and diversity based on the Number
of Patches (NP) index for different land-
use types across the studied periods: 1987,
2000, 2010, and 2022. The Shannon index
(Shannon_H) reflects the diversity of land-
use, with values showing a slight decrease

from 1987 to 2010, followed by a modest
increase in 2022. The Margalef richness
index, which assesses the number of different
land-use types, has remained relatively
stable over the years, with the highest value
recorded in 2010. The Equitability index
(Equitability_]) indicates how evenly the
land-use types are distributed, showing
a decline from 1987 to 2000, followed by
slight increases in subsequent years. These
indicators suggest fluctuations in land-use
diversity and distribution, emphasizing the
dynamic nature of land cover changes over
the examined periods.

Table 6) The indicators of equitability, richness, and
diversity in the studied periods based on the NP index
related to land-use type.

Timeseries Shannon H Margalef  Equitability ]
Np1987 1.342 0.285 0.968
NP2000 1.280 0.283 0923
NP2010 1275 0.287 0.920
NP2022 1.304 0.284 0.940

The diversity profile for 1987 stands out
as distinct, remaining uninterrupted by the
profiles of subsequent years and positioned
higher than those of later years. This indi-
cates that land-use diversity was more sig-
nificant in 1987 than in other years (Figure
6). Following 1987, the profile for 2022 ranks
second, remaining separate from any other
profiles, suggesting a decrease in diversity
since 1987, placing it in a lower category.



Table 7) Variance analysis of changes between different land uses from 1987-2022.

Source of Variation df Sum of Squares Mean Square F P-Value
Between groups 3 170131123.5 56710374.50 20.14 ”0.00
NP Within groups 12 33779932.50 2814994.37
Total 15 203911056
Between groups 3 66.10 22.03 8.56 “0.00
LPI Within groups 12 30.88 2.57
Total 15 96.98
Between groups 3 185.54 61.84 20.15 70.00
PD Within groups 12 36.83 3.06
Total 15 222.37
Between groups 3 5.55 1.85 22.54 *0.00
TE Within groups 12 9.85 8.21
Total 15 6.54

** Significant differences at the level of 1%

In contrast, the profiles for 2000 and 2010
intersect, making it challenging to compare
these two periods in terms of their numer-
ical indicators and overall land-use diversi-
ty. In summary, 1987 ranks highest in user
diversity, followed by 2022 in second place,
while 2000 and 2010 are tied for third.

Figure 6) Diversity profiles of four years using Renyi's
diversity (Ha). The scale parameter (alpha) gives the
order of Renyi's diversity; o = 0 is the logarithm of
species richness, a = 1 equals the Shannon diversity
index, a = 2 is the logarithm of the reciprocal
equability index, a = Inf refers to the proportion of
the most abundant species.

Table 7 presents the results of a variance

analysis examining changes in land-use
between 1987 and 2022, focusing on four
key indicators: Number of Patches (NP),
Largest Patch Index (LPI), Patch Density
(PD), and Total Edge (TE). The results
reveal significant differences between
the groups for all indicators, indicating a
high level of statistical significance (at the
1% level). Specifically, NP, LPI, PD, and TE
showed substantial variations in land-use
characteristics over the studied period. The
significant results imply that changes in
land-use patterns from 1987 to 2022 are
noteworthy, highlighting the need for further
investigation into the factors contributing to
these shifts.

The results of the PCA analysis, aimed at
identifying the most significant and sensitive
variable parameters among land uses over
time, are illustrated in Figure 7. This figure
reveals that the Largest Patch Index (LPI)
vector tends to align closely with forest use
in most years, particularly in 2022, indicating
that forest use has the highest LPI. The first
axis clearly distinguishes forest use from the
other three categories, as shown in the Table
and Figure 7. The parameters associated with



Figure 7) PCA analysis between land-uses over time.

an eigenvector greater than 0.9 on this axis
play a crucial role in differentiating these
land-uses, highlighting them as the most
sensitive parameters. Specifically, LPI values
for 2022 and 2000 emerge as key indicators
for the transition to forest use, reflecting an
increase in these values within forested areas.
Conversely, the number of patches (NP) and
patch density (PD) indices for 2000, along
with NP, PD, and total edge (TE) indices for
2022, show a decline in forest use, while these
indices increase in the other three land-uses,
particularly rangelands.

On the second axis, only the LPI for 2010
stands out as a significant indicator (with
an eigenvector greater than 0.9) that
separates bareland from agricultural land.
However, it does not distinguish between
other uses. Generally, this index increases
with the transition to agricultural use and
decreases with the conversion to bareland.
Additionally, the results in Figure 5 confirm
that the LPI value for agricultural use in 2010
significantly differed from that of bareland,
with agricultural use exhibiting the highest
LPI during this period.

Discussion

The extent of forest land cover is now a vital
indicator of development, underscoring the
importance of effectively managing forest
resources to enhance their quantity and
quality. The results indicate a substantial
increase in forest cover, rising by 21.9%
in 2022 compared to 1987. In contrast,
rangeland decreased by 6.19%, agricultural
land-use fell by 0.86%, and bareland
decreased by 2.16% during the same period.
This trend suggests that while forest cover
has expanded, agricultural land, rangelands,
and bareland have diminished in the studied
area, likely due to protective management
measures, law enforcement, and improved
facilities for local communities surrounding
the forests. Sasanifar et al. (2019) concluded
that longstanding conservation laws in the
Arasbaran forests have positively influenced
forest characteristics. This finding is further
supported by B° and B¢, highlighting the
benefits of forest protection measures.
Although the forest area in 1987 was smaller
compared to 2022, the number of forest
patches was higher in 1987. This suggests



that the increase in forest area by 2022
has resulted in the connectivity of forest
patches, reducing the overall number of
patches. Such continuity may have enhanced
the chances of survival of animal species like
the BG, potentially expanding the habitat
range of this endangered species. Gottschalk
et al. (2007) examined the distribution of
the BG in the Caucasus and Turkey, noting
that reducing forest patches—due to factors
like easier access for hunting and habitat
limitation—can contribute to a decline in
bird populations. Furthermore, the observed
decrease in agricultural land-use, coupled
with an increase in rangeland and barren
land patches, suggests fragmentation within
these ecosystems. In areas designated for
agricultural use, such as Bata, the number
of patches associated with agricultural land
has increased despite reducing the total
agricultural area by 2022. This indicates
that agriculture thrives in small plots within
these forested regions. The dispersion and
intermingling of various land uses in the
high-altitude habitats of the BG species
highlight the need for more detailed studies
to understand the specific effects of land-use
changes on this species.

The analysis of the spot density index
revealed a decrease in this metric for
forest land-use in 2022 compared to 1987.
Specifically, the average number of forest
patches per 100 hectares in 2022 was
3.82, down from 5.48 in 2016. This decline
suggests an expansion of forest cover and
increased patch connectivity resulting
from the reduced patch density index.
Such connectivity may create favorable
conditions for the growth of the grouse
population. Baskaya (2003) identified
habitat destruction, forest fragmentation,
and concentrated forestry practices as
critical threats to this species' habitat in the
mountainous regions of Turkey. Sefidi and
Ghanbari B conducted a quantitative study

on tree saplings in the BG habitat within
Arasbaran. They concluded that forest areas
with a higher density of suitable conditions
and dense stands provide optimal habitats
for this bird. These ideal conditions arise
from intact forests characterized by high
continuity and minimal human interference.
Conversely, the results for the spot density
index regarding agricultural use indicate
a decrease in 2022, while the index for
rangeland land-use shows an increase. This
suggests that the reduction in agricultural
land-use has resulted in the disappearance
of some agricultural patches, which have
subsequently transformed into barren lands
or rangelands. Consequently, this trend has
led to an increase in the number of patches
for both bareland and rangeland in 2022.
The total edge of the patch index indicates a
decrease in the boundary of forest land-use
in 2022, reflecting the connectivity of existing
patches and a reduction in the overall edge.
This reduction suggests a decrease in external
pressures on the forest environment, thereby
creating more favorable conditions for the
presence of the BG species. Faridi and Naseri
(2019) noted that this species thrives in
dense and semi-dense forests in Arasbaran.
Thus, by enhancing the connectivity of forest
patches and minimizing their exposure to
external threats, factors such as hunting,
human entry, and livestock grazing can be
effectively mitigated (8. Behruzi Rad (2016)
identified the destruction of forest habitats
and livestock grazing as the primary threats to
the BG species in the region. Furthermore, the
observed decrease in the boundary between
rangeland and agricultural land, coupled with
an increase in bareland, suggests that future
protective measures could significantly
reduce the impact of agriculture and grazing
in the area B9,

The investigation into the most extensive
patch index revealed that forest land-use
in 2022 accounted for 8.5% of the total



area, a significant decline from 24.9% in
1987. Additionally, the LPI index for both
rangeland and agricultural land uses has
decreased over the past 35 years, while it has
increased for barren lands. Expanding forest
cover creates more significant challenges for
accessing deeper forest areas. It contributes
to the stability of the ecosystem, which
benefits various animal and plant species,
including the grouse. Previous studies have
indicated that areduction in the size of forest
land-use patches typically reflects increased
human interference and intervention I,
Overall, the results suggest that 2000 and
2010 exhibited similar land-use diversity,
indicating minimal changes and relative
stability in land-use patterns. Furthermore,
the latest data from 2022 demonstrate a
significant trend toward connecting forest
patches and enhancing their continuity.
These developments are expected to foster
improved protection and growth of forest
areas, ultimately increasing plant and animal
biodiversity.

The results of this study provide critical
insights into the ecological needs of the
Caucasian Black Grouse (BG) by establishing
a link between land-use changes and the
species' habitat requirements, particularly
for nesting and foraging. The observed
fluctuations in forest and rangeland cover,
patch density, and the Largest Patch Index
(LPI) reflect the dynamic landscape of
the Arasbaran forests, which are vital for
BG's survival. Periods of forest expansion,
particularly noted in 2000 and 2022,
suggest an increase in BG's potential nesting
and foraging grounds, as these areas offer
essential shelter and food resources (20,
38). Conversely, reducing forest cover
and increasing agricultural land in other
periods may lead to habitat fragmentation,
creating challenges for BG by reducing
continuous habitat patches and increasing
edge effects, which can adversely impact

nesting sites under bushes and rocks %42,
Understanding these patterns is crucial for
planning effective conservation strategies to
maintain and restore forest and rangeland
areas to support BG's ecological needs,
ensuring the species' survival and enhancing
habitat quality. Previous studies have also
emphasized the importance of habitat
modeling and spatial analysis in assessing
and mitigating threats to BG populations
(10. 141 Therefore, integrating these findings
with spatial modeling tools can enhance
conservation efforts, as demonstrated by
applying geographical information systems
(GIS) and maximum entropy methods
in predicting BG habitat suitability (8.
The literature consistently highlights the
necessity of preserving contiguous forest
landscapes to mitigate habitat fragmentation
and its adverse impacts on BG populations
(111, Qverall, this study reinforces the
importance of adaptive land management
practices that align with the ecological
needs of the BG, supporting their habitat
preferences and contributing to the broader
conservation objectives in the Arasbaran
biosphere reserve.

Conclusion

This study emphasizes the critical role
of forest land cover as an indicator of
development, highlighting the need to
manage forest resources to improve their
quantity and quality effectively. The results
reveal a significant increase in forest cover of
21.9% by 2022 compared to 1987, alongside
declines in rangeland (6.19%), agricultural
land (0.86%), and bareland (2.16%). These
changes indicate that enhanced protective
management, law enforcement, and
improved facilities for local communities
have facilitated forest expansion and
reduced other land uses. The findings align
with previous studies that underscore the
positive impact of conservation laws on



forest characteristics. Interestingly, while the
forest area was smaller in 1987, the number
of forest patches was more remarkable,
suggesting that the increase in forest area by
2022 has led to improved interconnection
and reduced fragmentation of forest patches.
This continuity is likely beneficial for species
such as the black grouse, whose habitats
are adversely affected by fragmentation.
Conversely, fragmentation of agricultural
and barren lands has increased, indicating
that agricultural practices persist in smaller
plots within forested areas.

The analysis of the spot density index
indicates a decrease in this index for
forest land-use in 2022, reflecting more
extensive and continuous forest patches.
This continuity creates better conditions for
species growth, particularly the BG, which
thrives in dense, uninterrupted forests. The
reduction in the border of forest land-use
further illustrates the diminishing external
impacts on forest environments, enhancing
habitat quality for various species. Overall,
the findings suggest a positive trend
toward greater continuity of forest cover
and reduced land-use fragmentation,
contributing to improved ecosystem stability
and biodiversity. The results highlight the
importance of sustained protective measures
to preserve and enhance forest ecosystems,
ultimately supporting the conservation of
plant and animal species in the region.
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