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Aims: This study assesses the impacts of natural and human factors on fire occurrences,
identifies key contributors to fire susceptibility maps, and employs machine learning
algorithms (MLAs) to enhance the spatiotemporal patterns of fire susceptibility maps.
Materials & Methods: Data were collected from 110 fire locations and 110 non-fire points
from 2001 to 2022 at an annual scale. Various auxiliary variables were analyzed to model fire
susceptibility, including climate data, terrain features, the Normalized Difference Vegetation
Index (NDVI), and distance to roads. The study employed multiple MLAs, including Random
Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Decision Trees (GBDT),
to generate the fire susceptibility maps.

Findings: About 70% of fires occurred within 2 km of roads, indicating significant human
influence. Grasslands had the highest fire rates, with over 25% of fires from 2001-2022 due
to flammable fuels. The RF and mean models identified 0.4% and 1.31% of the area as very
high susceptibility (38,800 km? and 12,600 km?), while the GBDT and SVM models identified
2.42% and 1.86% (234,700 km? and 180,000 km?). Though small in percentage, the very
high susceptibility class covers large areas.

Conclusion: This research highlights the importance of integrating environmental and
human factors to predict fire events in arid regions and develop comprehensive fire
susceptibility maps, critical for protecting vulnerable ecosystems. These outcomes provide
valuable tools for fire management and mitigation strategies within vulnerable ecosystems.
Moreover, developing targeted fire management strategies focused on high-risk areas, such
as juniper and broadleaf forests, must be a priority.

Keywords: Auxiliary Variables; Climatic Indicators; Juniper Forest; Distance to Road, Fire Susceptibility.

CITATION LINKS

[1] Marlon ], Bartlein P, ... [2] You C,, Yao T, Xu C. Environmental signific... 3| Guo E, Su Z.,, Wang G.,
.. [4] Sevinc V, Kucuk O., Goltas M.A. Bayesian ne... [5] Su Z, Zheng L., Luo S., Tigabu M., Guo F. M...
[6] Bowman D.M.].S, Moreira-Mufioz A, Kolden C.... | 7| Forkel M., Dorigo W, Lasslop G., Teubner I....
[8] Eskandari S., Pourghasemi H.R, Tiefenbacher... [9] Mallinis G., Mitsopoulos I., Chrysafi I. Eva...
[10] Santos A.C. dos., Montenegro S. da. R, Ferr... [11] Arabameri A, Pal. S, Costache R.D,, Saha A...
[12] Ahmed LA, Talukdar S., Shahfahad Parvez A... [13] Akinci H.A,, Akincal H. Machine learning
base... [14]| Alkan Akinci H., Akinci H., Zeybek M. Compar... [15] Novo A., Dutal H., Eskandari S.
Fire suscept... [16] Tonini M., D’Andrea M., Biondi G., Degli Esp... [17] Liu Z.,, Peng C., Timothy W,
Candau J.N, De... [18] Jahanbani M., Vahidnia M.H,, .. [19] Janizadeh S., Chandra Pal S, Saha A,
Chowd... [20] Mirzaei S., Vafakhah M.,... [21] Yang D., Zhang ... [22] Pourghasemi H.R,, Gayen... 23]
Barreto J., Armenteras... [24] Tan C, Feng Z. Mapping... |[25] Chevitarese D.S., Szwarcman D, Silva
RG, .. [26] HuZX, Wang Y, Ge M... [27] Qu S,, Guan Z., Verschuur... 28] Smith R., Mukerji T, Lupo
T. Correlating ge... [29] Tse K.C,, Chiu H.C,, Tsang M.Y, Li Y, Lam ... [30| Zhang G., Wang Z,, ... [31]
Zhou KB, Zhang ZX,, Liu J,, Hu Z.X, Duan... [32] Barmpoutis P, Papaioannou P, Dimitropoulos...
[33] Eskandari S,, ... [34] Sadeghi A, Ahmadi... [35] Amiri M., Pourghasemi H.R. Chapter 25 - Pred...
[36] Mayr M],, Vanselow K.A,, Samimi C. Fire reg... 37| Mandal P, Maiti A, Paul S, Bhattacharya S...
[38] Raeesi M., Zolfaghari A., Rahimi M., Kaboli ... |39| Amini E., Zolfaghari A., Kaboli H., Rahimi M...
[40] Wu Z, Li M, ... [41] Kopecky M., Macek M., Wild ]. Topographic We... [42] Qin Z, Zhu Y, Li W, ...
[43] Xu Ch,, Li Y, Hu... [44]| Kursa M.B,, Rudnicki ... [45] Szul T, Tabor S,, .. [46] Pourghasemi... [47]
Breiman L. Random ... [48] Jain P, Coogan S.C.P, ... [49] Hawrylo P, ... [50]| Mustafa A, Rienow... [51]
Lu], LuD, Zhang X, Bi Y, Cheng K, Zhe... [52] Touzani S, ... 53] Friedman ] .H. :... [54]| Tian Z, Xiao
J., Feng H., Wei Y. Credit Ris... [55] Mosavi A,, Golshan... [56] Tien Bui D, ... [57] Chang Y, Zhu Z,, Bu
R, Chen H, FengY, L... 58] Guo F, Zhang L, Jin, ... [59] McLauchlan KK, Higuera PE., Miesel ], Ro...
[60] Van Etten E., Burrows N. On the Ecology of A... [61] LiW, Xu Q, Yi]J, ... [62] Eskandari S., Oladi
J., Jalitvand H., Saradj... 63| Pourghasemi H.R. ... [64| Pourtaghi Z.S,, ... [65] Romero-Calcerrada R,
Novillo CJ., Millingt... [66] Faraji E, Alijanpour ... [67] Akhzari D., Mohammadi E., Saedi K. Studying
.. |68] Barreto ].S., Armenteras... [69] Iban M.C, Sekertekin A. Machine learning ba...

Copyright© 2021, the Authors | Publishing Rights, ASPI. This open-access article is published under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix,
transform, and build upon the material) under the Attribution-NonCommercial terms.



Introduction

Fireoccurrencehasavital effectonecosystem
succession, carbon cycle, atmospheric
chemical composition, and configuration 2,
With the advancement of fire susceptibility
prediction studies, numerous analyses are
conducted comprehensively using various
factors, including meteorology, topography,
vegetation cover and indices, and human
activities [*° that determine fire potential in
each region %71, In recent years, fire incidents
have increased significantly in Iran's forests
and rangelands as human access to these
natural areas expands . Although fire
monitoring, risk forecasting, and mapping
have benefited significantly from using the
earth observation data and models, every
single monitoring, characterizing, and
zoning of fires is challenging [}

Hazard susceptibility mapping has recently
seen widespread use of machine learning
algorithms (MLAs) techniques worldwide
(12l MLA has been widely used in research
on forest fires and flood susceptibility
prediction 3], forest fire susceptibility map
(1114151 " wildfire susceptibility mapping ¢,
forest ecology '], mapping the variability
of flood hazard ™, and multi-hazard
mapping ?2. Several researchers have
employed MLA to model fire occurrences,
such as Random Forest (RF) [*1624]
Support Vector Machine (SVM) ©?4, and
Gradient Boosting Decision Tree (GBDT)
[24] receiving desirable outputs in solving
classification issues [2°-3%, Barmpoutis et
al. (2020) presented a comprehensive
review of fire detection systems, including
ground, airborne, and spaceborne systems.
They also illustrated the deep and classical
machine learning models adopted to detect
fire in each system. Eskandari and Chuvieco
(2015) researched the fire danger systems
to produce a fire danger probability map
using a geographical database in Iran.
They calculated the correlation coefficient

between fire transmission probability and
burned regions with a high significance
of 69%. Research indicates increasing
wildfire incidents in Lorestan Province,
Iran, particularly in semiarid oak forests.
Denser forests are found to be more
vulnerable to fires, with the NDVI identified
as a key indicator of wildfire susceptibility.
Human activities near roads and urban
areas significantly affect fire patterns. The
study highlights over 1600 km? of highly
susceptible regions, emphasizing the need
for targeted conservation and community
involvement in forest protection [34,
Another study highlighted forest-fire
susceptibility (FFS) maps for Fars Province,
Iran, using GIS-based machine-learning
algorithms, with a boosted regression
tree (BRT) achieving the highest accuracy
(AUC = 88.90%). Key factors influencing
FFS included land-use, annual mean
rainfall, and slope angle. These findings can
enhance forest resource management in
the region.*¢]. Mayr et al. (2018) researched
Namibia and confirmed that mean annual
rainfall is exceptionally significant for
fire activity. However, human impacts are
supplementary control of fuel accessibility.
Eskandari et al. (2020) have demonstrated
that fire danger is firmly connected to the
distance from roads and climate conditions.
They applied data mining techniques
to model fire danger and mapping by
using both climate and geomorphological
factors to model fire danger in Koohdasht,
Lorestan, Iran. Mandal et al. (2022) mapped
the multi-hazards risks using Analytic
Hierarchical Analysis (AHP), Random
Forest (RF), and Artificial Neutral Network
(ANN). They concluded that RF was the
most accurate model in mapping multi-
hazard risk. Tan & Feng (2023) developed
a forest fire risk map using three machine
learning methods, including RF, SVM, and
GBDT, to predict the probability of a forest



fire. Results showed that RF performed
the highest degree of accuracy (91.68%)
and precision (92.78%). Moreover,
they concluded that the main factors
contributing to forest fires are meteorology
and vegetation. Fire significantly threatens
natural ecosystems in arid and semiarid
regions like Semnan Province in central
Iran. These areas are vulnerable due to
climatic conditions and sparse vegetation,
limiting fire fuel. Xerophytic plants can still
suffer extensive damage, particularly in
grasslands, rangelands, broadleaf forests,
juniper forests, and Haloxylon habitats that
protect soil from erosion. The high density
of juniper trees raises concerns about
fire frequency, even though fires are rare
due to low rainfall and productivity. Our
research hypothesizes that human factors,
particularly distance to roads, significantly
impact fire occurrence by increasing
access and the risk of accidental ignitions.
Understanding these spatial distributions
is crucial for effective fire management. Our
innovative study comprehensively assesses
fire susceptibility in Semnan’s fragile
ecosystems. We generate detailed fire
susceptibility maps using advanced MLAs
that identify high-risk areas. This research
enhances predictive accuracy and supports
targeted resource allocation, addressing
the urgent need to protect ecosystems
increasingly threatened by fire incidents.
We evaluated fire occurrences in semiarid
areas, considering different land-uses and
land-cover, particularly in slow-growing
juniper forests. This research follows
three specific goals: 1) evaluating the
impacts of both natural environmental
and geomorphological data (meteorology,
topography, and vegetation cover) along
with anthropogenic variables (distance to
roads) on fire occurrences, 2) identifying the
main factors in fire susceptibility map, and
3) highlighting the fire susceptibility maps

using machine learning techniques, e.g., RF,
SVM, GBDT, and mean of models.

Materials & Methods

Study Area

Semnan Province, encompassing an area
of approximately 96,816 km? constitutes
about 5.8% of Iran's total land area. It is
geographically situated between the coor-
dinates of 34°15' to 37°20' North latitude
and 51°50' to 57°03' East longitude 8. The
province is positioned in the southern re-
gion of the Alborz Mountain range and in-
cludes a significant expanse of desert plain,
which comprises more than half of its total
area. The topography of Semnan Province
exhibits a notable gradient in elevation that
decreases from north to south, ranging from
640 meters to over 3,500 meters above sea
level, with a mean elevation of approximate-
ly 1,067 meters (Figure 1).

The region can be categorized into three
geomorphological zones: mountainous,
sub-montane, and lowland desert plains.
Climatically, Semnan has both arid and
semiarid conditions characterized by low
annual rainfall and a brief cold season. The
mean annual precipitation is approximately
136 millimeters. Temperature variations
within the study area include a minimum of
12.8°C, a maximum of 23.7°C, and a mean of
18.3°C B9, Despite the predominantly arid
climate, Semnan Province supports a diverse
array of land-uses and land-cover types.
The land-use and land-cover (LULC) map of
the study area highlights various land-cover
types in Semnan Province (Figure 1). The
map categorizes the landscape into several
classes, including broadleaf forests, juniper
forests, shrublands, grasslands, croplands,
herbaceous wetlands, Haloxylon, permanent
waterbodies, urban areas, bare soil, salty
lands, gardens, and sparse vegetation. The
dominant LULC cover type is juniper forests,
prevalent in the north and significant for
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Figure 1) The location of the study area in Iran; the land-cover and land-use (LULC) map with fire occurrence
points that occurred between 2001 and 2022 in the Semnan Province.



their ecological role and fire vulnerability.
Other  essential land-covers include
shrublands and grasslands, enhancing the
region's biodiversity and fire dynamics.
Most agricultural land in Semnan Province,
excluding the Hosein Abad Kalpush region
in the north, is under irrigated cultivation,
with a total area of approximately 200,000
hectares dedicated to this purpose (Figure 1).
Workflow

This study was conducted in four steps:
i) determining the fire inventory map,
ii) preparing the effective variables for
prediction of the fire susceptibility map, iii)
selecting effective variables, iv) generation of

afire susceptibility map using three different
machine learning algorithms (Figure 2). The
entire processing was conducted using R
version 4.2. and QGIS version 3.36.
Auxiliary Variables for Mapping Fire
Susceptibility

Several 110 observed fire locations were
recorded between 2001 and 2022 in different
LULC classes in Semnan Province. Moreover,
110 non-fire points were randomly identified
in the study area. Consequently, 220 fire and
non-fire points were used to model the fire
susceptibility map. To do so, several auxiliary
variables were considered, e.g., annual rainfall
and temperature as climatic variables, digital
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elevation model and its terrain attributes
(slope, aspect, and topographic wetness
index), NDVI as vegetation cover; distance to
roads, and LULC as anthropogenic variables
(Table 1).

Land-Use/Cover (LULC) Map: We used the
land-cover produced by the European Space
Agency (ESA). This product provides a global
land-cover map at 10 m resolution based on
Sentinel-1 and Sentinel-2 data. The selected
land-cover product was not sorted into
several classes properly, and it considered
Haloxylon and juniper forests as the same
class in the rangelands class. Also, some
cropland areas were not detected in the ESA
landcover product. Thus, we updated the
land-cover map and separated Haloxylon

vegetation cover, juniper forest, and
croplands into different classes according to
the study area's environmental conditions
(Figure 1).

Rainfall Data: In this study, the spatial
distribution of mean annual rainfall varies
significantly. An accurate rainfall map is
crucial in modeling a fire susceptibility
map. We utilized the predicted mean rainfall
map at an annual scale created by Amini
et al. (2022)many experimental models
have been proposed, of which the Revised
Universal Soil Loss Equation (RUSLE based
on ground rainfall data from 9 synoptic
stations and 44 rain gauge stations (2001-
2022). Additionally, several auxiliary
variables were employed to enhance the

Table 1) The primary selection of factors and data sources on the fire susceptibility map in the study area.

Row  Auxiliary Variables Data Source

Impact

Mean annual rainfall OLME, LST
1 (Terra MODIS),

il
(mm .year™) DEM

2 Mean annua} ERAS-Land
temperature (" C)

3 Distance from roads GIS-based data
(km)

Decrease the spread of fire due to increasing soil moisture and

vegetation growth

Air surface temperature in participating fire ignition and spread

Provide accessibility to human activities in fire frequency, spread,

and occurrences in various areas

NDVI

LULC

Landsat 8 (OLI)

European Space

Agency (ESA)
Elevation/
6 ASTER DEM
Altitude(m)
Terrain
7 SI 0
ope (%) attributes
Terrain
8 A t
spec attributes
9 TWI Ter-'ram
attributes
10 Wind-effect Tel_‘ram
attributes

Vegetation cover and density that measures the availability of fire
fuel

Determine the different land-use and land-cover involved in the
exposure level of fire spread

Make a microclimate regarding vegetation distribution and types in
controlling fire flammability and occurrences

Slope controls vegetation cover distribution with a high impact on
fire spreads, particularly at steep slopes.

The hillside faces away from the direct sunshine and retains more
moisture, supporting vegetation cover greenness.

TWI significantly influences fire occurrence and spread, as dry
areas are prone to fire and spread rapidly. It indicates surface water
content, representing the degree of humidity, especially in arid and

semiarid regions.

Topography/Terrain attributes offer fire protection by influencing
terrain on climate state, vegetation, and as fuel breaks to fire
spread.




accuracy of the annual rainfall map, including
OpenLandMap precipitation (OLMP), digital
elevation model (DEM), and land surface
temperature (LST).

Annual Temperature Map: The annual
air temperature is an effective factor in
mapping fire susceptibility. However, the
number of synoptic and climatic stations
cannot map the study area's temperature.
Therefore, the ERA5-Land reanalysis data
were used to map air temperature in this
research. The ERA5-Land data have biases
and should be corrected before being used
as measured data. In this study, ERA5-Land
data were corrected using station data for
each year using the quantile mapping (QM)
method. This statistical approach adjusts
the distribution of a variable to better align
with the observed distribution. The QM
method utilizes the Empirical Cumulative
Distribution Function (ECDF) of both the
measured and ERA5-Land data to reduce
systematic biases in the ERA5-Land data.
Equations (1-3) were applied to address
these systematic biases in the spatial data by
considering the probability of temperature
occurrence (Prob_ ) for individual grid pixels
derived from ERA5-Land data collected from
2000 to 2020.

Probg, = ECDFgras-pLand(Peras-Landgp) Eq. (1)
CFEP = ECDFEl}slstation(Pmbgp) - ECDFE&M_Land(PFObgp)

Eq. (2)

Eq. (3)
ECDF,,, .. 1S the empirical cumulative
distribution function (ECDF) of ERA5-Land
reanalysis data at station points, computed
annually to account for variations over time.
The transfer function relating the ECDF
of observed precipitation to ERA5-Land
reanalysis data can be acquired from
Eq.(2). Moreover, the correction factor
(Cng) indicates the discrepancies between

ng,BC = PERAS—Land,gp + Cng

observed and ERA5-Land temperature data
in the given pixel determined by the Probgp.
Subsequently, the CF is applied to adjustthe
ERA5-Land temperature data (Pggys ;apap)
at each pixel, yielding the bias-corrected
ERA5-Land reanalysis precipitation data
(ng, BC ), as detailed in Eq. (3). For next steps,
the corrected ERA5-Land reanalysis data
was considered as measured data (2001-
2022) in the study area. The mean of ERA5-
Lands data was used as a temperature map
in machine learning modeling.
Topographic Data: Fire occurrences
and spread are directly affected by
topographic variations, which dominate
spatial distribution and vegetation type
composition. Moreover, DEM and its terrain
attributes, e.g., slope and aspect, have been
widely reported 440, We downloaded
ASTER DEM in 30 meters spatial resolution,
and then slope angle, aspect, topographic
wetness index (TWI), and wind effect were
extracted as secondary features of DEM
(Figure 3). TWI is mathematically expressed
with the following equation [0l

TWI = h{AJ Eq. (4)

tan

Where A is the specific catchment area of a
portion of land, and f is the slope gradients
in degrees (angle).

Normalized Difference Vegetation
Index (NDVI): The Normalized Difference
Vegetation Index (NDVI) is used to measure
vegetation cover, which is a good satellite-
based indicator of vegetation on a landscape
scale 243 The mean NDVI values vary
across different years; therefore, using the
mean NDVI from multiple years to predict
the fire susceptibility map is advisable. In
the current study, the collection of Landsat
satellite OLI data was processed to a time
series layer stack of NDVI images from 2015
to 2022. Most of the annual plants in the
study area have reached maximum growth
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Figure 3) The practical driver factors in evaluating fire susceptibility extracting by Digital Elevation Model (DEM).

from March to June. Therefore, we used the
median NDVI value of the first four months
as an auxiliary variable for predicting the
fire susceptibility map.

Distance to Roads: The influence of human
activity on wildfire occurrence can be
investigated using various spatial variables,
including distance to roads, urban areas,
villages, agricultural lands, and tourism
regions. This study’s initial analysis of
fire incidents revealed that less than 5%
occurred in agricultural land near villages
and urban areas. Consequently, distance
to populated areas was excluded as a
predictor variable in the fire susceptibility
model. However, distance to roads was
incorporated as a key factor using a
multiple buffer ring approach. Twelve
buffer distance classes around roads were
established: less than 50, 100, 200, 300,

400, 500, 700, 1000, 2000, 3000, 4000, and
more than 4000 meters. These buffers were
then dissolved to create contiguous zones
for analysis.

Factor Analysis: Boruta, a machine-learning
algorithm, is a feature-selection technique
that can be used for regression and classifi-
cation. It was developed as a wrapper-based
approach based on a random forest classi-
fication. The Boruta algorithm functions by
comparing the importance of each feature
against that of randomly generated shad-
ow features. A shadow attribute is created
for each attribute, and its value is estimated
by shuffling original attribute values across
objects 4. Subsequently, the shadow fea-
tures are evaluated to identify the maximum
Z-score (MZS). Any feature that scores bet-
ter than MZS is assigned a hit. Features with
importance scores significantly lower than



MZS (Z-scores< MZS) are considered irrele-
vant and rejected. Conversely, features with
importance scores significantly higher than
MZS (Z-scores> MZS) are deemed relevant
and confirmed 5.

The Z-score is defined as:

Z —Score = M—DA
SD

Eq. (5)
where MDA refers to Mean Decrease
Accuracy, and SD is the Standard Deviation
of accuracy losses.

Furthermore, a multicollinearity test was
run between the variables (Table 1) using
two important indices of variance inflation
factor (VIF) and tolerance (T). VIF identifies
the correlation between predictors or
independent variables and the strength of
that correlation. Based on the VIF value, a
decision will be made to either exclude a
variable from the modeling procedure or
include it. If VIF >10, the multicollinearity
test is considered high 6],

Data Processing

Machine Learning Algorithms (MLAs):
Understanding the spatial distribution of fire
susceptibility is vital for effective fire control
and management. This study utilized three
MLAs: Random Forest (RF), Support Vector
Machine (SVM), and Gradient Boosting
Decision Trees (GBDT). Furthermore,
we used the outputs of these models to
create a new predictive model for mapping
fire susceptibility in Semnan Province.
Additional details are provided below.
Random Forest (RF): The RF algorithm
is one of the non-parametric machine-
learning techniques to appraise the relative
significance of every variable in a predictive
model. A considerable power of using the
RF algorithm is its ability to execute both
classification and regression processes
47, It is an ensemble model with many
individually trained Decision Trees (DTs).

This algorithm's high level of performance
is performed by reducing the correlations
between trees while lessening model
variance. Therefore, an abundance of diverse
trees delivers more precision than each
separated tree ™8],

Support Vector Machine (SVM): The SVM
algorithm is a nonlinear, binary classification
process that aims to determine the
thresholds that divide a training sample into
predefined classes. The optimum separation
minimizes misclassifications that usually
occur during training “°.. The main benefit
of SVM is the ability to convert models and
solve nonlinear classification problems
caused by a lack of prior knowledge of the
modeling conditions 9,

Gradient Boosting Decision Tree (GBDT):
Gradient boosting decision tree (GBDT) is a
supervised classification used for prediction
analysis %21, which can solve classification
and regression problems 3. It calculates
the residuals between the current output
and the true value of each weak learner.
Then, it accumulates the residuals of each
weak learner output to reduce the residuals
in the training process and achieve the
classification goal .

Fire susceptibility map: In this research,
every single auxiliary variable consists
of both natural environmental data (e.g.
mean annual rainfall, bias-corrected
mean annual temperature data, NDVI,
LULC, elevation, slope’s degree, aspect,
TWI, and wind effect obtained from DEM)
and anthropogenic covariates (distance
to roads) were used to generate the
final fire susceptibility maps in Semnan
Province by using three machine learning
methods: RF, SVM, and GBDT. The severity
level of fire depends on the degree of
influencing factors that originated from
fire occurrences, and it is classified as low,
moderate, high, and very high.



Mean of Models: The advantage of using
the mean of models is that it improves
risk assessment predictions and enhances
the outputs of an individual model *55¢, In
the current study, the averaging of three
different MLAs, e.g., RF, SVM, and GBDT,
was applied to minimize the limitations of
every single model and enhance the total
accuracy of the fire susceptibility map.

Model Performance, Validation, and
Accuracy Assessment: The performance
of ML models are considered by their ability
to detect burned areas accurately based on
inputmaps and predict fire locations with the
least errors. Therefore, the modeling results
must be validated through several statistical
analyses. In each modeling process, the
sample points were accidentally divided
into 70% training samples to build models,
and the rest of 30% were utilized for testing
models. Finally, modeling results must be
validated and assessed through several
statistical methods. Five metrics were used
to validate the fire susceptibility models,
e.g., Accuracy, Cohen’s Kappa, Precision, the
area under the curve (AUC), and Recall.
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Calculation of the five mentioned measures
may be performed according to Egs. (6) to (9).

Accuracy = (Tp + T )/(Fp + Fn) Eq. (6)
Cohen's Kappa =(P, —P,)/(1- P,)  Eq.(7)
Precis: T,
recision =
T
Recall = —— Eq. (%)
Tp - F,

where T, and T _are true positive and true
negative, respectively. FR F,P, and P_are
false positives, false negatives, relative
agreements observed, and hypothetical
probability of chance agreements, respec-
tively.

Findings

Frequency of Fire Events in the Study
Area: The frequency of fire occurrences
was analyzed each month between 2001
and 2022 (Figure 4). An examination of
temporal fire distribution demonstrates
that most events occurred in 2013, 2016,
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Figure 4) The temporal distribution of fire occurrences between the years 2001 and 2022 (left) and in each month (right).
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Figure 5) The affected area of fire occurrences in both classes of forests and rangelands (ha) from 2001 to 2022.

and 2010, respectively. Moreover, June, July,
and August showed the highest rate of fire
frequency (Figure 4). Because of summer's
warm weather, annual vegetation cover does
not grow anymore. Under this condition, the
biomass is dry-off and becomes ignitable, and
as a result, it supplies feasible fuel for fire
occurrence.

Fire events, categorized by land-use and
land-cover (LULC) classification, peaked
in broadleaf forests in 2017 and 2018,
with occurrences exceeding 15 hectares.
In contrast, rangelands experienced
significant fire activity only in 2010,
when events surpassed 300 hectares in
Semnan Province (Figure 5). Although
grasslands, broadleaf forests, and sparse
vegetation exhibited the highest rates of
fire occurrences, herbaceous wetlands and
shrublands recorded the lowest rates, each
exceeding 5% (Figure 6). Between 2001
and 2022, over 25% of total fire events
primarily occurred in grasslands, attributed
to the presence of flammable surface fuels.
Broadleaf forests, sparse vegetation, and
juniper forests ranked second, third, and
fourth in fire occurrences, comprising

approximately 20%, 17%, and 13% of total
events, respectively (Figure 6).

30

Percentage of fire occurrences

Figure 6) The spatial distribution of fire events in
different Land-use/cover (LULC) classes from 2001
to 2022.

Evaluating Auxiliary Variables in Fire
Frequency Occurrences: Annual rainfall in
the study area ranges from approximately
70 to 460 mm .year?, categorized into eight
distinct classes (Table 2). Results indicate
that over half of the study area (55.15%)
receives annual rainfall between 70 and
100 mm, primarily in the southern region



(Figure 7). The highest annual rainfall
amounts are found in the northern areas,
with more significantelevations. As elevation

Table 2) Distribution of rainfall ranges and corresponding
areapercentages.

i Class Rainfall Ranges Area
decreases towards the south, rainfall and Number (mm .year?) Percentage
NDVI value's decline, particularly in the arid 1 70-100 5515
regions (Figure 7). In the northern part of
the study area, annual rainfall ranges from 2 faosso e
200 to 460 mm, characterizing a semiarid 3 150-200 9.06
climate that accounts for approximately 4 200-250 291
6.54% of the total study area (Table 2,

Figure 7). With its mountainous terrain, 2 2RI 2.23
the northern edge supports broadleaf and 6 300-350 0.75
juniper forests, where NDVI values exceed 7 350-400 1.02
0.6, and the mean annual temperature is
recorded at a relatively low 8.66°C. 8 400460 0.33
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Figure 7) Auxiliary variables for fire susceptibility mapping in the study area.



Table 3 and Figure 8 present a frequency
analysis of eight significant factors influencing
fire events. The results indicate that half of the
fire occurrences are in areas receiving more
than 280 mm of rainfall annually. Additionally,
20% of the fires occurred in regions with rainfall
between 330 and 380 mm .year?, primarily
in the northern part of the study area, which

is characterized by broadleaf forests, dense
grasslands, and juniper forests. In this region,
the annual temperature declines as elevation
increases to between 2000 and 2500 meters,
and vegetation cover becomes denser. Notably,
the frequency of fire events has decreased with
risingannual temperatures.Inareas with rainfall
between 70 and 100 mm .year!, Haloxylon
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Figure 8) The frequency bar graphs of fire events in different input variables in the study



vegetation is present, accounting for over 15%
offire events (Figure 8). Furthermore, more than
60% of fire occurrences were recorded at low
temperatures, ranging from 8°C to 11°C (Figure
8). The analysis of fire frequency revealed that
over 50% of fires occurred within 1 km of
roads (Table 3, Figure 9), and approximately
70% of fire events occurred within 2 km of
roadways. Additionally, 75% of fires were
recorded in areas with an NDVI greater than
0.19, predominantly covering grasslands and
rangelands. In contrast, areas with NDVI values
below 0.19, characterized by Haloxylon cover,
accounted for 25% of fire occurrences.

Table 3) Frequency parameters of effective variables
in fire occurrences area.

. First . Third
Variables Gk Median Gl
Rainfall (mm) 182.63 281.15 351.33

Temperature (" C) 9.01 10.65 14.2
Elevation (m) 1454.3 1973.8 2361.2
Distance to roads (km) 0.3 1.06 2.49

NDVI 0.19 0.29 0.51
Slope (%) 4.74 13.53 23.15
TWI 5.37 5.99 7.63
Wind-effect 0.80 0.84 0.99
N
A
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. 45
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Figure 9) Distance to roads (km), the practical factor
to assess fire susceptibility map.

The Importance of Auxiliary Variables:
Figure 10 presents the correlation matrix
among the auxiliary variables used in modeling

fire susceptibility. The highest positive
correlation was observed between annual
rainfall and elevation (r = 0.81), indicating that
as elevation increases, annual rain also tends
to rise within the study area. Additionally, the
correlation between annual rainfall and the
NDVI was found to be 0.64, suggesting that
increases in annual rainfall are associated with
higher NDVI values. Conversely, the correlation
between annual temperature and rainfall
and elevation was calculated to be -0.89,
demonstrating a strong inverse relationship
with annual temperature.
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Aspect -0.01 0.01 -0.02 -0.01 0.04.
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Distance to roads 0.00 -0.25 -0.40 -0.35 -0.34 -0.02 0.27 0.49 0.16 .

Figure 10) The matrix of correlation between
variables.

Correlation Tests for Candidate Variables:
In this study, the importance of auxiliary
variables was detected using the Boruta
machine-learning algorithm (Table 4, Figure
11). Annual temperature (mean importance:
17.59) was considered the decisive factor in
fire events. The two other variables, NDVI
and annual rainfall, were ranked second and
third with a mean importance value of 16.60
and 13.69, respectively (Table 4, Figure 11).
Moreover, the degree of elevation and distance
to the road were counted as necessary, at
12.38 and 10.21, respectively. Generally, the
variables, including temperature, NDVI, rain,
elevation, and distance to the road, were
ranked correspondingly as practical factors
in fire susceptibility assessment based on the
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Figure 11) Boxplot for the importance of effective variables in fire susceptibility assessment using the Boruta algorithm.

Table 4) The Importance degree (Mean, Median, Minimum, and Maximum) for the effective variables in fire
susceptibility assessment using the Boruta algorithm.

Elevation 12.38 12.40 10.47 13.83 Confirmed

TWI 4.72 4.61 3.02 6.39 Confirmed

Distance to road 10.21 10.30 7.71 12.29 Confirmed

Rain 13.69 13.68 12.35 15.06 Confirmed

NDVI 16.60 16.53 14.82 17.86 Confirmed

Table 5) Multicollinearity tests of the effective variables.

Intercept 0.45 0.51 0.88 0.38 - -

Slope 0.01 0.00 1.35 0.18 0.28 3.63

Wind effect -0.30 0.18 -1.70 0.09 0.73 1.36

Rain 0.00 0.00 1.99 0.05" 0.12 8.00

NDVI 0.40 0.18 2.25 0.03" 0.38 2.62

** Significant in 99% confidence level * Significant in 95% confidence level

ECOPERSIA Winter 2025, Volume 13, Issue 1



Boruta algorithm. At the same time, the aspect
factor was rejected in the decision with a mean
importance of 1.71 (Table 4, Figure 11).
The multicollinearity test was run to identify
the practical factors in fire susceptibility
assessment (Table 5). Generally, VIF can be
explained using 10 as the critical value. There
is no multicollinearity if VIF < 10, and for 10 <
VIF < 100, multicollinearity is high. When VIF
> 100, strong multicollinearity exists (57,58)
and in prioritizing forest fuel treatments.
In this paper, we chose easily obtained
spatial variables pertaining to topography,
vegetation types, meteorological conditions,
climate, and human activity to predict forest
fire ignition in Heilongjiang Province, China,
using logistic regression. Results showed fire
ignition prediction through logistic regression
had good accuracy. Climatic variables (e.g,
average annual mean temperature and
precipitation. Results showed the VIF value
for each variable counted below 10, meaning
no collinearity was found between input
variables. Consequently, all variables entered
directly the importance test stage of the
model (Table 5).

Validation Results: Machine learning
models were developed to analyze the spa-
tial relationship between contributing fac-
tors and fire occurrences. Model accuracy
and goodness-of-fit were assessed using
several evaluation metrics. All algorithms,
including RF, SVM, GBDT, and the mean of
models, performed well, achieving accu-
racy scores of 86%, 84%, 84%, and 84%,
respectively. Precision, recall, and area
under the ROC curve (AUC) values were
also consistently high (Table 6, Figure 12).
Notably, all models achieved AUC values
above 0.89, indicating strong predictive
ability. Furthermore, Kappa statistics ex-
ceeding 0.80 demonstrated strong agree-
ment between observed and predicted fire
occurrences.

The ROC curve (Figure 13) visually rep-

resents model performance. It plots the true
positive rate (TPR) against the false positive
rate (FPR). Curves positioned closer to the
upper left corner indicate superior perfor-
mance, reflecting higher TPR and lower FPR.
In this study, all models exhibited good per-
formance, with the RF and mean of models
showing slightly better performance, as ev-
idenced by their ROC curves being closer to
the upper left corner.

== RF e=@u=SVM ++00¢ GBDT Mean of Models

AUC Accuracy

Recall Precision

Figure 12) A comparison between the accuracy levels
of three machine learning algorithms.

True Positive Rate

Mean of models|
SVR model
RF model
GBDT model

0.6 0.8 1.0

False Positive Rate

Figure 13) Validation of fir susceptibility maps
applying ROC curves for GBDT, RE, SVR, and mean of
models.



Fire Susceptibility Maps: Detecting the
location of fire occurrences is fundamental for
predicting the sensitivity to environmental
change and ecological consequences. Fire
susceptibility maps were created using three
machine learning models, e.g., GBDT, SVM, and
RE The maps were classified into four classes:
low, moderate, high, and very high classes,
which demonstrate the area of concern (Figure
14). RF and mean models (average of three ML

models) predicted 0.4 and 1.31% of the study
area as a very highly susceptible class, which
include areas about 38800 and 12600 km?
respectively (Table 7). The other two models,
GBDT and SVM, predicted 2.42 and 1.86% of
the study area as very high-class, covering areas
between 234700 and 180000 km?. Although
the lowest percentage of the total area is located
in the very high class (Table 7, Figure 14), it
covers relatively broad areas of the study area.
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Figure 14) Prediction maps of fire susceptibility classes generated with RE, SVM, GBDT, and Mean of models in
Semnan Province.

Table 6) Calculated measures for different machine learning models.

Kappa Accuracy Precision Recall AUC

RF 0.85 0.86 0.82 0.76 0.94
SVM 0.81 0.84 0.83 0.67 0.89
GBDT 0.81 0.84 0.82 0.68 0.90

Mean of models 0.82 0.84 0.84 0.68 0.93




Table 7) Fire susceptibility classes in Semnan Province.

ML Algorithms
Danger Mean of
Class GBDT  SVM RE Models
Low 89.76  89.39 90.22  90.77

Moderate 5.13 6.18 6.17 4.69

High 2.68 2.58 3.20 3.33

Very high 2.42 1.86 0.40 1.31

Figure 14 illustrates the fire susceptibility
maps generated using the individual
machine learning models and the average
of these models. Results indicated that three
models predicted fire susceptibility mainly
in the north and central parts of Semnan
Province, especially in broadleaf forests,
grasslands, and juniper forests. However,
SVM predicted both moderate (in the north
and central part) and very highly susceptible
classes to a greater extent (in the north).
The fire susceptible classified map indicated
that most moderate, high, and very highly
susceptible areas are located in the northern
portion of the study area. Semnan's forest
resources are primarily distributed in the
north, and the southern parts do not have
either forests or rangelands and fewer
Haloxylon bushes.

Discussion

Our assessment had two components:
first, fire frequency and occurrences were
evaluatedusingfireoccurrencesdata;second,
the practical factors on fire susceptibility
mapping were technically assessed in the
study area. Results revealed that fire events
surged in the summer warmest months,
e.g., June, July, and August, recorded the
highest fire frequency occurrences in the
study area. In 2018 and 2017, the highest
level of fire occurrences was recorded in
broadleaf forests, with approximately 15 ha.

Moreover, identifying 13% of juniper forests
and 20% of broadleaf forests as sites of
fire occurrences from 2001 to 2022 carries
significant ecological implications at an
annual scale. These vulnerabilities can lead
to biodiversity loss and habitat degradation.
Wildfires can destroy critical habitats,
disrupt ecosystem dynamics, and reduce
genetic diversity. Additionally, ongoing
monitoring and adaptive management are
essential to assess ecological conditions
and adjust strategies based on observed
outcomes.

The most significant fire events in 2010
took place in rangelands, covering an area
of more than 300 ha, which may have
been influenced by human activity in
these regions. Temperature, rainfall, and
distance to roads have been identified as
key factors in fire susceptibility mapping.
Consequently, climate change and human
activities are expected to increase fire
occurrences in the study area. Additionally,
the rising annual temperatures reduce
agricultural land in the southern part of
Semnan Province. Meanwhile, intensified
human activities, such as utilizing northern
grasslands for agricultural practices, will
likely exacerbate fire events in the northern
region. While temperature and rainfall are
essential predictors in our fire susceptibility
model, they may not fully capture the
impact of localized weather extremes like
droughts and heat waves. However, these
dynamic variables offer valuable insights
for developing fire warning systems. For
example, summer heatwaves and droughts
often trigger fires in fire-prone areas.
Therefore, integrating a fire susceptibility
map with real-time monitoring of extreme
weather events can enhancethe development
of dynamic fire warning systems.

About 75% of fires occurred with an NDVI
value of 0.51, and more than 40% of fires
were recorded with NDVI values between 0.2



and 0.4, where sparse vegetation, grasslands,
rangelands, and Haloxylon cover are
prevalent. Moving from the northern to the
southern parts, there is a decrease in annual
rainfall to 70 mm .year™, which is covered by
Haloxylon, accounting for more than 15%
of fire occurrences. These areas coincide
with the traditional small ruminant grazing
routes, which follow tracks and paths used
by shepherds in a seasonal cycle, typically
moving to lowlands in winter and highlands
in summer. Shepherds often use Haloxylon
bushes for ignition; as a human activity,
they are the primary cause of fire events
in these regions. In this study, vegetation
is the primary fuel material influencing
fire occurrences in Northern Semnan
Province. Different vegetation types vary
in combustibility, significantly impacting
fire intensity and spread. The interplay
between vegetation density, moisture
content, and climatic conditions shapes fire
dynamics in the region. Understanding these
relationships is essential for assessing fire
susceptibility, as denser and drier vegetation
can exacerbate fire risk while well-managed
areas may mitigate it. Approximately 50%
of the observed fires occurred in areas
with annual rainfall exceeding 280 mm. A
study revealed that both meteorological
and vegetation factors play crucial roles in
influencing fire occurrences #*. Additionally,
other research has asserted that climate
significantly influences short-term fire
events % Temporary above-average
rainfall events are a typical driver of fire
occurrences in arid regions [, requiring
fuel levels through the growth of annual
plants, particularly grasses. More than 50%
of fires occurred in the northern parts at
elevations between 2000 and 2500 meters,
covering approximately 1.5% of the total
area, where the annual rainfall ranges
between 350 and 450 mm. Also, the number
of fire events in semiarid regions is similar

to the results reported by . Over half of
the observed fire events occurred within
1 km of roads, and approximately 70%
of events transpired within 0 to 2 km of
roads more accessible to human activity.
Other studies have supported this finding,
indicating that the closer the road is to
high-risk fire areas, the more likely human
activity is associated with fire occurrences
(61, Research has demonstrated that areas
with low elevation and short distances
from roads exhibit a higher potential for
fire danger %4, Moreover, some research
indicated a significant correlation between
forest fire occurrences and meteorological
and topographic factors, and vegetation
type ¢ They found that the distance from
roads has a negative impact on fire events,
implying that the probability of forest fires
decreases with an increase in distance from
roads. Our findings align with research that
noted elevation significantly influenced fire
occurrence more than slope and aspect 4.
This study clearly showed the contributing
factors in the fire susceptibility map,
including the growth of vegetation cover as
fire fuel ignition (0.2-0.4), relatively higher
annual rainfall amounts (250-400 mm. year
1), elevations ranging from 1000 to 2500
m, lower temperatures (approximately
8-11°C), and an optimum distance to roads
for human access (approximately 3 km).
Results underscore the significant influence
of climatic factors and human activity on the
occurrence of fires. By incorporating these
variables, our analysis provides a more
nuanced perspective on how anthropogenic
activities interact with ecological factors to
influence fire risk. Fire occurrences stem
fromavariety of causesand have the potential
to cause substantial damage. For this reason,
incorporating a broader range of predictors
and MLAs is vital for enhancing the accuracy
of fire susceptibility assessments and
mitigating the impact of wildfires. To protect



the forests and rangelands as one of the
significant natural resources [¢¢¢”!in arid and
semiarid regions, it is critical to implement
measures to control such fires using machine
learning techniques. The validation results
indicated that the RF model demonstrated a
2% higher prediction accuracy than the SVM,
GBDT, and mean models, all of which had an
accuracy of 0.84. Other studies showed the
superior performance of the RF model in
modeling wildfire susceptibility in different
regions 14869 The findings of this research
underscore the necessity of considering
both natural and human factors in predictive
modeling, as this holistic approach can lead
to more effective fire management strategies.

Conclusion

Since arid and semiarid regions are highly
vulnerable ecosystems, any disruption can
significantly impact their stability. In recent
years, integrating spatiotemporal ground
data with MLAs methods has become
essential for fire monitoring, developing
effective fire susceptibility maps, and
implementing fire control strategies. This
studyhighlightstheimportanceofintegrating
natural ecological factors, human-related
influences, and historical fire occurrence
data in understanding fire susceptibility. It
also focuses on identifying the key factors
for predicting fire occurrences in Semnan
Province while generating fire susceptibility
maps using three different MLAs: Random
Forest (RF), Support Vector Machine (SVM),
and Gradient Boosting Decision Trees
(GBDT), and the mean of these models. The
classification of fire susceptibility indicated
that a significant portion of the northern
regions of the study area are at high and
very high risk for fire occurrences. Notably,
most Juniper forests, broadleaf forests, and
grasslands in these areas are particularly
prone to fires that negatively affect
vegetation diversity and cause ecological

disturbances. The hypothesis that distance
to roads serves as an essential human factor
influencing fire occurrence was supported
in this study, highlighting its significance
in fire susceptibility. Applying machine
learning algorithms effectively generated
fire susceptibility maps, enhancing our
understanding of fire dynamics in the area.
Resilience to fire events must be prioritized
in arid and semiarid regions, necessitating
enhanced security measures to prevent fire
spread and implementresilience strategies to
mitigate the adverse impacts. Further studies
are needed to understand the mechanisms
involved in the increasing frequency of fires,
the recovery of vegetation cover, and the
ecological balance post-fire. This research
is distinctive for employing a combination
of MLAs and the mean of models to enhance
our understanding of fire patterns. The
author acknowledges the limited research
on predicting fire susceptibility using mean
models incorporating uncertainty analyses,
highlighting the need for focused scientific
and emergency management strategies in
northern Semnan. Future research should
consider additional influencing factors, such
as soil moisture data and socioeconomic
variables, to enhance regional fire
susceptibility = assessments. = Advancing
our understanding of these factors will
contribute to developing effective fire
planning and management policies. To
effectively manage fire risks in arid and
semiarid regions like Semnan, it is crucial
to establish enhanced monitoring systems
that integrate remote sensing and machine
learning for real-time tracking of ecological
changes. Prioritizing fire management
in high-risk areas, particularly juniper
and broadleaf forests, while engaging
local communities is essential. However,
limitations in data quality and the study's
specific focus on Semnan may affect broader
applicability. Additionally, uncertainties



related to climate variability and human
activities underscore the need for adaptive
fire susceptibility assessments. Addressing
these factors will strengthen resilience
and inform effective fire management
strategies, while continuously refining fire
susceptibility maps using machine learning
algorithms will improve predictive accuracy.
This study modeled fire susceptibility using
environmental variables such as climate
data, terrain features, NDVI, and road
proximity. However, anthropogenic factors
like land-use changes and socioeconomic
conditions can also significantly influence
fire occurrence. Therefore, further research
should analyze fire patterns in Semnan
Province, incorporating these human
factors. Semnan Province, situated in an
arid and semiarid region, has a lower
density of urban areas and villages than
the Hyrcanian ecosystems located north
of Semnan. A comparative analysis of fire
data from semiarid and arid regions (e.g.,
Semnan Province) with data from the more
humid Hyrcanian ecosystems could provide
valuable insights into how wildfire patterns
vary across diverse climatic regions.
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