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Aims: This study assesses the impacts of natural and human factors on fire occurrences, 
identifies key contributors to fire susceptibility maps, and employs machine learning 
algorithms (MLAs) to enhance the spatiotemporal patterns of fire susceptibility maps.
Materials & Methods: Data were collected from 110 fire locations and 110 non-fire points 
from 2001 to 2022 at an annual scale. Various auxiliary variables were analyzed to model fire 
susceptibility, including climate data, terrain features, the Normalized Difference Vegetation 
Index (NDVI), and distance to roads. The study employed multiple MLAs, including Random 
Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Decision Trees (GBDT), 
to generate the fire susceptibility maps.
Findings: About 70% of fires occurred within 2 km of roads, indicating significant human 
influence. Grasslands had the highest fire rates, with over 25% of fires from 2001-2022 due 
to flammable fuels. The RF and mean models identified 0.4% and 1.31% of the area as very 
high susceptibility (38,800 km² and 12,600 km²), while the GBDT and SVM models identified 
2.42% and 1.86% (234,700 km² and 180,000 km²). Though small in percentage, the very 
high susceptibility class covers large areas.
Conclusion: This research highlights the importance of integrating environmental and 
human factors to predict fire events in arid regions and develop comprehensive fire 
susceptibility maps, critical for protecting vulnerable ecosystems. These outcomes provide 
valuable tools for fire management and mitigation strategies within vulnerable ecosystems. 
Moreover, developing targeted fire management strategies focused on high-risk areas, such 
as juniper and broadleaf forests, must be a priority. 

Copyright© 2021, the Authors | Publishing Rights, ASPI. This open-access article is published under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, 
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Introduction
Fire occurrence has a vital effect on ecosystem 
succession, carbon cycle, atmospheric 
chemical composition, and configuration [1,2]. 
With the advancement of fire susceptibility 
prediction studies, numerous analyses are 
conducted comprehensively using various 
factors,  including meteorology, topography, 
vegetation cover and indices, and human 
activities [4,5] that determine fire potential in 
each region [6,7]. In recent years, fire incidents 
have increased significantly in Iran's forests 
and rangelands as human access to these 
natural areas expands [8]. Although fire 
monitoring, risk forecasting, and mapping 
have benefited significantly from using the 
earth observation data and models, every 
single monitoring, characterizing, and 
zoning of fires is challenging [9,10]. 
Hazard susceptibility mapping has recently 
seen widespread use of machine learning 
algorithms (MLAs) techniques worldwide 
[12]. MLA has been widely used in research 
on forest fires and flood susceptibility 
prediction [13], forest fire susceptibility map 

[11,14,15], wildfire susceptibility mapping [16], 
forest ecology [17], mapping the variability 
of flood hazard [19], and multi-hazard 
mapping [22]. Several researchers have 
employed MLA to model fire occurrences, 
such as Random Forest (RF) [4,16,24], 
Support Vector Machine (SVM) [24], and 
Gradient Boosting Decision Tree (GBDT) 
[24] receiving desirable outputs in solving 
classification issues [25-30]. Barmpoutis et 
al. (2020) presented a comprehensive 
review of fire detection systems, including 
ground, airborne, and spaceborne systems. 
They also illustrated the deep and classical 
machine learning models adopted to detect 
fire in each system. Eskandari and Chuvieco 
(2015) researched the fire danger systems 
to produce a fire danger probability map 
using a geographical database in Iran. 
They calculated the correlation coefficient 

between fire transmission probability and 
burned regions with a high significance 
of 69%. Research indicates increasing 
wildfire incidents in Lorestan Province, 
Iran, particularly in semiarid oak forests. 
Denser forests are found to be more 
vulnerable to fires, with the NDVI identified 
as a key indicator of wildfire susceptibility. 
Human activities near roads and urban 
areas significantly affect fire patterns. The 
study highlights over 1600 km² of highly 
susceptible regions, emphasizing the need 
for targeted conservation and community 
involvement in forest protection [34]. 
Another study highlighted forest-fire 
susceptibility (FFS) maps for Fars Province, 
Iran, using GIS-based machine-learning 
algorithms, with a boosted regression 
tree (BRT) achieving the highest accuracy 
(AUC = 88.90%). Key factors influencing 
FFS included land-use, annual mean 
rainfall, and slope angle. These findings can 
enhance forest resource management in 
the region.[46]. Mayr et al. (2018) researched 
Namibia and confirmed that mean annual 
rainfall is exceptionally significant for 
fire activity. However, human impacts are 
supplementary control of fuel accessibility. 
Eskandari et al. (2020) have demonstrated 
that fire danger is firmly connected to the 
distance from roads and climate conditions. 
They applied data mining techniques 
to model fire danger and mapping by 
using both climate and geomorphological 
factors to model fire danger in Koohdasht, 
Lorestan, Iran. Mandal et al. (2022) mapped 
the multi-hazards risks using Analytic 
Hierarchical Analysis (AHP), Random 
Forest (RF), and Artificial Neutral Network 
(ANN). They concluded that RF was the 
most accurate model in mapping multi-
hazard risk. Tan & Feng (2023) developed 
a forest fire risk map using three machine 
learning methods, including RF, SVM, and 
GBDT, to predict the probability of a forest 
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fire. Results showed that RF performed 
the highest degree of accuracy (91.68%) 
and precision (92.78%). Moreover, 
they concluded that the main factors 
contributing to forest fires are meteorology 
and vegetation. Fire significantly threatens 
natural ecosystems in arid and semiarid 
regions like Semnan Province in central 
Iran. These areas are vulnerable due to 
climatic conditions and sparse vegetation, 
limiting fire fuel. Xerophytic plants can still 
suffer extensive damage, particularly in 
grasslands, rangelands, broadleaf forests, 
juniper forests, and Haloxylon habitats that 
protect soil from erosion. The high density 
of juniper trees raises concerns about 
fire frequency, even though fires are rare 
due to low rainfall and productivity. Our 
research hypothesizes that human factors, 
particularly distance to roads, significantly 
impact fire occurrence by increasing 
access and the risk of accidental ignitions. 
Understanding these spatial distributions 
is crucial for effective fire management. Our 
innovative study comprehensively assesses 
fire susceptibility in Semnan’s fragile 
ecosystems. We generate detailed fire 
susceptibility maps using advanced MLAs 
that identify high-risk areas. This research 
enhances predictive accuracy and supports 
targeted resource allocation, addressing 
the urgent need to protect ecosystems 
increasingly threatened by fire incidents.
We evaluated fire occurrences in semiarid 
areas, considering different land-uses and 
land-cover, particularly in slow-growing 
juniper forests. This research follows 
three specific goals: 1) evaluating the 
impacts of both natural environmental 
and geomorphological data (meteorology, 
topography, and vegetation cover) along 
with anthropogenic variables (distance to 
roads) on fire occurrences, 2) identifying the 
main factors in fire susceptibility map, and 
3) highlighting the fire susceptibility maps 

using machine learning techniques, e.g., RF, 
SVM, GBDT, and mean of models.

Materials & Methods
Study Area
Semnan Province, encompassing an area 
of approximately 96,816 km2, constitutes 
about 5.8% of Iran's total land area. It is 
geographically situated between the coor-
dinates of 34°15' to 37°20' North latitude 
and 51°50' to 57°03' East longitude [38]. The 
province is positioned in the southern re-
gion of the Alborz Mountain range and in-
cludes a significant expanse of desert plain, 
which comprises more than half of its total 
area. The topography of Semnan Province 
exhibits a notable gradient in elevation that 
decreases from north to south, ranging from 
640 meters to over 3,500 meters above sea 
level, with a mean elevation of approximate-
ly 1,067 meters (Figure 1). 
The region can be categorized into three 
geomorphological zones: mountainous, 
sub-montane, and lowland desert plains. 
Climatically, Semnan has both arid and 
semiarid conditions characterized by low 
annual rainfall and a brief cold season. The 
mean annual precipitation is approximately 
136 millimeters. Temperature variations 
within the study area include a minimum of 
12.8°C, a maximum of 23.7°C, and a mean of 
18.3°C [39]. Despite the predominantly arid 
climate, Semnan Province supports a diverse 
array of land-uses and land-cover types. 
The land-use and land-cover (LULC) map of 
the study area highlights various land-cover 
types in Semnan Province (Figure 1). The 
map categorizes the landscape into several 
classes, including broadleaf forests, juniper 
forests, shrublands, grasslands, croplands, 
herbaceous wetlands, Haloxylon, permanent 
waterbodies, urban areas, bare soil, salty 
lands, gardens,  and sparse vegetation. The 
dominant LULC cover type is juniper forests, 
prevalent in the north and significant for 
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Figure 1) The location of the study area in Iran; the land-cover and land-use (LULC) map with fire occurrence 
points that occurred between 2001 and 2022 in the Semnan Province.
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their ecological role and fire vulnerability. 
Other essential land-covers include 
shrublands and grasslands, enhancing the 
region's biodiversity and fire dynamics. 
Most agricultural land in Semnan Province, 
excluding the Hosein Abad Kalpush region 
in the north, is under irrigated cultivation, 
with a total area of approximately 200,000 
hectares dedicated to this purpose (Figure 1).
Workflow
This study was conducted in four steps: 
i) determining the fire inventory map, 
ii) preparing the effective variables for 
prediction of the fire susceptibility map, iii) 
selecting effective variables, iv) generation of 

a fire susceptibility map using three different 
machine learning algorithms (Figure 2). The 
entire processing was conducted using R 
version 4.2. and QGIS version 3.36.
Auxiliary Variables for Mapping Fire 
Susceptibility 
Several 110 observed fire locations were 
recorded between 2001 and 2022 in different 
LULC classes in Semnan Province. Moreover, 
110 non-fire points were randomly identified 
in the study area. Consequently, 220 fire and 
non-fire points were used to model the fire 
susceptibility map. To do so, several auxiliary 
variables were considered, e.g., annual rainfall 
and temperature as climatic variables, digital 

Figure 2) Flowchart of research processes and analysis.
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elevation model and its terrain attributes 
(slope, aspect, and topographic wetness 
index), NDVI as vegetation cover, distance to 
roads, and LULC as anthropogenic variables 
(Table 1). 
Land-Use/Cover (LULC) Map: We used the 
land-cover produced by the European Space 
Agency (ESA). This product provides a global 
land-cover map at 10 m resolution based on 
Sentinel-1 and Sentinel-2 data. The selected 
land-cover product was not sorted into 
several classes properly, and it considered 
Haloxylon and juniper forests as the same 
class in the rangelands class. Also, some 
cropland areas were not detected in the ESA 
landcover product. Thus, we updated the 
land-cover map and separated Haloxylon 

vegetation cover, juniper forest, and 
croplands into different classes according to 
the study area's environmental conditions 
(Figure 1). 
Rainfall Data: In this study, the spatial 
distribution of mean annual rainfall varies 
significantly. An accurate rainfall map is 
crucial in modeling a fire susceptibility 
map. We utilized the predicted mean rainfall 
map at an annual scale created by Amini 
et al. (2022)many experimental models 
have been proposed, of which the Revised 
Universal Soil Loss Equation (RUSLE based 
on ground rainfall data from 9 synoptic 
stations and 44 rain gauge stations (2001-
2022). Additionally, several auxiliary 
variables were employed to enhance the 

Table 1) The primary selection of factors and data sources on the fire susceptibility map in the study area.

Row Auxiliary Variables Data Source Impact

1 Mean annual rainfall 
(mm .year-1)

OLMP, LST 
(Terra MODIS), 

DEM

Decrease the spread of fire due to increasing soil moisture and 
vegetation growth

2 Mean annual 
temperature (◦C) ERA5-Land Air surface temperature in participating fire ignition and spread

3 Distance from roads 
(km) GIS-based data Provide accessibility to human activities in fire frequency, spread, 

and occurrences in various areas

4 NDVI Landsat 8 (OLI) Vegetation cover and density that measures the availability of fire 
fuel

5 LULC European Space 
Agency (ESA)

Determine the different land-use and land-cover involved in the 
exposure level of fire spread

6 Elevation/
Altitude(m) ASTER DEM Make a microclimate regarding vegetation distribution and types in 

controlling fire flammability and occurrences

7 Slope (%) Terrain 
attributes

Slope controls vegetation cover distribution with a high impact on 
fire spreads, particularly at steep slopes.

8 Aspect Terrain 
attributes

The hillside faces away from the direct sunshine and retains more 
moisture, supporting vegetation cover greenness.

9 TWI Terrain 
attributes

TWI significantly influences fire occurrence and spread, as dry 
areas are prone to fire and spread rapidly. It indicates surface water 
content, representing the degree of humidity, especially in arid and 

semiarid regions.

10 Wind-effect Terrain 
attributes

Topography/Terrain attributes offer fire protection by influencing 
terrain on climate state, vegetation, and as fuel breaks to fire 

spread.
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accuracy of the annual rainfall map, including 
OpenLandMap precipitation (OLMP), digital 
elevation model (DEM), and land surface 
temperature (LST). 
Annual Temperature Map: The annual 
air temperature is an effective factor in 
mapping fire susceptibility. However, the 
number of synoptic and climatic stations 
cannot map the study area's temperature. 
Therefore, the ERA5-Land reanalysis data 
were used to map air temperature in this 
research. The ERA5-Land data have biases 
and should be corrected before being used 
as measured data. In this study, ERA5-Land 
data were corrected using station data for 
each year using the quantile mapping (QM) 
method. This statistical approach adjusts 
the distribution of a variable to better align 
with the observed distribution. The QM 
method utilizes the Empirical Cumulative 
Distribution Function (ECDF) of both the 
measured and ERA5-Land data to reduce 
systematic biases in the ERA5-Land data. 
Equations (1-3) were applied to address 
these systematic biases in the spatial data by 
considering the probability of temperature 
occurrence (Probgp) for individual grid pixels 
derived from ERA5-Land data collected from 
2000 to 2020.

Eq. (1)

Eq. (2)

Eq. (3)

ERA5 LandECDF −  is the empirical cumulative 
distribution function (ECDF) of ERA5-Land 
reanalysis data at station points, computed 
annually to account for variations over time.
The transfer function relating the ECDF 
of observed precipitation to ERA5-Land 
reanalysis data can be acquired from 
Eq.(2). Moreover, the correction factor 
(CFgp) indicates the discrepancies between 

observed and ERA5-Land temperature data 
in the given pixel determined by the Probgp. 
Subsequently, the CFgp is applied to adjust the 
ERA5-Land temperature data ( ERA5 Land,gpP )−  
at each pixel, yielding the bias-corrected 
ERA5-Land reanalysis precipitation data 
( )gp, BCP , as detailed in Eq. (3). For next steps, 
the corrected ERA5-Land reanalysis data 
was considered as measured data (2001-
2022) in the study area. The mean of ERA5-
Lands data was used as a temperature map 
in machine learning modeling. 
Topographic Data: Fire occurrences 
and spread are directly affected by 
topographic variations, which dominate 
spatial distribution and vegetation type 
composition. Moreover, DEM and its terrain 
attributes, e.g., slope and aspect, have been 
widely reported [24,40]. We downloaded 
ASTER DEM in 30 meters spatial resolution, 
and then slope angle, aspect, topographic 
wetness index (TWI), and wind effect were 
extracted as secondary features of DEM 
(Figure 3). TWI is mathematically expressed 
with the following equation [40].

	
 Eq. (4) 

Where A is the specific catchment area of a 
portion of land, and β is the slope gradients 
in degrees (angle). 
Normalized Difference Vegetation 
Index (NDVI): The Normalized Difference 
Vegetation Index (NDVI) is used to measure 
vegetation cover, which is a good satellite-
based indicator of vegetation on a landscape 
scale [42,43]. The mean NDVI values vary 
across different years; therefore, using the 
mean NDVI from multiple years to predict 
the fire susceptibility map is advisable. In 
the current study, the collection of Landsat 
satellite OLI data was processed to a time 
series layer stack of NDVI images from 2015 
to 2022. Most of the annual plants in the 
study area have reached maximum growth 



Enhancing Fire Susceptibility Mapping in ...

ECOPERSIA                                                    	                                                          Winter 2025, Volume 13, Issue 1

20

from March to June. Therefore, we used the 
median NDVI value of the first four months 
as an auxiliary variable for predicting the 
fire susceptibility map. 
Distance to Roads: The influence of human 
activity on wildfire occurrence can be 
investigated using various spatial variables, 
including distance to roads, urban areas, 
villages, agricultural lands, and tourism 
regions. This study’s initial analysis of 
fire incidents revealed that less than 5% 
occurred in agricultural land near villages 
and urban areas. Consequently, distance 
to populated areas was excluded as a 
predictor variable in the fire susceptibility 
model. However, distance to roads was 
incorporated as a key factor using a 
multiple buffer ring approach. Twelve 
buffer distance classes around roads were 
established: less than 50, 100, 200, 300, 

400, 500, 700, 1000, 2000, 3000, 4000, and 
more than 4000 meters. These buffers were 
then dissolved to create contiguous zones 
for analysis.
Factor Analysis: Boruta, a machine-learning 
algorithm, is a feature-selection technique 
that can be used for regression and classifi-
cation. It was developed as a wrapper-based 
approach based on a random forest classi-
fication. The Boruta algorithm functions by 
comparing the importance of each feature 
against that of randomly generated shad-
ow features. A shadow attribute is created 
for each attribute, and its value is estimated 
by shuffling original attribute values across 
objects [44]. Subsequently, the shadow fea-
tures are evaluated to identify the maximum 
Z-score (MZS). Any feature that scores bet-
ter than MZS is assigned a hit. Features with 
importance scores significantly lower than 

Figure 3) The practical driver factors in evaluating fire susceptibility extracting by Digital Elevation Model (DEM).
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MZS (Z-scores< MZS) are considered irrele-
vant and rejected. Conversely, features with 
importance scores significantly higher than 
MZS (Z-scores> MZS) are deemed relevant 
and confirmed [45]. 
The Z-score is defined as:

MDAZ Score
SD

− =  Eq. (5)

where MDA refers to Mean Decrease 
Accuracy, and SD is the Standard Deviation 
of accuracy losses.
Furthermore, a multicollinearity test was 
run between the variables (Table 1) using 
two important indices of variance inflation 
factor (VIF) and tolerance (T). VIF identifies 
the correlation between predictors or 
independent variables and the strength of 
that correlation. Based on the VIF value, a 
decision will be made to either exclude a 
variable from the modeling procedure or 
include it. If VIF >10, the multicollinearity 
test is considered high [46].
Data Processing
Machine Learning Algorithms (MLAs): 
Understanding the spatial distribution of fire 
susceptibility is vital for effective fire control 
and management. This study utilized three 
MLAs: Random Forest (RF), Support Vector 
Machine (SVM), and Gradient Boosting 
Decision Trees (GBDT). Furthermore, 
we used the outputs of these models to 
create a new predictive model for mapping 
fire susceptibility in Semnan Province. 
Additional details are provided below.
Random Forest (RF): The RF algorithm 
is one of the non-parametric machine-
learning techniques to appraise the relative 
significance of every variable in a predictive 
model. A considerable power of using the 
RF algorithm is its ability to execute both 
classification and regression processes 
[47]. It is an ensemble model with many 
individually trained Decision Trees (DTs). 

This algorithm's high level of performance 
is performed by reducing the correlations 
between trees while lessening model 
variance. Therefore, an abundance of diverse 
trees delivers more precision than each 
separated tree [48]. 
Support Vector Machine (SVM): The SVM 
algorithm is a nonlinear, binary classification 
process that aims to determine the 
thresholds that divide a training sample into 
predefined classes. The optimum separation 
minimizes misclassifications that usually 
occur during training [49]. The main benefit 
of SVM is the ability to convert models and 
solve nonlinear classification problems 
caused by a lack of prior knowledge of the 
modeling conditions [50]. 
Gradient Boosting Decision Tree (GBDT): 
Gradient boosting decision tree (GBDT) is a 
supervised classification used for prediction 
analysis [51,52], which can solve classification 
and regression problems [53]. It calculates 
the residuals between the current output 
and the true value of each weak learner. 
Then, it accumulates the residuals of each 
weak learner output to reduce the residuals 
in the training process and achieve the 
classification goal [54]. 
Fire susceptibility map: In this research, 
every single auxiliary variable consists 
of both natural environmental data (e.g. 
mean annual rainfall, bias-corrected 
mean annual temperature data, NDVI, 
LULC, elevation, slope’s degree, aspect, 
TWI, and wind effect obtained from DEM) 
and anthropogenic covariates (distance 
to roads) were used to generate the 
final fire susceptibility maps in Semnan 
Province by using three machine learning 
methods: RF, SVM, and GBDT. The severity 
level of fire depends on the degree of 
influencing factors that originated from 
fire occurrences, and it is classified as low, 
moderate, high, and very high.
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Mean of Models: The advantage of using 
the mean of models is that it improves 
risk assessment predictions and enhances 
the outputs of an individual model [55,56]. In 
the current study, the averaging of three 
different MLAs, e.g., RF, SVM, and GBDT, 
was applied to minimize the limitations of 
every single model and enhance the total 
accuracy of the fire susceptibility map.
Model Performance, Validation, and 
Accuracy Assessment: The performance 
of ML models are considered by their ability 
to detect burned areas accurately based on 
input maps and predict fire locations with the 
least errors. Therefore, the modeling results 
must be validated through several statistical 
analyses. In each modeling process, the 
sample points were accidentally divided 
into 70% training samples to build models, 
and the rest of 30% were utilized for testing 
models. Finally, modeling results must be 
validated and assessed through several 
statistical methods. Five metrics were used 
to validate the fire susceptibility models, 
e.g., Accuracy, Cohen’s Kappa, Precision, the 
area under the curve (AUC), and Recall. 

Calculation of the five mentioned measures 
may be performed according to Eqs. (6) to (9).

( ) ( )p n p nAccuracy T  T / F  F= + + 	 Eq. (6)

( ) ( )o e eCohen s Kappa P P / 1  P′ = − − 	 Eq. (7)

p

p p

T
Precision  

T  F
=

− 	 Eq. (8)

p

p n

T
Recall

T  F
=

−
	 Eq. (9)

where Tp and Tn are true positive and true 
negative, respectively. FP, Fn, Po, and Pe are 
false positives, false negatives, relative 
agreements observed, and hypothetical 
probability of chance agreements, respec-
tively.

Findings
Frequency of Fire Events in the Study 
Area: The frequency of fire occurrences 
was analyzed each month between 2001 
and 2022 (Figure 4). An examination of 
temporal fire distribution demonstrates 
that most events occurred in 2013, 2016, 

Figure 4) The temporal distribution of fire occurrences between the years 2001 and 2022 (left) and in each month (right).
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and 2010, respectively. Moreover, June, July, 
and August showed the highest rate of fire 
frequency (Figure 4). Because of summer's 
warm weather, annual vegetation cover does 
not grow anymore. Under this condition, the 
biomass is dry-off and becomes ignitable, and 
as a result, it supplies feasible fuel for fire 
occurrence. 
Fire events, categorized by land-use and 
land-cover (LULC) classification, peaked 
in broadleaf forests in 2017 and 2018, 
with occurrences exceeding 15 hectares. 
In contrast, rangelands experienced 
significant fire activity only in 2010, 
when events surpassed 300 hectares in 
Semnan Province (Figure 5). Although 
grasslands, broadleaf forests, and sparse 
vegetation exhibited the highest rates of 
fire occurrences, herbaceous wetlands and 
shrublands recorded the lowest rates, each 
exceeding 5% (Figure 6). Between 2001 
and 2022, over 25% of total fire events 
primarily occurred in grasslands, attributed 
to the presence of flammable surface fuels. 
Broadleaf forests, sparse vegetation, and 
juniper forests ranked second, third, and 
fourth in fire occurrences, comprising 

approximately 20%, 17%, and 13% of total 
events, respectively (Figure 6).

Figure 6) The spatial distribution of fire events in 
different Land-use/cover (LULC) classes from 2001 
to 2022.

Evaluating Auxiliary Variables in Fire 
Frequency Occurrences: Annual rainfall in 
the study area ranges from approximately 
70 to 460 mm .year-1, categorized into eight 
distinct classes (Table 2). Results indicate 
that over half of the study area (55.15%) 
receives annual rainfall between 70 and 
100 mm, primarily in the southern region  

Figure 5) The affected area of fire occurrences in both classes of forests and rangelands (ha) from 2001 to 2022.
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(Figure 7). The highest annual rainfall 
amounts are found in the northern areas, 
with more significant elevations. As elevation 
decreases towards the south, rainfall and 
NDVI values decline, particularly in the arid 
regions (Figure 7). In the northern part of 
the study area, annual rainfall ranges from 
200 to 460 mm, characterizing a semiarid 
climate that accounts for approximately 
6.54% of the total study area (Table 2, 
Figure 7). With its mountainous terrain, 
the northern edge supports broadleaf and 
juniper forests, where NDVI values exceed 
0.6, and the mean annual temperature is 
recorded at a relatively low 8.66°C.

Table 2) Distribution of rainfall ranges and corresponding 
area percentages.

Class 
Number

Rainfall Ranges 
(mm .year-1)

Area 
Percentage

1 70-100 55.15

2 100-150 29.26

3 150-200 9.06

4 200-250 2.21

5 250-300 2.23

6 300-350 0.75

7 350-400 1.02

8 400-460 0.33

Figure 7) Auxiliary variables for fire susceptibility mapping in the study area.
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Table 3 and Figure 8 present a frequency 
analysis of eight significant factors influencing 
fire events. The results indicate that half of the 
fire occurrences are in areas receiving more 
than 280 mm of rainfall annually. Additionally, 
20% of the fires occurred in regions with rainfall 
between 330 and 380 mm .year-1, primarily 
in the northern part of the study area, which 

is characterized by broadleaf forests, dense 
grasslands, and juniper forests. In this region, 
the annual temperature declines as elevation 
increases to between 2000 and 2500 meters, 
and vegetation cover becomes denser. Notably, 
the frequency of fire events has decreased with 
rising annual temperatures. In areas with rainfall 
between 70 and 100 mm .year-1, Haloxylon 

Figure 8) The frequency bar graphs of fire events in different input variables in the study 
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vegetation is present, accounting for over 15% 
of fire events (Figure 8). Furthermore, more than 
60% of fire occurrences were recorded at low 
temperatures, ranging from 8°C to 11°C (Figure 
8). The analysis of fire frequency revealed that 
over 50% of fires occurred within 1 km of 
roads (Table 3, Figure 9), and approximately 
70% of fire events occurred within 2 km of 
roadways. Additionally, 75% of fires were 
recorded in areas with an NDVI greater than 
0.19, predominantly covering grasslands and 
rangelands. In contrast, areas with NDVI values 
below 0.19, characterized by Haloxylon cover, 
accounted for 25% of fire occurrences.

Table 3) Frequency parameters of effective variables 
in fire occurrences area.

Variables First 
Quartile Median Third 

Quartile
Rainfall (mm) 182.63 281.15 351.33

Temperature (◦C) 9.01 10.65 14.2
Elevation (m) 1454.3 1973.8 2361.2

Distance to roads (km) 0.3 1.06 2.49
NDVI 0.19 0.29 0.51

Slope (%) 4.74 13.53 23.15
TWI 5.37 5.99 7.63

Wind-effect 0.80 0.84 0.99

Figure 9) Distance to roads (km), the practical factor 
to assess fire susceptibility map.

The Importance of Auxiliary Variables: 
Figure 10 presents the correlation matrix 
among the auxiliary variables used in modeling 

fire susceptibility. The highest positive 
correlation was observed between annual 
rainfall and elevation (r = 0.81), indicating that 
as elevation increases, annual rain also tends 
to rise within the study area. Additionally, the 
correlation between annual rainfall and the 
NDVI was found to be 0.64, suggesting that 
increases in annual rainfall are associated with 
higher NDVI values. Conversely, the correlation 
between annual temperature and rainfall 
and elevation was calculated to be -0.89, 
demonstrating a strong inverse relationship 
with annual temperature.

Figure 10) The matrix of correlation between 
variables.

Correlation Tests for Candidate Variables: 
In this study, the importance of auxiliary 
variables was detected using the Boruta 
machine-learning algorithm (Table 4, Figure 
11). Annual temperature (mean importance: 
17.59) was considered the decisive factor in 
fire events. The two other variables, NDVI 
and annual rainfall, were ranked second and 
third with a mean importance value of 16.60 
and 13.69, respectively (Table 4, Figure 11). 
Moreover, the degree of elevation and distance 
to the road were counted as necessary, at 
12.38 and 10.21, respectively. Generally, the 
variables, including temperature, NDVI, rain, 
elevation, and distance to the road, were 
ranked correspondingly as practical factors 
in fire susceptibility assessment based on the 
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Table 4) The Importance degree (Mean, Median, Minimum, and Maximum) for the effective variables in fire 
susceptibility assessment using the Boruta algorithm.

Variables Mean Median Min Max Decision
Elevation 12.38 12.40 10.47 13.83 Confirmed

Slope 8.50 8.24 6.73 10.71 Confirmed
TWI 4.72 4.61 3.02 6.39 Confirmed

Wind effect 5.28 5.23 1.85 7.03 Confirmed

Distance to road 10.21 10.30 7.71 12.29 Confirmed

Land-cover 8.12 8.10 6.37 10.76 Confirmed
Rain 13.69 13.68 12.35 15.06 Confirmed

Temperature 17.59 17.58 16.43 19.22 Confirmed
NDVI 16.60 16.53 14.82 17.86 Confirmed

Aspect 1.71 1.67 -1.03 3.40 Rejected

Table 5) Multicollinearity tests of the effective variables.

Variable
Linear Regression Parameters Collinearity Statistics

Estimate S.E. t value sig Tolerance (1/VIF) VIF
Intercept 0.45 0.51 0.88 0.38 - -
Elevation 0.00 0.00 -0.24 0.81 0.14 7.15

Slope 0.01 0.00 1.35 0.18 0.28 3.63
TWI 0.00 0.03 -0.04 0.97 0.22 4.59

Wind effect -0.30 0.18 -1.70 0.09 0.73 1.36
Land-cover 0.01 0.00 4.10 0.00** 0.50 2.01

Rain 0.00 0.00 1.99 0.05* 0.12 8.00
Temperature -0.03 0.01 -2.02 0.04* 0.10 7.25

NDVI 0.40 0.18 2.25 0.03* 0.38 2.62

** Significant in 99% confidence level * Significant in 95% confidence level

Figure 11) Boxplot for the importance of effective variables in fire susceptibility assessment using the Boruta algorithm.
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Boruta algorithm. At the same time, the aspect 
factor was rejected in the decision with a mean 
importance of 1.71 (Table 4, Figure 11). 
The multicollinearity test was run to identify 
the practical factors in fire susceptibility 
assessment (Table 5). Generally, VIF can be 
explained using 10 as the critical value. There 
is no multicollinearity if VIF < 10, and for 10 ≤ 
VIF < 100, multicollinearity is high. When VIF 
≥ 100, strong multicollinearity exists (57,58)
and in prioritizing forest fuel treatments. 
In this paper, we chose easily obtained 
spatial variables pertaining to topography, 
vegetation types, meteorological conditions, 
climate, and human activity to predict forest 
fire ignition in Heilongjiang Province, China, 
using logistic regression. Results showed fire 
ignition prediction through logistic regression 
had good accuracy. Climatic variables (e.g., 
average annual mean temperature and 
precipitation. Results showed the VIF value 
for each variable counted below 10, meaning 
no collinearity was found between input 
variables. Consequently, all variables entered 
directly the importance test stage of the 
model (Table 5). 
Validation Results: Machine learning 
models were developed to analyze the spa-
tial relationship between contributing fac-
tors and fire occurrences. Model accuracy 
and goodness-of-fit were assessed using 
several evaluation metrics. All algorithms, 
including RF, SVM, GBDT, and the mean of 
models, performed well, achieving accu-
racy scores of 86%, 84%, 84%, and 84%, 
respectively. Precision, recall, and area 
under the ROC curve (AUC) values were 
also consistently high (Table 6, Figure 12). 
Notably, all models achieved AUC values 
above 0.89, indicating strong predictive 
ability. Furthermore, Kappa statistics ex-
ceeding 0.80 demonstrated strong agree-
ment between observed and predicted fire 
occurrences.
The ROC curve (Figure 13) visually rep-

resents model performance. It plots the true 
positive rate (TPR) against the false positive 
rate (FPR). Curves positioned closer to the 
upper left corner indicate superior perfor-
mance, reflecting higher TPR and lower FPR. 
In this study, all models exhibited good per-
formance, with the RF and mean of models 
showing slightly better performance, as ev-
idenced by their ROC curves being closer to 
the upper left corner. 

Figure 12) A comparison between the accuracy levels 
of three machine learning algorithms.

Figure 13) Validation of fir susceptibility maps 
applying ROC curves for GBDT, RF, SVR, and mean of 
models.
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Fire Susceptibility Maps: Detecting the 
location of fire occurrences is fundamental for 
predicting the sensitivity to environmental 
change and ecological consequences. Fire 
susceptibility maps were created using three 
machine learning models, e.g., GBDT, SVM, and 
RF. The maps were classified into four classes: 
low, moderate, high, and very high classes, 
which demonstrate the area of concern (Figure 
14). RF and mean models (average of three ML 

models) predicted 0.4 and 1.31% of the study 
area as a very highly susceptible class, which 
include areas about 38800 and 12600 km2, 
respectively (Table 7). The other two models, 
GBDT and SVM, predicted 2.42 and 1.86% of 
the study area as very high-class, covering areas 
between 234700 and 180000 km2. Although 
the lowest percentage of the total area is located 
in the very high class (Table 7, Figure 14), it 
covers relatively broad areas of the study area. 

Table 6) Calculated measures for different machine learning models.

Kappa Accuracy Precision Recall AUC

RF 0.85 0.86 0.82 0.76 0.94

SVM 0.81 0.84 0.83 0.67 0.89

GBDT 0.81 0.84 0.82 0.68 0.90

Mean of models 0.82 0.84 0.84 0.68 0.93

Figure 14) Prediction maps of fire susceptibility classes generated with RF, SVM, GBDT, and Mean of models in 
Semnan Province.
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Table 7) Fire susceptibility classes in Semnan Province.

ML Algorithms

Danger 
Class GBDT SVM RF Mean of 

Models

Low 89.76 89.39 90.22 90.77

Moderate 5.13 6.18 6.17 4.69

High 2.68 2.58 3.20 3.33

Very high 2.42 1.86 0.40 1.31

Figure 14 illustrates the fire susceptibility 
maps generated using the individual 
machine learning models and the average 
of these models. Results indicated that three 
models predicted fire susceptibility mainly 
in the north and central parts of Semnan 
Province, especially in broadleaf forests, 
grasslands, and juniper forests. However, 
SVM predicted both moderate (in the north 
and central part) and very highly susceptible 
classes to a greater extent (in the north). 
The fire susceptible classified map indicated 
that most moderate, high, and very highly 
susceptible areas are located in the northern 
portion of the study area. Semnan's forest 
resources are primarily distributed in the 
north, and the southern parts do not have 
either forests or rangelands and fewer 
Haloxylon bushes.

Discussion
Our assessment had two components: 
first, fire frequency and occurrences were 
evaluated using fire occurrences data; second, 
the practical factors on fire susceptibility 
mapping were technically assessed in the 
study area. Results revealed that fire events 
surged in the summer warmest months, 
e.g., June, July, and August, recorded the 
highest fire frequency occurrences in the 
study area. In 2018 and 2017, the highest 
level of fire occurrences was recorded in 
broadleaf forests, with approximately 15 ha. 

Moreover, identifying 13% of juniper forests 
and 20% of broadleaf forests as sites of 
fire occurrences from 2001 to 2022 carries 
significant ecological implications at an 
annual scale. These vulnerabilities can lead 
to biodiversity loss and habitat degradation. 
Wildfires can destroy critical habitats, 
disrupt ecosystem dynamics, and reduce 
genetic diversity. Additionally, ongoing 
monitoring and adaptive management are 
essential to assess ecological conditions 
and adjust strategies based on observed 
outcomes. 
The most significant fire events in 2010 
took place in rangelands, covering an area 
of more than 300 ha, which may have 
been influenced by human activity in 
these regions. Temperature, rainfall, and 
distance to roads have been identified as 
key factors in fire susceptibility mapping. 
Consequently, climate change and human 
activities are expected to increase fire 
occurrences in the study area. Additionally, 
the rising annual temperatures reduce 
agricultural land in the southern part of 
Semnan Province. Meanwhile, intensified 
human activities, such as utilizing northern 
grasslands for agricultural practices, will 
likely exacerbate fire events in the northern 
region. While temperature and rainfall are 
essential predictors in our fire susceptibility 
model, they may not fully capture the 
impact of localized weather extremes like 
droughts and heat waves. However, these 
dynamic variables offer valuable insights 
for developing fire warning systems. For 
example, summer heatwaves and droughts 
often trigger fires in fire-prone areas. 
Therefore, integrating a fire susceptibility 
map with real-time monitoring of extreme 
weather events can enhance the development 
of dynamic fire warning systems.
About 75% of fires occurred with an NDVI 
value of 0.51, and more than 40% of fires 
were recorded with NDVI values between 0.2 
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and 0.4, where sparse vegetation, grasslands, 
rangelands, and Haloxylon cover are 
prevalent. Moving from the northern to the 
southern parts, there is a decrease in annual 
rainfall to 70 mm .year-1, which is covered by 
Haloxylon, accounting for more than 15% 
of fire occurrences. These areas coincide 
with the traditional small ruminant grazing 
routes, which follow tracks and paths used 
by shepherds in a seasonal cycle, typically 
moving to lowlands in winter and highlands 
in summer. Shepherds often use Haloxylon 
bushes for ignition; as a human activity, 
they are the primary cause of fire events 
in these regions. In this study, vegetation 
is the primary fuel material influencing 
fire occurrences in Northern Semnan 
Province. Different vegetation types vary 
in combustibility, significantly impacting 
fire intensity and spread. The interplay 
between vegetation density, moisture 
content, and climatic conditions shapes fire 
dynamics in the region. Understanding these 
relationships is essential for assessing fire 
susceptibility, as denser and drier vegetation 
can exacerbate fire risk while well-managed 
areas may mitigate it. Approximately 50% 
of the observed fires occurred in areas 
with annual rainfall exceeding 280 mm. A 
study revealed that both meteorological 
and vegetation factors play crucial roles in 
influencing fire occurrences [24]. Additionally, 
other research has asserted that climate 
significantly influences short-term fire 
events [59]. Temporary above-average 
rainfall events are a typical driver of fire 
occurrences in arid regions [60], requiring 
fuel levels through the growth of annual 
plants, particularly grasses. More than 50% 
of fires occurred in the northern parts at 
elevations between 2000 and 2500 meters, 
covering approximately 1.5% of the total 
area, where the annual rainfall ranges 
between 350 and 450 mm. Also, the number 
of fire events in semiarid regions is similar 

to the results reported by [8]. Over half of 
the observed fire events occurred within 
1 km of roads, and approximately 70% 
of events transpired within 0 to 2 km of 
roads more accessible to human activity. 
Other studies have supported this finding, 
indicating that the closer the road is to 
high-risk fire areas, the more likely human 
activity is associated with fire occurrences 
[61]. Research has demonstrated that areas 
with low elevation and short distances 
from roads exhibit a higher potential for 
fire danger [62–64]. Moreover, some research 
indicated a significant correlation between 
forest fire occurrences and meteorological 
and topographic factors, and vegetation 
type [61,65]. They found that the distance from 
roads has a negative impact on fire events, 
implying that the probability of forest fires 
decreases with an increase in distance from 
roads. Our findings align with research that 
noted elevation significantly influenced fire 
occurrence more than slope and aspect [24]. 
This study clearly showed the contributing 
factors in the fire susceptibility map, 
including the growth of vegetation cover as 
fire fuel ignition (0.2-0.4), relatively higher 
annual rainfall amounts (250-400 mm. year-

1), elevations ranging from 1000 to 2500 
m, lower temperatures (approximately 
8-11oC), and an optimum distance to roads 
for human access (approximately 3 km). 
Results underscore the significant influence 
of climatic factors and human activity on the 
occurrence of fires. By incorporating these 
variables, our analysis provides a more 
nuanced perspective on how anthropogenic 
activities interact with ecological factors to 
influence fire risk. Fire occurrences stem 
from a variety of causes and have the potential 
to cause substantial damage. For this reason, 
incorporating a broader range of predictors 
and MLAs is vital for enhancing the accuracy 
of fire susceptibility assessments and 
mitigating the impact of wildfires. To protect 
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the forests and rangelands as one of the 
significant natural resources [66,67] in arid and 
semiarid regions, it is critical to implement 
measures to control such fires using machine 
learning techniques. The validation results 
indicated that the RF model demonstrated a 
2% higher prediction accuracy than the SVM, 
GBDT, and mean models, all of which had an 
accuracy of 0.84. Other studies showed the 
superior performance of the RF model in 
modeling wildfire susceptibility in different 
regions [14,68,69]. The findings of this research 
underscore the necessity of considering 
both natural and human factors in predictive 
modeling, as this holistic approach can lead 
to more effective fire management strategies.

Conclusion
Since arid and semiarid regions are highly 
vulnerable ecosystems, any disruption can 
significantly impact their stability. In recent 
years, integrating spatiotemporal ground 
data with MLAs methods has become 
essential for fire monitoring, developing 
effective fire susceptibility maps, and 
implementing fire control strategies. This 
study highlights the importance of integrating 
natural ecological factors, human-related 
influences, and historical fire occurrence 
data in understanding fire susceptibility. It 
also focuses on identifying the key factors 
for predicting fire occurrences in Semnan 
Province while generating fire susceptibility 
maps using three different MLAs: Random 
Forest (RF), Support Vector Machine (SVM), 
and Gradient Boosting Decision Trees 
(GBDT), and the mean of these models. The 
classification of fire susceptibility indicated 
that a significant portion of the northern 
regions of the study area are at high and 
very high risk for fire occurrences. Notably, 
most Juniper forests, broadleaf forests, and 
grasslands in these areas are particularly 
prone to fires that negatively affect 
vegetation diversity and cause ecological 

disturbances. The hypothesis that distance 
to roads serves as an essential human factor 
influencing fire occurrence was supported 
in this study, highlighting its significance 
in fire susceptibility. Applying machine 
learning algorithms effectively generated 
fire susceptibility maps, enhancing our 
understanding of fire dynamics in the area. 
Resilience to fire events must be prioritized 
in arid and semiarid regions, necessitating 
enhanced security measures to prevent fire 
spread and implement resilience strategies to 
mitigate the adverse impacts. Further studies 
are needed to understand the mechanisms 
involved in the increasing frequency of fires, 
the recovery of vegetation cover, and the 
ecological balance post-fire. This research 
is distinctive for employing a combination 
of MLAs and the mean of models to enhance 
our understanding of fire patterns. The 
author acknowledges the limited research 
on predicting fire susceptibility using mean 
models incorporating uncertainty analyses, 
highlighting the need for focused scientific 
and emergency management strategies in 
northern Semnan. Future research should 
consider additional influencing factors, such 
as soil moisture data and socioeconomic 
variables, to enhance regional fire 
susceptibility assessments. Advancing 
our understanding of these factors will 
contribute to developing effective fire 
planning and management policies. To 
effectively manage fire risks in arid and 
semiarid regions like Semnan, it is crucial 
to establish enhanced monitoring systems 
that integrate remote sensing and machine 
learning for real-time tracking of ecological 
changes. Prioritizing fire management 
in high-risk areas, particularly juniper 
and broadleaf forests, while engaging 
local communities is essential. However, 
limitations in data quality and the study's 
specific focus on Semnan may affect broader 
applicability. Additionally, uncertainties 
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related to climate variability and human 
activities underscore the need for adaptive 
fire susceptibility assessments. Addressing 
these factors will strengthen resilience 
and inform effective fire management 
strategies, while continuously refining fire 
susceptibility maps using machine learning 
algorithms will improve predictive accuracy.
This study modeled fire susceptibility using 
environmental variables such as climate 
data, terrain features, NDVI, and road 
proximity. However, anthropogenic factors 
like land-use changes and socioeconomic 
conditions can also significantly influence 
fire occurrence. Therefore, further research 
should analyze fire patterns in Semnan 
Province, incorporating these human 
factors. Semnan Province, situated in an 
arid and semiarid region, has a lower 
density of urban areas and villages than 
the Hyrcanian ecosystems located north 
of Semnan. A comparative analysis of fire 
data from semiarid and arid regions (e.g., 
Semnan Province) with data from the more 
humid Hyrcanian ecosystems could provide 
valuable insights into how wildfire patterns 
vary across diverse climatic regions.
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