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Aims: The black grouse (BG) is classified as Near Threatened (NT) by the IUCN due to 
limited knowledge regarding their optimal habitat conditions. This lack of information has 
contributed to its inclusion in the endangered species list. The current research examines 
land-use changes in this species’ habitat within the Arasbaran forests of Iran and assesses 
how conservation efforts have impacted forest cover by quantifying land features. 
Materials & Methods: This study analyzed land cover changes in the Arasbaran Region 
using cloud-free Landsat images from 1987, 2000, 2010, and 2022, obtained from the USGS. 
The data, preprocessed with Level-1 corrections, were enhanced using vegetation indices 
like NDVI, GNDVI, MSAVI, and EVI. Atmospheric corrections were applied using the FLAASH 
model, and areas above 1500 meters were delineated using DEM layers. Four land cover 
classes—forest, rangeland, agriculture, and bareland—were identified through field surveys 
and satellite imagery. Land-use maps were created using ENVI’s maximum likelihood 
classification algorithm and validated with accuracy metrics. Temporal changes in metrics 
from 1987 to 2022 were examined with ANOVA and Tukey’s test in SPSS, while PCA identified 
sensitive variables in CANOCO. 
Findings: The findings revealed that over the past 35 years, the forested area designated as 
black grouse habitat increased by 22%. Consequently, the forest patch area decreased from 
5,243 hectares in 1987 to 3,658 hectares in 2022. The most significant change was in forest 
land, which expanded by approximately 8,907 hectares, mainly due to the conversion of 9,819 
hectares from rangeland to forest. From 2000 to 2010, 24.12% of the region experienced 
changes, the most notable being an increase of 11,667 hectares in agricultural land, primarily 
from the conversion of 8,195 hectares of rangeland. This has led to a reduction in forest edges 
and an increase in habitat connectivity. Additionally, there has been a decline in rangeland, 
agricultural land, and barren land within the BG habitat. 
Conclusion: The findings indicate that agricultural lands have transitioned into barren 
lands over the past 35 years, reflecting the success of protective measures. Furthermore, the 
results suggest that habitat conditions for the optimal distribution of the BG species in the 
study area are improving. However, more detailed investigations into population changes 
of this bird over the past 35 years are needed to fully understand the impact of land-use 
changes on its population dynamics.
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Introduction
In recent decades, the reduction of 
biodiversity has become increasingly 
apparent, recognized as one of the most 
significant global changes [1,2], drawing wide 
attention from the international community 
[3]. One of the primary drivers of biodiversity 
loss is habitat destruction through land-
use change [1]. Protecting animal and plant 
biodiversity requires identifying factors 
affecting these indicators [4]. Humans directly 
impact land-use to meet their needs, altering 
the landscape pattern. Land-use change is 
a key factor that affects habitat conditions 
and significantly influences the distribution 
of wildlife species. In recent decades, 
developing countries have experienced 
unprecedented land-use changes that 
continually reshape ecosystems and lead to 
habitat loss and fragmentation [5]. Habitat 
loss threatens the diversity and populations 
of animal species at both local and global 
scales [6]. Changes in protected wildlife areas 
significantly impact ecological systems and 
the distribution of wildlife species. These 
alterations disrupt the flow of materials and 
energy between habitat patches, ultimately 
affecting the capacity and services that these 
habitats provide [3].
To effectively plan and manage human 
activities that interfere with environmental 
elements while achieving conservation goals, 
it is necessary to determine land-use change 
patterns [7]. Satellite information technology 
provides faster, more accurate, and more 
cost-effective solutions for continuous 
land cover monitoring than traditional 
methods such as aerial photography, 
ground surveys, or manual mapping. While 
aerial photography can capture detailed 
images, it is often more expensive and time-
consuming. Ground surveys, though precise, 
require a significant workforce and can be 
limited in coverage. In contrast, satellite 
technology can monitor vast areas quickly 

and regularly, allowing for real-time updates 
and better analysis of land cover changes 
over time [8]. Utilizing land surface indicators 
as measurable parameters or metrics that 
reflect the condition and characteristics of 
the Earth's surface alongside remote sensing 
techniques enables quantitative evaluation 
of land surface changes [9]. These indicators 
include vegetation cover, soil moisture, 
surface temperature, land cover types (e.g., 
urban, agricultural land, forested areas), and 
more.
The black grouse (Lyrurus mlokosiewiczi 
Taczanowski) is a valuable species found 
exclusively in the Arasbaran forests of 
Iran. It is categorized as endangered in 
Iran and near-threatened globally [10]. 
The species' distribution range includes 
the Forest Mountains of Russia, Armenia, 
Georgia, Azerbaijan, Turkey, and Iran [11]. 
In the Arasbaran Region, BG exists within 
and outside the Biosphere Reserve. Their 
habitat comprises a combination of forest 
and rangeland ecosystems, with nesting 
occurring under bushes and rocks [12]. BG 
predominantly inhabits northern slopes 
at altitudes above 1500 meters above 
sea level [13]. Habitat loss or degradation 
due to human interventions such as land-
use change, livestock grazing, rural and 
nomadic road construction, and hunting 
poses the most significant threat to their 
survival [14-16].

Several studies have investigated BG 
populations and factors influencing 
this species in Iran and other countries. 
Etzold (2005) described the habitat of 
BG in Azerbaijan, attributing population 
decline to human activities such as intense 
grazing, vegetation burning, and habitat 
destruction. Excessive grazing was identified 
as the primary threat to the species in 
Azerbaijan. Darvishi et al. (2014) examined 
landscape pattern changes in BG habitat 
in the Arasbaran Region (1987-2011). 
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Fragmentation of the landscape disrupted 
BG habitat in Arasbaran. Kaboodvandpour 
and Shiriazar (2019) identified topography, 
land-use, slope, slope direction, and distance 
from human settlements as essential 
variables influencing BG habitat desirability 
in these forests. Ghanbari and Turvey 
(2022), based on local ecological knowledge 
in the Arasbaran Region, noted a significant 
decrease in BG population compared to other 
wildlife, attributed to habitat destruction 
from increased livestock grazing [17]. 
The literature review indicates declining BG 
populations in the Arasbaran Region and 
globally due to human activities. Detailed 
studies on its threats are necessary to prevent 
species extinction. By controlling these 
factors, the BG's regeneration process can be 
supported. This study aims to evaluate and 
quantify landscape changes in BG habitat 
in the Arasbaran forests and to identify the 
key indicators influencing these changes. 
Recognizing the threats to BG habitats 
underscores the need for effective planning 
and management strategies to mitigate 
human impacts and achieve conservation 
goals. While previous studies have identified 
human activities such as intense grazing and 
habitat fragmentation as key threats to BG, 
this research advances the understanding 
by employing remote sensing to provide 
real-time, accurate monitoring of land-use 
changes over an extended period. It bridges 
the gap between traditional methods and 
modern technological approaches, offering 
a more efficient and scalable solution for 
continuous habitat evaluation. This is 
crucial for developing effective conservation 
strategies in the region. Continuous 
monitoring of land-use change patterns is 
crucial for this understanding. The research 
will utilize satellite information technology 
for its speed, accuracy, and cost-effectiveness 
in monitoring land cover changes. The study 
will quantitatively assess how land-use 

changes impact habitat quality and species 
distribution by integrating remote sensing 
techniques with land surface indicators. 
Ultimately, the goal is to inform conservation 
strategies that can reduce habitat loss and 
enhance the survival of BG in the region.

Materials & Methods
Study Area
Arasbaran forests are renowned for their 
unique habitat, which supports high animal 
and plant diversity, some of which are 
endangered. Designated as a biosphere 
reserve by UNESCO in 1976 (18, 19), these 
forests receive annual rainfall ranging from 
300 to 600 mm. The region also serves as 
a seasonal home for nomadic communities 
[20]. With altitudes ranging from 450 to 2700 
meters above sea level, the current research 
focuses on the habitat of the BG situated at 
an altitude of 1500 meters above sea level in 
the Arasbaran Region [21] (Figure 1).
Data Collection and Analysis
Cloud-free Landsat 5 TM and Landsat 8 OLI 
images from September 1987, 2000, 2010, 
and 2022 (Table 1) were utilized for this study. 
These images, provided by the United States 
Geological Survey (https://earthexplorer.
usgs.gov/) with L1 corrections, including 
geometric and radiometric adjustments to 
the raw data, underwent comprehensive 
preprocessing for further analysis.

Table 1) Specifications of the used Landsat satellite 
images.

Row/
Path

 Number
of Bands

 Attainment
Date

Sen-
 sor

 Satellite
Name

33/16871987-09-21TMLandsat 5
33/16872000-09-08TMLandsat 5
33/16872010-09-04TMLandsat 5
33/16892022-09-05OLILandsat 8

Arasbaran Land Cover Dynamics
In the Arasbaran Region, enhancing the 
accuracy of land cover mapping-an essential 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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process for environmental monitoring 
and management—depends mainly on 
using advanced vegetation indices. These 
indices, derived from satellite imagery, 
provide crucial insights into vegetation 
health and distribution. One of the most 
widely used indices in this context is the 
Normalized Difference Vegetation Index 
(NDVI) [22]. NDVI calculates the difference 
between near-infrared (NIR) and red light 
reflected by vegetation, normalized by 
their sum, effectively highlighting healthy, 
dense vegetation areas. This makes NDVI 
a powerful tool for distinguishing between 
different land cover types, especially in 
heterogeneous landscapes like Arasbaran, 
where accurate delineation of forests, 
grasslands, and other cover types is vital for 
sustainable land-use planning.
In addition to NDVI, other specialized 
vegetation indices are utilized to 
address specific challenges in land cover 
classification in the Arasbaran Region. For 
example, the Green Normalized Difference 
Vegetation Index (GNDVI) replaces the red 
band with the green band, providing greater 

sensitivity to variations in chlorophyll 
content—essential for assessing plant vigor 
and stress [23]. The Modified Soil Adjusted 
Vegetation Index (MSAVI) is designed to 
minimize the influence of soil reflectance, 
particularly in sparsely vegetated areas, 
making it especially reliable in semi-arid 
environments. Meanwhile, the Enhanced 
Vegetation Index (EVI) improves upon 
NDVI by reducing atmospheric interference 
and soil background noise, offering better 
performance in densely vegetated regions. 
By integrating these indices, researchers can 
significantly enhance the precision of land 
cover maps in Arasbaran, leading to more 
informed decisions regarding conservation 
and resource management [24]. 
The geometric accuracy of the images 
was evaluated by overlaying road layers 
extracted from 1:25,000 topographic maps 
onto the satellite imagery. Additionally, the 
radiometric quality was verified by visually 
inspecting individual bands and various 
color composites on the screen.
The FLAASH (Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes) 

Figure 1) The location of the BG habitat in the Arasbaran Region, East Azerbaijan Province, Iran.
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atmospheric correction method was applied 
to minimize atmospheric effects. The FLAASH 
model is a software package developed by 
the Air Force Research Laboratory, Space 
Vehicles Directorate (AFRLiVS), Hanscom 
AFB, and Spectral Sciences, Inc. (SSI) to 
support the analyses of visible-to-shortwave 
infrared (Vis - SWIR) hyperspectral and 
multispectral imaging sensors [25]. FLAASH 
derives its 'physics-based' mathematics 
from MODTRAN4 [26, 27]. For the FLAASH 
parameter setting, any standard MODTRAN 
model atmosphere and aerosol types can 
be chosen to represent a scene, and a 
unique MODTRAN solution is computed for 
each image [28]. It can correct the cascade 
effect caused by diffuse reflection and is an 
excellent atmospheric correction method 
[29]. The DEM layer isolated areas above 1500 
meters altitude for further analysis.
The investigation and field surveys identified 
four regional land cover classes: forest, 
rangeland, agriculture, and bareland. 
Representative samples were introduced into 
the model to classify these areas. Using the 
Google Earth database and satellite images 
from different seasons, a series of points 
were selected to capture various conditions 
across the four land cover classes. Efforts 
were made to ensure an even distribution of 
training samples. A total of 275 samples were 
collected, with 192 used for classification and 
83 randomly selected for accuracy assessment. 
A land-use map categorizing forest, rangeland, 
agriculture, and bareland for areas above 1,500 
meters in altitude was generated using the 
maximum likelihood classification algorithm 
in ENVI software [30-32]. 
Accuracy Assessment
Confusion matrices were generated by 
comparing the validation samples with the 
land cover maps to assess the accuracy of the 
Landsat data classification. These matrices 
are used to calculate general validation 
metrics such as Overall Accuracy (OA) 

and the Kappa Coefficient (KC), as well as 
individual metrics like User’s Accuracy (UA), 
Producer’s Accuracy (PA), and the F-score 
(FC) [33]. The user's accuracy (Eq. 1) reflects 
the probability that a pixel has been correctly 
classified. In contrast, Producer's Accuracy 
(equation 2) indicates the likelihood that 
a sample from the image belongs to the 
correct class. Overall accuracy represents 
the percentage of correctly classified pixels. 
It is calculated by dividing the sum of the 
diagonal elements of the confusion matrix 
by the total number of pixels (Eq. 3). Due to 
limitations in Overall Accuracy, the Kappa 
Coefficient is often used, as it accounts for 
the misclassified pixels. It compares the 
accuracy of the classification to what would 
be expected from a completely random 
classification. KC values range from 0 to 1 
(or 0% to 100%). A Kappa Coefficient above 
80% indicates strong agreement, 40% to 
80% indicates moderate agreement, and 
below 40% is considered poor [34]. 

	 Eq. (1)

	 Eq. (2) 

	 Eq. (3) 

	 Eq. (4)

where r is the number of rows, xii is the 
number of observations in row i and column 
i, xi+ and x+i are the marginal totals for row i 
and column i, respectively, and N is the total 
number of samples. 
Calculation of Land Surface Metrics
Several landscape metrics were selected to 
characterize landscape features, including 
the number of patches, patch density, most 
extensive patch index, and total edge length 
(Table 2). These metrics were extracted 
from the land-use maps for each year using 
Fragstats software.
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This study comprehensively analyzed land-
use variety and changes to ensure accurate 
results. The first step involved using data on 
the number of patches (NP) for each land-use 
type in each year. Several numerical indices 
were calculated to assess the diversity of 
land-uses annually, including Margalef 
richness, Simpson's equitability, and the 
Shannon-Wiener diversity index. Margalef 
richness evaluates the number of distinct 
land-use types, providing insights into 
the overall variety. Simpson's equitability 
measures the evenness of distribution 
among land-use types, indicating uniformity. 
The Shannon-Wiener index combines the 
number and proportional distribution of 
land-use types, offering a comprehensive 
measure of diversity. Together, these indices 
enable a detailed understanding of land-use 
dynamics and changes over time, essential for 
informed land management and conservation 
strategies.
In the second step, parametric indices, 
including diversity grading curves, were 
used to analyze land-use diversity for each 
year graphically. The numerical indicators of 
land-use diversity were calculated annually, 
and the diversity rating curves were plotted 
using PAST software version 4.08.
A one-way analysis of variance (ANOVA) 
was conducted to examine differences in 
the studied metric indicators over time 
(1987 to 2022) across different land-use 
types. Tukey's test compared the average 
metrics between the various land-use types 
during the study periods. Both analyses 

were performed using SPSS 24 software. 
To identify the most critical and sensitive 
variable metrics across land uses over time 
(1987 to 2022), a principal component 
analysis (PCA) was conducted in CANOCO 
5.0 software.
Preparation of Nomadic Settlement Dis-
tribution Map
This research used Google Earth imagery and 
field observations to create a distribution 
map of nomadic settlements. This approach 
enabled precise identification and mapping 
of settlement locations. The high-resolution 
images provided by Google Earth facilitated 
the accurate detection of nomadic 
settlements across extensive areas. Field 
observations further validated the presence 
and exact locations of the settlements 
identified in the satellite images, ensuring 
the reliability and accuracy of the data.
Due to data availability constraints, distribution 
maps were specifically generated for 2010 and 
2022. This temporal selection allowed for a 
comparative analysis of settlement patterns 
over 12 years, highlighting changes and trends 
in the distribution of nomadic populations.

Findings
The resulting maps provide valuable insights 
into the spatial dynamics of nomadic 
settlements. They can inform planning and 
policy decisions on land-use and resource 
management in the studied areas. This study 
offers a detailed analysis of land-use changes in 
the Arasbaran forests, focusing on four key land 
cover classes—forest, rangeland, agriculture, 

Table 2) Landscape parameters used in the study (Fragstats Software Guide).

 Unit RangeExplanationMetric name

-NP ≥1The total number of patches for a particu-
lar classNumber of patches (NP)

 Percent100≥0˂LPI It shows the percentage of the landscape
that consists of the biggest patchLargest patch index (LPI)

 Number of patches per
100 haPD˃0 It shows the number of patches in 100

hectares.Patch density (PD)

meterTPE˃0The total perimeter of patches of a classTotal edge of patch (TEP)
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and bareland—across four snapshots, including 
1987, 2000, 2010, and 2022.
Table 3 presents the validation results of 
image classification for land-use across four 
years: 1987, 2000, 2010, and 2022. For the 
forest class, the User’s Accuracy remains 
consistently high (91.67% to 100%) across all 
years, with Producer’s Accuracy maintaining a 
perfect 100%. Rangeland showed variability, 
with User's Accuracy ranging from 77.78% 
to 94.12% and Producer's Accuracy between 
82.35% and 88.89%. Agriculture exhibits 
more fluctuation, with User's Accuracy ranging 
from 63.64% to 87.5%, while Producer's 
Accuracy improves from 69.23% in 1987 
to 86.67% in 2022. Bareland shows a slight 
decline in Producer's Accuracy, but User's 
Accuracy remains relatively stable, ranging 
from 84.21% to 94.44%. Overall classification 
accuracy remains above 85% in all years, with 
Kappa coefficients consistently above 0.80, 
indicating substantial agreement between the 
classified maps and ground truth data. Figure 2 
displays the land-use maps for the four studied 

classes—forest, rangeland, agriculture, and 
bareland—at altitudes above 1,500 meters in 
the Arasbaran forests across four years.
The region's total area at elevations above 
1,500 meters is 96,865 hectares. Based on 
the land classification results across the 
four years studied, forest cover consistently 
occupied the most considerable portion of 
this area. Forested land reached its peak in 
2000 and 2022 (Figure 3). 
The number of changes in land use across the 
region, measured in hectares over three time 
periods, is summarized in Table 4. According 
to the results, forest and rangeland areas 
increased during the first period (1987-
2000), decreased in the second period 
(2000-2010), and then increased again in 
the third period (2010-2022). Agricultural 
land area declined in the first period but 
increased in the second and third periods. 
Bareland decreased during the first and 
second periods but increased in the third.
From 1987 to 2000, 20.22% of the region 
changed. The most significant change was in 

Figure 2) Land-use maps in 1987, 2000, 2010, and 2022.

Legend
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forest land, which expanded by approximately 
8,907 hectares, mainly due to the conversion 
of 9,819 hectares from rangeland to forest. 
From 2000 to 2010, 24.12% of the region 
experienced changes, the most notable being 
an 11,667-hectare increase in agricultural land, 
primarily from the conversion of 8,195 hectares 
of rangeland. Finally, between 2010 and 2022, 
20.7% of the area changed, with forest land 
showing the most significant increase-6,492 
hectares-mainly due to the conversion of 6,646 
hectares from rangeland to forest.
Measures of the Landscape of the Land
Figure 4 presents the patch count analysis 
results for four land cover types—forest, 
rangeland, agriculture, and bareland—in 
1987, 2000, 2010, and 2022. 

Figure 4) The results of calculating the number of 
patches (NP) in four lnad-use classes in 1987, 2000, 
2010, and 2022.

Table 5 presents the results of patch 
density (PD) and total patch edge (TEP) 
measurements for five land-use types—
forest, rangeland, agriculture, and 
bareland—over 1987, 2000, 2010, and 2022. 
Patch density (PD) indicates the number of 
patches per unit area, and total patch edge 
(TEP) represents the total boundary length 
of all patches within a land-use type. Forest 
land shows a decline in patch density from 
1987 to 2000, followed by a gradual increase 
in 2022, while its total edge also decreases 
over time but starts to rise again by 2022. 
Rangeland shows a fluctuating trend in patch 
density and total edge, increasing in 2000 
and 2022. Agriculture exhibits a decrease 
in patch density and total edge after 2000, 
while bareland shows an overall increase in 
patch density, with a rise in the total patch 
edge between 1987 and 2022. These results 
highlight the dynamic changes in land-use 
patterns over the 35 years.
Figure 5 illustrates the calculation of the 
Largest Patch Index (LPI) for four land-use 
classes-forest, rangeland, agriculture, and 
bareland-across the years 1987, 2000, 2010, 
and 2022. The LPI represents the percentage 
of the landscape occupied by the largest 
patch within each land-use type, providing 
insights into landscape dominance and 
fragmentation. Over the years, the forest 

Figure 3) The area of the studied land-uses in the Arasbaran Region.
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Table 3) The results of validation of image classification.

Land-use 
class/year

1987 2000 2010 2022

User’s Ac-
curacy

Producer’s 
Accuracy

User’s Ac-
curacy

Produc-
er’s Ac-
curacy

User’s 
Accuracy

Producer’s 
Accuracy

User’s 
Accuracy

Produc-
er’s Accu-

racy

Forest 91.7 100 91.7 100 100 100 95.6 100

Rangeland 77.8 82.3 77.8 82.3 94.1 88.9 80 88.9

Agriculture 75 69.2 87.5 53.8 63.6 77.8 72.2 86.7

Bareland 94.4 85 90.9 100 84.2 72.7 88.9 72.7

Overall 
accuracy 86.1 87.5 85.5 86.2

Kappa 
Coefficient 0.81 0.82 0.81 0.82

Table 4) Type and number of changes made from 1987-2000. 

Type of change/ year
1987-2000 2000-2010 2010-2022

ha Percent ha Percent ha Percent

Forest 8907 9.20 -6473 -6.68 6492 6.70

Rangeland 879 0.91 -1579 -1.63 5298 5.47

Agriculture -7785 -8.04 11667 12.04 -4714 -4.87

Bareland -2001 -2.07 -3624 -3.75 3515 3.62

Forest no change 24807 25.61 28672.00 29.00 28343.7 31.26

Forest to rangeland 1747 1.80 6657.5 6.87 750 0.83

Forest to agriculture 45.7 0.05 102.7 0.11 13.4 0.01

Forest to bareland 122 0.13 197 0.20 49.4 0.05

Rangeland no change 13450 13.9 15657 16.16 14709 16.22

Rangeland to forest 9819 10.14 426 0.44 6646 7.33

Rangeland to agriculture 1713 1.77 8195 8.46 2476.5 2.73

Rangeland to bareland 1791.5 1.85 3374.6 3.49 2242.7 2.47

Agriculture no change 8258.5 8.53 10090 10.42 13588 14.98

Agriculture to forest 869 0.90 19 0.02 395 0.44

Agriculture to rangeland 7831 8.08 1573.7 1.62 3936 4.34

Agriculture to bareland 5048 5.21 2538.2 2.62 2536 2.79

Bareland, no change 12400 12.8 9627 9.95 9006 9.93

Bareland to forest 134 0.14 39 0.04 264 0.29

Bareland to rangeland 4625 4.77 2186 2.26 1380 1.52

Bareland to agriculture 4203 4.34 7500 7.74 5095 5.62
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land-use shows a fluctuating trend in LPI, 
with significant increases in 2000 and 
2022, indicating larger contiguous forest 
patches during these periods. Rangeland 
and agriculture show varied trends, with 
both land-use types experiencing shifts 
in dominance at different times. Bareland 
exhibits more stability, with moderate 
changes in LPI throughout the periods. 
These trends highlight the shifting landscape 
composition and the changing dominance of 
different land uses over time.

Figure 5) The results of calculating the largest patch 
index (LPI) in four land-use classes in 1987, 2000, 
2010, and 2022.

Numerical Diversity Indices of the Land-
Use Type in Different Years
Table 6 presents the indicators of equitability, 
richness, and diversity based on the Number 
of Patches (NP) index for different land-
use types across the studied periods: 1987, 
2000, 2010, and 2022. The Shannon index 
(Shannon_H) reflects the diversity of land-
use, with values showing a slight decrease 

from 1987 to 2010, followed by a modest 
increase in 2022. The Margalef richness 
index, which assesses the number of different 
land-use types, has remained relatively 
stable over the years, with the highest value 
recorded in 2010. The Equitability index 
(Equitability_J) indicates how evenly the 
land-use types are distributed, showing 
a decline from 1987 to 2000, followed by 
slight increases in subsequent years. These 
indicators suggest fluctuations in land-use 
diversity and distribution, emphasizing the 
dynamic nature of land cover changes over 
the examined periods.

Table 6) The indicators of equitability, richness, and 
diversity in the studied periods based on the NP index 
related to land-use type.

Time series Shannon_H Margalef Equitability _J

Np1987 1.342 0.285 0.968

NP2000 1.280 0.283 0.923

NP2010 1.275 0.287 0.920

NP2022 1.304 0.284 0.940

The diversity profile for 1987 stands out 
as distinct, remaining uninterrupted by the 
profiles of subsequent years and positioned 
higher than those of later years. This indi-
cates that land-use diversity was more sig-
nificant in 1987 than in other years (Figure 
6). Following 1987, the profile for 2022 ranks 
second, remaining separate from any other 
profiles, suggesting a decrease in diversity 
since 1987, placing it in a lower category. 

Table 5) The results of the calculation of patch density measurements and total patch edge in five land-uses 
during 1987-2022

Land-use
Patch Density (PD) Total Edge of Patch (TEP)

1987 2000 2010 2022 1987 2000 2010 2022
Forest 5.5 3.0 3.1 3.8 5146350 3555630 3839670 4251270

Rangeland 9.7 11.6 8.6 12.9 10002510 9819000 8465910 8049330
Agriculture 13.3 13.6 9.9 9.9 9780480 6999180 9077280 7554870

Bareland 10.0 12.5 14.4 12.7 6930630 7202640 6821100 7774770
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In contrast, the profiles for 2000 and 2010 
intersect, making it challenging to compare 
these two periods in terms of their numer-
ical indicators and overall land-use diversi-
ty. In summary, 1987 ranks highest in user 
diversity, followed by 2022 in second place, 
while 2000 and 2010 are tied for third.

Figure 6) Diversity profiles of four years using Renyi's 
diversity (Hα). The scale parameter (alpha) gives the 
order of Renyi's diversity; α = 0 is the logarithm of 
species richness, α = 1 equals the Shannon diversity 
index, α = 2 is the logarithm of the reciprocal 
equability index, α = Inf refers to the proportion of 
the most abundant species. 

Table 7 presents the results of a variance 

analysis examining changes in land-use 
between 1987 and 2022, focusing on four 
key indicators: Number of Patches (NP), 
Largest Patch Index (LPI), Patch Density 
(PD), and Total Edge (TE). The results 
reveal significant differences between 
the groups for all indicators, indicating a 
high level of statistical significance (at the 
1% level). Specifically, NP, LPI, PD, and TE 
showed substantial variations in land-use 
characteristics over the studied period. The 
significant results imply that changes in 
land-use patterns from 1987 to 2022 are 
noteworthy, highlighting the need for further 
investigation into the factors contributing to 
these shifts.
The results of the PCA analysis, aimed at 
identifying the most significant and sensitive 
variable parameters among land uses over 
time, are illustrated in Figure 7. This figure 
reveals that the Largest Patch Index (LPI) 
vector tends to align closely with forest use 
in most years, particularly in 2022, indicating 
that forest use has the highest LPI. The first 
axis clearly distinguishes forest use from the 
other three categories, as shown in the Table 
and Figure 7. The parameters associated with 

Table 7) Variance analysis of changes between different land uses from 1987-2022.

Source of Variation df Sum of Squares Mean Square F P-Value

NP

Between groups 3 170131123.5 56710374.50 20.14 **0.00

Within groups 12 33779932.50 2814994.37

Total 15 203911056

LPI

Between groups 3 66.10 22.03 8.56 **0.00

Within groups 12 30.88 2.57

Total 15 96.98

PD

Between groups 3 185.54 61.84 20.15 **0.00

Within groups 12 36.83 3.06

Total 15 222.37

TE

Between groups 3 5.55 1.85 22.54 **0.00

Within groups 12 9.85 8.21

Total 15 6.54

** Significant differences at the level of 1%
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an eigenvector greater than 0.9 on this axis 
play a crucial role in differentiating these 
land-uses, highlighting them as the most 
sensitive parameters. Specifically, LPI values 
for 2022 and 2000 emerge as key indicators 
for the transition to forest use, reflecting an 
increase in these values within forested areas. 
Conversely, the number of patches (NP) and 
patch density (PD) indices for 2000, along 
with NP, PD, and total edge (TE) indices for 
2022, show a decline in forest use, while these 
indices increase in the other three land-uses, 
particularly rangelands.
On the second axis, only the LPI for 2010 
stands out as a significant indicator (with 
an eigenvector greater than 0.9) that 
separates bareland from agricultural land. 
However, it does not distinguish between 
other uses. Generally, this index increases 
with the transition to agricultural use and 
decreases with the conversion to bareland. 
Additionally, the results in Figure 5 confirm 
that the LPI value for agricultural use in 2010 
significantly differed from that of bareland, 
with agricultural use exhibiting the highest 
LPI during this period.

Discussion 
The extent of forest land cover is now a vital 
indicator of development, underscoring the 
importance of effectively managing forest 
resources to enhance their quantity and 
quality. The results indicate a substantial 
increase in forest cover, rising by 21.9% 
in 2022 compared to 1987. In contrast, 
rangeland decreased by 6.19%, agricultural 
land-use fell by 0.86%, and bareland 
decreased by 2.16% during the same period. 
This trend suggests that while forest cover 
has expanded, agricultural land, rangelands, 
and bareland have diminished in the studied 
area, likely due to protective management 
measures, law enforcement, and improved 
facilities for local communities surrounding 
the forests. Sasanifar et al. (2019) concluded 
that longstanding conservation laws in the 
Arasbaran forests have positively influenced 
forest characteristics. This finding is further 
supported by [35] and [36], highlighting the 
benefits of forest protection measures.
Although the forest area in 1987 was smaller 
compared to 2022, the number of forest 
patches was higher in 1987. This suggests 

Figure 7) PCA analysis between land-uses over time.
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that the increase in forest area by 2022 
has resulted in the connectivity of forest 
patches, reducing the overall number of 
patches. Such continuity may have enhanced 
the chances of survival of animal species like 
the BG, potentially expanding the habitat 
range of this endangered species. Gottschalk 
et al. (2007) examined the distribution of 
the BG in the Caucasus and Turkey, noting 
that reducing forest patches—due to factors 
like easier access for hunting and habitat 
limitation—can contribute to a decline in 
bird populations. Furthermore, the observed 
decrease in agricultural land-use, coupled 
with an increase in rangeland and barren 
land patches, suggests fragmentation within 
these ecosystems. In areas designated for 
agricultural use, such as Bata, the number 
of patches associated with agricultural land 
has increased despite reducing the total 
agricultural area by 2022. This indicates 
that agriculture thrives in small plots within 
these forested regions. The dispersion and 
intermingling of various land uses in the 
high-altitude habitats of the BG species 
highlight the need for more detailed studies 
to understand the specific effects of land-use 
changes on this species.
The analysis of the spot density index 
revealed a decrease in this metric for 
forest land-use in 2022 compared to 1987. 
Specifically, the average number of forest 
patches per 100 hectares in 2022 was 
3.82, down from 5.48 in 2016. This decline 
suggests an expansion of forest cover and 
increased patch connectivity resulting 
from the reduced patch density index. 
Such connectivity may create favorable 
conditions for the growth of the grouse 
population. Baskaya (2003) identified 
habitat destruction, forest fragmentation, 
and concentrated forestry practices as 
critical threats to this species' habitat in the 
mountainous regions of Turkey. Sefidi and 
Ghanbari [37] conducted a quantitative study 

on tree saplings in the BG habitat within 
Arasbaran. They concluded that forest areas 
with a higher density of suitable conditions 
and dense stands provide optimal habitats 
for this bird. These ideal conditions arise 
from intact forests characterized by high 
continuity and minimal human interference. 
Conversely, the results for the spot density 
index regarding agricultural use indicate 
a decrease in 2022, while the index for 
rangeland land-use shows an increase. This 
suggests that the reduction in agricultural 
land-use has resulted in the disappearance 
of some agricultural patches, which have 
subsequently transformed into barren lands 
or rangelands. Consequently, this trend has 
led to an increase in the number of patches 
for both bareland and rangeland in 2022.
The total edge of the patch index indicates a 
decrease in the boundary of forest land-use 
in 2022, reflecting the connectivity of existing 
patches and a reduction in the overall edge. 
This reduction suggests a decrease in external 
pressures on the forest environment, thereby 
creating more favorable conditions for the 
presence of the BG species. Faridi and Naseri 
(2019) noted that this species thrives in 
dense and semi-dense forests in Arasbaran. 
Thus, by enhancing the connectivity of forest 
patches and minimizing their exposure to 
external threats, factors such as hunting, 
human entry, and livestock grazing can be 
effectively mitigated [38]. Behruzi Rad (2016) 
identified the destruction of forest habitats 
and livestock grazing as the primary threats to 
the BG species in the region. Furthermore, the 
observed decrease in the boundary between 
rangeland and agricultural land, coupled with 
an increase in bareland, suggests that future 
protective measures could significantly 
reduce the impact of agriculture and grazing 
in the area [39].
The investigation into the most extensive 
patch index revealed that forest land-use 
in 2022 accounted for 8.5% of the total 
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area, a significant decline from 24.9% in 
1987. Additionally, the LPI index for both 
rangeland and agricultural land uses has 
decreased over the past 35 years, while it has 
increased for barren lands. Expanding forest 
cover creates more significant challenges for 
accessing deeper forest areas. It contributes 
to the stability of the ecosystem, which 
benefits various animal and plant species, 
including the grouse. Previous studies have 
indicated that a reduction in the size of forest 
land-use patches typically reflects increased 
human interference and intervention [40].
Overall, the results suggest that 2000 and 
2010 exhibited similar land-use diversity, 
indicating minimal changes and relative 
stability in land-use patterns. Furthermore, 
the latest data from 2022 demonstrate a 
significant trend toward connecting forest 
patches and enhancing their continuity. 
These developments are expected to foster 
improved protection and growth of forest 
areas, ultimately increasing plant and animal 
biodiversity.
The results of this study provide critical 
insights into the ecological needs of the 
Caucasian Black Grouse (BG) by establishing 
a link between land-use changes and the 
species' habitat requirements, particularly 
for nesting and foraging. The observed 
fluctuations in forest and rangeland cover, 
patch density, and the Largest Patch Index 
(LPI) reflect the dynamic landscape of 
the Arasbaran forests, which are vital for 
BG's survival. Periods of forest expansion, 
particularly noted in 2000 and 2022, 
suggest an increase in BG's potential nesting 
and foraging grounds, as these areas offer 
essential shelter and food resources (20, 
38). Conversely, reducing forest cover 
and increasing agricultural land in other 
periods may lead to habitat fragmentation, 
creating challenges for BG by reducing 
continuous habitat patches and increasing 
edge effects, which can adversely impact 

nesting sites under bushes and rocks [41, 42]. 
Understanding these patterns is crucial for 
planning effective conservation strategies to 
maintain and restore forest and rangeland 
areas to support BG's ecological needs, 
ensuring the species' survival and enhancing 
habitat quality. Previous studies have also 
emphasized the importance of habitat 
modeling and spatial analysis in assessing 
and mitigating threats to BG populations 
[10, 14]. Therefore, integrating these findings 
with spatial modeling tools can enhance 
conservation efforts, as demonstrated by 
applying geographical information systems 
(GIS) and maximum entropy methods 
in predicting BG habitat suitability [38]. 
The literature consistently highlights the 
necessity of preserving contiguous forest 
landscapes to mitigate habitat fragmentation 
and its adverse impacts on BG populations 
[11]. Overall, this study reinforces the 
importance of adaptive land management 
practices that align with the ecological 
needs of the BG, supporting their habitat 
preferences and contributing to the broader 
conservation objectives in the Arasbaran 
biosphere reserve. 

Conclusion
This study emphasizes the critical role 
of forest land cover as an indicator of 
development, highlighting the need to 
manage forest resources to improve their 
quantity and quality effectively. The results 
reveal a significant increase in forest cover of 
21.9% by 2022 compared to 1987, alongside 
declines in rangeland (6.19%), agricultural 
land (0.86%), and bareland (2.16%). These 
changes indicate that enhanced protective 
management, law enforcement, and 
improved facilities for local communities 
have facilitated forest expansion and 
reduced other land uses. The findings align 
with previous studies that underscore the 
positive impact of conservation laws on 
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forest characteristics. Interestingly, while the 
forest area was smaller in 1987, the number 
of forest patches was more remarkable, 
suggesting that the increase in forest area by 
2022 has led to improved interconnection 
and reduced fragmentation of forest patches. 
This continuity is likely beneficial for species 
such as the black grouse, whose habitats 
are adversely affected by fragmentation. 
Conversely, fragmentation of agricultural 
and barren lands has increased, indicating 
that agricultural practices persist in smaller 
plots within forested areas.
The analysis of the spot density index 
indicates a decrease in this index for 
forest land-use in 2022, reflecting more 
extensive and continuous forest patches. 
This continuity creates better conditions for 
species growth, particularly the BG, which 
thrives in dense, uninterrupted forests. The 
reduction in the border of forest land-use 
further illustrates the diminishing external 
impacts on forest environments, enhancing 
habitat quality for various species. Overall, 
the findings suggest a positive trend 
toward greater continuity of forest cover 
and reduced land-use fragmentation, 
contributing to improved ecosystem stability 
and biodiversity. The results highlight the 
importance of sustained protective measures 
to preserve and enhance forest ecosystems, 
ultimately supporting the conservation of 
plant and animal species in the region.
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