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Aims: This study aimed to propose an effective model for estimating soil moisture by
integrating the optical trapezoid method with a deep learning Long Short-Term Memory
(LSTM) model. The performance of the proposed model was compared with two other
methods, i.e.,, Partial Least Squares (PLS) regression and Group Method of Data Handling
(GMDH) multivariate neural network.

Materials & Methods: This study combined the optical trapezoid method with deep
learning models to propose an effective model for soil moisture estimation in the Maragheh
watershed. A total of 499 in-situ soil moisture data were collected. Relative moisture content
was calculated using the optical trapezoid method and imported into the LSTM model, along
with other inputs such as spectral indices and DEM-based derived variables. The performance
of the mentioned models was assessed both with and without the optical trapezoid method
to evaluate its efficacy on the performance of Al models.

Findings: The results demonstrate that the combined model of deep learning LSTM and the
optical trapezoid method achieves satisfactory performance, with an R? of 0.95 and a RMSE
of 1.7%. The PLS and GMDH methods performed moderately, both without the involvement
of the optical trapezoid method and in the combined mode.

Conclusion: This study shows that the optical trapezoid method can improve the
performance of deep-learning models in estimating soil moisture. However, considering the
significant difference in computational costs among these models, choosing the appropriate
model depends on the user’s objectives and desired level of accuracy and precision.

Keywords: Deep Learning; Optical Trapezoid Method; Remote Sensing; Sentinel-2; Soil Moisture.
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Introduction

Soil moisture is a critical variable in hydro-
logical and climatic models, playing a signif-
icant role in drought studies ['l. Measuring,
modeling, and monitoring spatiotemporal
variations in soil moisture are of utmost im-
portance for scientific and practical studies
(2. Accurate determination of the influential
factors on soil moisture's spatial and tem-
poral distribution is crucial. Monitoring the
spatiotemporal distribution of soil mois-
ture is an effective measure in water and
soil management %], necessitating the gen-
eration of high-quality soil moisture maps
with precision and accuracy to enhance un-
derstanding of regional water and climate
conditions ™. Soil moisture content exhib-
its substantial variability across different
times and locations *l. Various methods are
employed for soil moisture measurement,
including direct and indirect approaches.
Field observations offer high-quality soil
moisture mapping in small areas; however,
their large-scale implementation is costly
and time-consuming due to limited weath-
er stations, particularly in mountainous
and inaccessible regions 678,

The triangle or trapezoidal method is widely
used as an indirect soil moisture modeling
and estimation approach. This method relies
on the relationship between vegetation cov-
er index and land surface temperature 19,
Numerous studies have demonstrated the
high capability of the trapezoidal method in
estimating soil moisture ', However, a sig-
nificant challenge arises when this method is
applied to satellite sensors lacking a thermal
band, such as Sentinel, as they cannot cal-
culate land surface temperature. To address
this issue, Sadeghi et al. ['* proposed the op-
tical trapezoidal method, which utilizes the
shortwave infrared band as a substitute for
land surface temperature in calculating rel-
ative soil saturation. Mathematical models
also have a high application in simulating

soil moisture 2, Artificial intelligence mod-
els are highly capable of establishing the re-
lationship between independent and depen-
dent variables. Researchers have reported
that Machine learning models perform well
in predicting and mapping soil properties.
Sedaghat et al. "3 and Norozi Aghdam et
al. B studied the relationship between soil
moisture field measurements and variables
such as weather data, delayed NDVI, and
MODIS satellite imagery. These researches
showed a good correlation between sur-
face soil moisture and 15-day delayed NDVI
during the growing season. Norozi Aghdam
et al, " used Landsat 8 and Sentinel-1
satellite data to calculate various regres-
sion relationships between indicators and
ground points. After comparing the results,
they introduced two multivariate regression
models for estimating soil moisture, which
showed satisfactory performance. Bagheri
et al. % presented an algorithm for estimat-
ing surface soil moisture using Sentinel-2
images. This study investigated the relation-
ship between soil spectral indices and sur-
face soil moisture using machine learning
techniques. The estimation of volumetric
soil moisture using the random forest meth-
od had higher accuracy than the regression
method. It was shown that spectral indices
are good predictors for soil moisture estima-
tion. Sadeghi et al. "l proposed a new optical
triangle model to overcome the inherent lim-
itations of triangle-based models, consider-
ing the absence of thermal bands in images
such as Sentinel. It operates based on the lin-
ear physical relationship between soil mois-
ture and reflectance in the shortwave infra-
red wavelength. They estimated surface soil
moisture using this Walnut Gulch and Little
Washita watersheds model and compared
it with observed data. The results indicated
the satisfactory performance of this model
in estimating surface soil moisture. Foroughi
et al. ¥ proposed a novel method for esti-



mating soil moisture based on a new defini-
tion of soil moisture isopleths. The proposed
model was compared with several common
models using LANDSAT-8 satellite images in
sugarcane fields in Khuzestan province. For
validation, soil moisture was measured at
22 points and 5 depths. The results showed
that the proposed model had better agree-
ment with field observations and improved
accuracy and precision. In Sedaghat et al. %
investigation, soil surface moisture was esti-
mated using soil variables and spectral indi-
ces derived from the Sentinel-2 satellite sen-
sor. Two distinct methods were employed to
ascertain their performance, namely Artifi-
cial Neural Network (ANN) and Support Vec-
tor Machine (SVM) regression. The findings
indicated that ANN outperformed SVM in
terms of accuracy. Moreover, the soil's color
index (CI) demonstrated superior efficacy
compared to other spectral indices when em-
ployed in conjunction with the ANN method
for estimating soil moisture. Shokri et al. 1%
investigated various models derived from
combining remote sensing variables and soil
physical properties to estimate soil mois-
ture in agricultural fields and industrial ar-
eas in Amir Kabir, Khuzestan. The outcomes
revealed that integrating these variables
substantially enhanced the accuracy of soil
moisture estimation. Furthermore, the pro-
posed models facilitated the estimation of
spatial and temporal variations in soil mois-
ture. Zeyliger et al. ['”) measured surface soil
moisture near Vodnyy village in the Volgard
region of Russia and estimated soil surface
moisture using Sentinel-1 data. Their find-
ings highlighted the potential of artificial in-
telligence methods and Sentinel-1 imagery
in soil moisture estimation.While several
studies have explored soil moisture model-
ing using remote sensing and artificial intel-
ligence methods, few have focused on com-
bining deep learning techniques with optical
sensors. To address this gap, this study aims

to use the ability of optical trapezoid and
deep learning LSTM models synergically in
soil moisture modeling in the Maragheh Wa-
tershed. The performance of the combined
model was also compared with those of the
PLS and GMDH models. Considering the dif-
ferences in computational costs among these
methods, evaluating their performance can
provide valuable insights for soil moisture
studies using remote sensing and modeling
techniques.

Materials & Methods

Study Area

This research was conducted in the Mara-
gheh watershed in the East Azerbaijan prov-
ince. The watershed covers an area of 1,100
square kilometers and encompasses the ma-
jor cities of Maragheh and Bonab. Its highest
elevation is 3,696 m, while the lowest point
measures 1,480 m. The average minimum
annual temperature is 7.82 degrees Celsius,
and the maximum reaches 18.53 degrees
Celsius. The region receives an annual pre-
cipitation of 340mm. Figure (1) visually
represents the study area's location within
the country and the province. Various land
uses/covers, such as agriculture, rangeland,
and barren lands, are present in the area.
Data Collection

In order to synchronize the collection of
in-situ soil moisture data with satellite pass-
es, a portable TDR (Time Domain Reflec-
tometry) device was used to gather data at
499 specific points with 8cm depth. The soil
type is predominantly clay loam. Due to lo-
gistical constraints, it was only feasible to
collect some 499 data samples in a single
day. Therefore, the data collection process
was spread over four days, coinciding with
the imaging schedule of Sentinel 2 sensors.
This approach ensured that the in-situ mea-
surements aligned with the satellite obser-
vations, enabling accurate comparisons and
analysis of soil moisture levels. After collect-
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ing in-situ data, the collected data for each
day were overlaid onto the corresponding
database explicitly provided for that particu-
lar day. An imaginary square with an area of
100 square meters was used to record 5 SM
values for each sample. Out of these 5 values,
4 were taken from the corners of the square,
while the remaining one was obtained from
the center, and the average of these 5 points
was considered as the SM value for that sam-
ple. Sentinel data were collected on four dif-
ferent dates: June 12, 2021; June 17, 2021;
June 22, 2021; June 27, 2021; and July 7,
2021. These dates aligned with the collec-
tion of in-situ data samples.

Research Methodology

This study utilized Sentinel-2 satellite imag-
es obtained from the Copernicus database
to model soil moisture. The images were
downloaded on specific sampling dates and
underwent necessary preprocessing. During
this stage, the NDVI and NDWI indices were
calculated from the images, along with the
TWI, slope, and aspect layers derived from
a digital elevation model with a spatial res-
olution of 10 meters. The optical trapezoid
method and artificial intelligence models
were employed to estimate soil moisture.
Initially, the STR index was computed based
on the NDVIindex and the SWIR band, which
had been converted to reflectance during
preprocessing (Equation 1). STR stands for
shortwave infrared transformed reflectance.
It refers to the reflectance values of an ob-
ject or surface that have been transformed
or processed using the Shortwave Infrared
(SWIR) spectrum of light. Based on the linear
relationship between soil moisture content
and vegetation, the STR-NDVI space formed
a trapezoid shape (Figure 2). By plotting dry
and wet edge lines using Equations 2 and 3,
the relative saturation of the soil was deter-
mined using Equation 4.

where and represent the intercept and slope
of the dry edge, and represent the wet edge

intercept and slope, and W represents the
relative saturation of the soil. Finally, all the
created layers were stacked together to form
an initial database, including the multi-spec-
tral bands of Sentinel-2 and other input vari-
ables.

STR = (1-Rswir)?®

Eq.(1

P Rewrn q. (1)
STR; = iy + sqNDVI Eq. (2)
STR,, = i, + 5,NDVI Eq. (3)
W = 0-043 _ STR—STRg Eq (4)

" 6,-84 STRy—STRg

Figure 1 (c) displays the spatial distribution
of the sampling points. Despite facing chal-
lenges such as difficult access and limited
availability, particularly in the upstream re-
gions, diligent efforts were made to ensure
an appropriate distribution of sample collec-
tion sites. Subsequently, the point vector lay-
er representing the sampling points for each
day was superimposed onto the Sentinel-2
satellite images captured on the same day.
The digital number (DN) values, derived in-
dex values, and relative moisture content of
these locations were extracted from the da-
tabase above. These extracted datasets were
then compiled and utilized as input data
for the models, while the soil moisture data
served as the output variable. Subsequently,
the data from remotely sensed layers were
extracted for every ground sampling point,
and a final database was prepared contain-
ing the input variables along with the corre-
sponding observed soil moisture for the 499
points.

The study involved three models for soil
moisture estimation. The available data
were divided into training and testing sets,
with a 70/30 ratio. The same data was used
for all models. The training data was used to
calibrate the models and optimize their pa-
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rameters, while the testing data was used to
evaluate their performance. Statistical mea-
sures such as RMSE, R?, and NRMSE were
used to assess the accuracy of the soil mois-
ture estimation. Since the testing data was
not used in the training process, it provided
a suitable basis for comparing the models’
performance. Therefore, only the results
from the testing phase were reported and
used for comparison purposes. To evaluate
the efficacy of using the trapezoidal method
with Al models in estimating soil moisture,
two scenarios were compared: one includ-
ing the relative soil saturation obtained
from the trapezoidal method as an input
variable and another without this inclu-
sion. The research employed three meth-
ods, namely PLS regression, GMDH, and
LSTM deep learning model, to model and
map soil moisture. Partial Least Squares re-
gression is a widely used data-driven mod-
el and statistical technique for investigating
relationships between variables. It estab-
lishes a relationship between a dependent
variable and one or more independent
variables, generating a fitting function and
corresponding equation for analysis. Par-

tial Least Squares regression is particularly
effective in handling multicollinearity is-
sues. This method applies the least squares
solution to a set of orthogonal components,
which are iterative linear combinations of
the independent variables. The iterations
aim to maximize the covariance between
the transformed independent variables and
the dependent variables 1% 91

Another method used in this study is the
GMDH model, an artificial neural network
that incorporates self-organizing principles
inspired by the human mind. This model ex-
cels in addressing complex problems with
multiple dimensions 2%, When construct-
ing complex models for intricate regression
systems, the GMDH algorithm is a heuristic
method that offers advantages over tradi-
tional modeling approaches 2! %2, Following
is the GMDH algorithm used for soil mois-
ture estimation:

1- The GMDH algorithm is initialized by
setting the maximum number of layers and
nodes per layer.

2- Layer formation begins with a single layer
consisting of all input features. The output of
each node in this layer is calculated using an



appropriate activation function.

3- The best-performing models from the
previous layer are selected based on an eval-
uation criterion such as the least error or
highest correlation coefficient. These mod-
els become candidates for the next layer.
4- Layer augmentation involves forming
new layers by adding one additional node
at a time to the previous layer's models.
Each new node is created by combining the
selected models from the previous layer in
various ways, such as linear or polynomial
combinations.

5- The error of each candidate model in the
new layer is then calculated using a suitable
error metric like Mean Squared Error.

6- Again, the best-performing models from
the current layer are selected based on the
error criteria. These models become candi-
dates for the next layer.

7- Steps 4 to 6 are repeated iteratively until
the desired number of layers or predefined
stopping criteria, such as a minimum im-
provement in error, is met.

This study employed LSTM, a powerful
deep-learning technique, for modeling soil
moisture. LSTM is a specific type of recur-
rent neural network (RNN) that connects
its cell outputs and previous layers, allow-
ing information to flow back into itself. This
recurrent loop enables the network to use
previously obtained information for subse-
quent computations 23], However, one chal-
lenge faced by RNNs is their limited abili-
ty to capture long-term dependencies. To
overcome this limitation, LSTM was intro-
duced by Hochreiter and Schmidhuber in
1997 24, LSTM solves the problem of van-
ishing or exploding gradients often encoun-
tered with RNNs by regulating the hidden
state of the LSTM through input and output
gates [l In this approach, new data can be
added to the cell state through the input,
while the output gate controls the output
data of the cell, and the temporary storage

manages the information stored within the
cell state 261,

Following is the algorithm of LSTM used in
this study to estimate soil moisture.

1- Initialization: the LSTM parameters in-
cluding input weights, forget weights, out-
put weights, and cell state weights. Initialize
bias terms for the input gate, forget gate,
output gate, and cell state were Initialized.
2- Input Processing: For each time step t and
input sequence of soil moisture values, the in-
put was passed through the LSTM network.
3- LSTM Cell Operations:

1.a. The input gate activation was calculated
by applying a sigmoid function to the sum of
the weighted inputs, biases, and soil mois-
ture values.

2.b. The forget gate activation was calculated
by applying a sigmoid function to the sum of
the weighted inputs, biases, and soil mois-
ture values.

3.c. The output gate activation was calculat-
ed by applying a sigmoid function to the sum
of the weighted inputs, biases, and soil mois-
ture values.

4.d. Candidate cell state was calculated by
applying a hyperbolic tangent function to
the sum of the weighted inputs, biases, and
soil moisture values.

4- Update Cell State: The cell state was up-
dated by multiplying the forget gate activa-
tion with the previous cell state and adding
the product of the input gate activation and
the candidate cell state.

5- Hidden State Calculation: The hidden
state was calculated by applying a hyperbol-
ic tangent function to the updated cell state
multiplied by the output gate activation.
6- Output: The final hidden state was consid-
ered for estimating the soil moisture for the
next time step or as input for subsequent layers.
7- Backpropagation: The error was back-
propagated through time by computing the
gradients of the loss concerning the param-
eters, and they were updated using an opti-



mization algorithm like gradient descent or
Adam.

8- Training Loop: Steps 2-7 were repeated
for multiple epochs until the model con-
verged, adjusting the weights and biases to
minimize the difference between the pre-
dicted soil moisture values and the actual
soil moisture measurements.

Evaluation of Model Performance

Two sets of experiments were conducted
to assess the effectiveness of combining
the trapezoid model with Al models for soil
moisture estimation. The first set involved
running the models without incorporating
the relative saturation of the soil obtained
from the trapezoidal method, while the
second set included this parameter. A com-
parison was made between the results ob-
tained from these two sets. Following the
estimation of soil moisture values, statisti-
cal metrics such as Root Mean Square Error
(RMSE), Normalized RMSE (NRMSE), and
R-squared (R?) were employed to evaluate
the performance of the models, as outlined
in equations 5 to 7. NRMSE, similar to RMSE,
provides a measure of the model's effective
error. However, it normalizes this measure
by considering the range of numbers used in
the standardized model 1.

RMSE = \/Mean(o; — €;)? Eq. (5)
RMSE
NRMSE = 20F Eq. (6)
2
R2 — E?:l(oi_o)(ei_é) qu [7]

Hllzzn: 1(01'—5)2\}'2?:1(91' -é)?

where e represents estimated, and o rep-
resents observed values.

Findings

Figure 3 presents the results obtained from
soil moisture modeling through three differ-
ent approaches, i.e., PLS, GMDH, and LSTM
deep learning model. The results are based

on test data analysis, comprising 30% of the
overall dataset that was not utilized during
the training phase. A closer examination of
the figure reveals that the PLS neural net-
work model (part A of the graph) exhibit-
ed unsatisfactory performance in predict-
ing soil moisture. This is indicated by the
NRMSR and RMSE coefficients, which were
approximately 30% and 3.3%, respectively,
suggesting the poor accuracy of this model.
The simple structure of the PLS neural net-
work could not comprehend and uncover
intricate relationships between the inde-
pendent and dependent variables. As can be
observed in part III of section A in the graph,
the predictions made by this model varied
from an underestimation of over 6% to an
overestimation of more than 9%.

Furthermore, it also needed to estimate
extreme values (high soil moisture) accu-
rately. The scatter plot in this model indi-
cates a coefficient of determination of ap-
proximately 84%, which corresponds to
a correlation of about 70%. The results in
Section B of the figure demonstrate that the
GMDH model outperformed the PLS mod-
el. This was evident from the lower NRMSR
and RMSE coefficients, which were approx-
imately 25% and 2.8% respectively. Despite
minor improvements, the error range re-
mained similar between the two models. It
is worth noting that the GMDH model had
a more complex structure and incurred
higher computational costs than the PLS
model. However, contrary to expectations,
the GMDH model needed to exhibit supe-
riority over the PLS model in adequately
identifying the relationships between vari-
ables in the soil moisture process. Howev-
er, section C of Figure 3 shows the results
of the LSTM deep learning model without
the intervention of the hysteresis method.
These results indicate better performance
of this model compared to the previous two
models. The NRMSR and RMSE coefficients
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Figure 3) The results of soil moisture modeling using A) PLS, B) GMDH, and C) LSTM.
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for this model were approximately 19%
and 2.4%, respectively. This performance is
suitable and acceptable for estimating soil
moisture, although it still has considerable
uncertainties. The error range of the model
has also significantly decreased compared
to the other two models, and except for lim-
ited cases, it fluctuates around zero with
changes between -5 and +5. The coefficient
of determination of 90% in this model also
supports its relatively good performance.
The PLS model required approximately
1.5 hours for calibration, while the calibra-
tion process took approximately 10 hours
for the GMDH model and 18 hours for the
LSTM model. One possible reason for the
significant difference in calibration times is
the complexity of the models. PLS, a simpler
model, requires less time to calibrate due
to its reduced number of parameters and
computations involved. On the other hand,
both GMDH and LSTM models are more in-
tricate and involve training a more signifi-
cant number of parameters, which leads to
a longer calibration time. The training algo-
rithms employed by each model can also im-
pact the calibration time. PLS typically uses
simpler and faster optimization techniques,
resulting in a quicker calibration. On the
contrary, GMDH and LSTM models often re-
quire more computationally intensive and
time-consuming training algorithms, lead-
ing to longer calibration times. Overall, the
calibration time variation can be attribut-
ed to the complexity of the models and the
training algorithms utilized, with simpler
models and faster optimization techniques
resulting in shorter calibration times.

Figure 4 represents a trapezoidal space with
dry and wet edges obtained through the
trapezoidal method. The relative saturation
level was calculated after plotting this trape-
zoidal space and calculating the equations of
the dry and wet edges. This value was then
added as a new layer to the existing data-

base and included as a new variable in the
models. In the next step, the desired models
were executed by considering the new vari-
able as input alongside other variables used
in the previous stage, and soil moisture val-
ues were estimated.

Figure 5 illustrates the results of soil mois-
ture modeling using three methods, i.e,
PLS, GMDH, and LSTM deep learning mod-
el, in conjunction with the optical trapezoid
method for test data (30% of the data not
used in the training phase). As observed
in this figure, the performance of the PLS
model did not significantly improve. The
values of RMSE and NRMSR coefficients
have changed from approximately 3.3%
and 30% to 3.1% and 27.9%, respectively,
which is not a considerable improvement.
However, it should be noted that the range
of error value variations has decreased
to some extent. In this combined model,
the error values range between -4 and +4,
while in the simple model, they range from
-9 to +6. The performance of the GMDH
model has also improved to some extent.
The NRMSR and RMSE coefficients have de-
creased from approximately 25% and 2.8%
to around 21% and 2.4%, respectively. Al-
though this improvement is more signifi-
cant than the PLS method, it still needs to
be significant. Nevertheless, the coefficient
of determination (R-squared) has increased
from 0.88 in the absence of the trapezoidal
method to 0.92 in the combined approach.
Part C of Figure 5 shows the results of soil
moisture modeling using the combined op-
tical trapezoid-deep learning method. The
values of NRMSR and RMSE coefficients
have decreased from 19% and 2.4% in
the absence of the trapezoidal method to
15.4% and 1.7% in the combined approach,
respectively. The range of error values is
between -4 and +4, and most error values
are centered around zero. The coefficient of
determination has also reached a satisfac-
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tory value of 0.95.

Figure 6 depicts soil moisture maps gener-
ated by PLS, GMDH, and LSTM models with
10m spatial resolution. Notably, the soil
moisture map produced by the PLS meth-
od must exhibit better capability. It demon-
strates abrupt changes from high to low soil
moisture values and vice versa, particularly
in areas with vegetation cover like agricul-
tural lands. These sudden fluctuations do
not align logically with the impact of land
use on soil moisture or the variations ex-
pected based on land use/land cover. Essen-
tially, this method partitions the region into
two distinct sections characterized by high
and low moisture levels. Although the GMDH
method also displays some degree of this
partitioning effect, it is less pronounced than
the PLS-generated map. The soil moisture
values obtained through the GMDH method
demonstrate better consistency with the re-
gional logic. On the other hand, the soil mois-
ture map derived from the LSTM method ap-
pears much more reasonable. In conclusion,
considering both computational costs and
the quality of soil moisture mapping, the
LSTM method emerges as a superior choice,
producing more logical and accurate results
compared to PLS and GMDH.

Figure 7 illustrates the SMAP 9km and
downscaled 1km products in the region.
It is evident from this figure that the 9km
product has a very low spatial resolution,
particularly when used in small catchments
and for assessing the high spatial variability
of soil moisture. The SMAP measurements
provide an average value for each cell, which
may not adequately capture the fine-scale
variability within that area. Consequently,
this limitation can hinder the applicability
of SMAP data for local-scale applications. In
contrast, the maps generated using the pro-
posed method, particularly those created by
the LSTM model, effectively capture the in-
fluence of different land use/covers on the

spatial pattern of soil moisture. The 9km
SMAP product fails to achieve this due to its
low spatial resolution. There are several oth-
er limitations related to SMAP products. In
areas with dense vegetation, such as forests
or dense crops, the SMAP instrument's sig-
nal can be heavily attenuated or distorted,
which impacts the accuracy of soil moisture
estimates in vegetated regions. Additionally,
surface roughness resulting from topogra-
phy or human activities can also affect the
accuracy of SMAP soil moisture measure-
ments. Irregular surfaces can scatter and re-
flect the SMAP signal in complex ways, lead-
ing to errors in the soil moisture retrieval
process. On the other hand, the 1km product
contains several "No Data" areas, particular-
ly near water bodies. A large portion of the
area (part B of the figure) needs more data
because it is adjacent to Urmia Lake. These
limitations greatly restrict the usability of
these products, particularly in local applica-
tions. This emphasizes the necessity of de-
veloping models that can estimate soil mois-
ture based on high-resolution satellite data.
Table 1 presents the final validation out-
comes obtained from 50 additional soil
moisture samples, affirming the previous
findings. The results demonstrate the LSTM
deep learning model's superior performance
compared to the other two models. Conse-
quently, the GMDH model is the second-most
favorable alternative based on prioritization
criteria.

Table 1) The results of the final validation of the pro-
duced maps

NRMSE (%) RMSE (%) R? Model
23.70 4.02 0.76 PLS
18.74 3.18 0.84 GMDH
15.21 2.60 0.89 LSTM

Discussion

The poor performance observed might be
attributed to the limitations of the Partial



Al-based Soil Moisture Estimation

268

46°00"E 46°100"E 46°200"E 46°00"E 46°100"E 46°20'0"E
-y ~
Legend A o Lagia B -
Soil Moisture > Soil Moisture o
( 8
z z
= 5 £ B
5 4 :
- 2 & L
1 4 g
£ B 5
z f = £
e k- =
a7l & &
3 BE ;
46°0'0"F, 46°10°0"E 16220'0"F.
' 46°100"E 46°200"F
~
Legend C o ‘@_ﬂ
Seil Moisture
%) 29.90 z
F4 A
HE H
Masked Areas
t t
s k
£ 3
% E
£ -]
= =3
g
B g
16

46°0'0"E

46°10°0"E

Figure 6) Soil moisture map obtained from A) PLS model, B) GMDH model, and C) LSTM model.

ECOPERSIA

Summer 2023, Volume 11, Issue 3



A3"0'0°E #I"'l?‘ﬂ"E I-l'ﬂ?‘ﬁ“E
o B +
Soil Moisture .
-+
143
-
.5
F
Lh
.;3.
Bk
EI
EE
5
& F 4 -8R Bra § i
e — - — —
wive  wove s wove  wwoe  wwve

Figure 7) SMAP Products A) 9km product, B) 1km product.

Least Squares (PLS) model. PLS is susceptible
to the influence of outliers within the data-
set, which could distort the results due to
their strong impact on the model. Addition-
ally, PLS encounters challenges when dealing
with highly correlated predictor variables, a
condition known as multicollinearity. In such
instances, accurately determining the indi-
vidual effects of these predictors becomes
difficult for PLS, resulting in less dependable
parameter estimates. Furthermore, if the
number of predictors is comparatively large
compared to the sample size, PLS may be
prone to overfitting. Overfitting occurs when
the model captures random fluctuations or
noise in the data instead of true underlying
patterns.

By incorporating relative saturation from
the optical trapezoid method as an input,
the LSTM model provided more relevant in-
formation about the soil moisture dynamics.

This additional feature may have contained
valuable insights or patterns not captured
by the other inputs alone. Including relative
saturation can also enrich the feature rep-
resentation of the LSTM model. The optical
trapezoid method captures the relationship
between reflectance and soil moisture, which
may introduce novel patterns or correlations
that were previously missing. This can lead to
better model performance and improved ac-
curacy in estimating soil moisture. The optical
trapezoid method might provide spatial con-
text information that complements the other
inputs used in the LSTM model. Soil moisture
levels can exhibit spatial variability, and in-
corporating a method that accounts for this
variability can improve the model's ability to
capture localized patterns and variations in
soil moisture content. The optical trapezoid
method may help reduce uncertainty in soil
moisture estimation. By providing an addi-



tional source of information, the model can
make more informed predictions, reducing
potential errors and improving the overall
accuracy of the soil moisture estimates.
The study results show that incorporating
the Optical Trapezoid data has improved
the performance measures (R?, RMSE, and
NRMSE) for all three models (PLS, GMDH,
and LSTM). The PLS model, including Optical
Trapezoid, increased R? from 0.84 to 0.89, in-
dicating a better fit of the model to the data.
Similarly, the RMSE decreased from 3.29 to
3.1, suggesting a reduction in the average
prediction error. The NRMSE also decreased
from 29.68 to 27.96, indicating a better-nor-
malized model performance. For the GMDH
model, there were also improvements when
incorporating Optical Trapezoid. The R? in-
creased from 0.88 to 0.92, indicating a bet-
ter fit of the model. The RMSE decreased
from 2.8 to 2.41, indicating a smaller aver-
age prediction error. The NRMSE decreased
from 25.32 to 21.75, suggesting a better
normalized performance. The LSTM model
also showed enhancements with the inclu-
sion of Optical Trapezoid. The R? increased
from 0.90 to 0.95, indicating a better fit. The
RMSE decreased from 2.46 to 1.7, suggest-
ing a lower average prediction error. The
NRMSE decreased from 19.01 to 15.44, in-
dicating an improved normalized perfor-
mance. Overall, including Optical Trapezoid
data has consistently improved the perfor-
mance of all three models in estimating soil
moisture. These improvements can be seen
in the increase in R?, decrease in RMSE, and
decrease in NRMSE when comparing the
models without and with Optical Trapezoid
data. The percentage changes in the perfor-
mance measures can be calculated to calcu-
late the relative enhancements. For PLS, the
relative enhancements can be calculated as
follows:

Relative Enhancement of R? =
(0.89-0.84)/0.84 *100 =5.95%

Relative Enhancement of RMSE =
(3.29-3.1)/3.29*100 =5.78%

Relative Enhancement of NRMSE =

(29.68 - 27.96)/29.68 * 100 = 5.79%
Similarly, the relative enhancements for
GMDH and LSTM models can be calculated
as follows:

For GMDH:

Relative Enhancement of R? =
(0.92-0.88)/0.88 * 100 = 4.55%

Relative Enhancement of RMSE =
(2.8-2.41)/2.8*100=13.93%

Relative Enhancement of NRMSE =
(25.32-21.75)/25.32*100 = 14.12%

For LSTM:

Relative Enhancement of R? =
(0.95-0.90)/0.90 *100 = 5.56%

Relative Enhancement of RMSE =
(2.46-1.7)/2.46 * 100 =31.01%

Relative Enhancement of NRMSE =
(19.01-15.44)/19.01 *100 = 18.77%
These values represent the percentage im-
provements achieved by incorporating Op-
tical Trapezoid data for each model. These
results make the enhancements achieved
by including Optical Trapezoid data worth-
while. The models consistently showed im-
provements in their performance, with the
largest enhancement seen in the LSTM mod-
el for RMSE. Incorporating Optical Trape-
zoid data is beneficial for improving these
models' accuracy and predictive capabilities.
Another crucial aspect to consider is the dis-
parity in computational cost between differ-
ent models. Simpler techniques like Partial
Least Squares (PLS) entail significantly low-
er computational requirements than com-
plex methods such as deep learning models.
Thus, users should select an appropriate
model based on their desired objective, ex-
pected accuracy, and precision. Different
models require varying amounts of time to
train on a given dataset. Simpler techniques
like PLS typically have faster training times
since they involve solving relatively straight-



forward mathematical equations. On the
other hand, complex models like deep learn-
ing architectures often involve training large
neural networks with numerous parameters,
which can be computationally intensive and
time-consuming. The memory requirements
of a model depend on the size and complex-
ity of the model architecture and the size of
the input data. Deep learning models, espe-
cially those with many layers and parame-
ters, tend to have higher memory require-
ments compared to simpler models. This is
because they must store intermediate values
and gradients during training. Once trained,
a model must make predictions or infer-
ences on new, unseen data. The time taken
by a model to perform these predictions is
known as inference time. Complex models,
such as deep learning models, require more
computational resources and take longer for
inference than simpler models. The compu-
tational cost of a model can also be influ-
enced by the hardware infrastructure avail-
able. Some models, especially deep learning
models, can use specialized hardware ac-
celerators like GPUs (Graphics Processing
Units) or TPUs (Tensor Processing Units)
to speed up the computations. The follow-
ing inferences can be made by comparing
the computational costs of the mentioned
models. PLS is a relatively fast model to train
since it involves solving linear equations. It
typically has lower computational require-
ments compared to more complex models
like GMDH and LSTM. It does not have high
memory requirements as it primarily deals
with matrix operations and does not involve
storing large amounts of parameters or in-
termediate values. Once trained, PLS pre-
dictions are generally fast since they involve
simple matrix multiplications. Inference
with PLS is often efficient. GMDH can have
moderate to high training times depending
on the model architecture's complexity and
the dataset's size. GMDH involves iteratively

adding and removing layers/nodes, which
increases computation. It has higher mem-
ory requirements than PLS, especially if
the model architecture is significant or the
dataset is substantial. It needs to store inter-
mediate values and coefficients during the
training process. Inference time with GMDH
can vary depending on the complexity of the
model. If the model architecture is relatively
shallow, inference times can be reasonable.
However, deeper architectures may result
in longer inference times. LSTM models are
computationally expensive to train, espe-
cially when working with large datasets or
complex architectures. LSTM involves itera-
tive forward and backward passes through
the recurrent neural network, which can be
time-consuming. This model typically has
higher memory requirements compared to
PLS and GMDH due to the large number of
parameters, recurrent connections, and the
need to store hidden states and gradients
during training. Inference with LSTM mod-
els can be relatively slow compared to PLS
and GMDH. The sequential nature of LSTMs
and the need to process input sequences
step-by-step contribute to longer inference
times.

Including a time series of Soil Moisture (SM)
maps in this study can offer valuable insights
into the region's temporal variability of soil
moisture. The proposed methodology al-
lows us to generate a time series of SM data
by extrapolating patterns and relationships
observed from four days of in-situ soil mois-
ture data. Although the model was trained
on specific dates, it can still provide esti-
mates of soil moisture for different SM states
throughout the year. The model has learned
the underlying relationships between input
features (such as sentinel-2 imagery) and
soil moisture. As long as the input features
accurately represent soil moisture condi-
tions, the model should provide reasonable
estimates throughout the year. However; it is



important to acknowledge potential limita-
tions and uncertainties when applying the
model across different SM states. Factors
like the availability and quality of sentinel-2
imagery and the model's ability to capture
the full range of soil moisture variability can
influence its performance. External factors,
such as changes in land cover or extreme
weather events, may also impact the mod-
el's accuracy. Further validation and cali-
bration of the model using additional in-situ
soil moisture data across a broader range of
SM states and periods is recommended to
address these concerns. Additionally, con-
tinuous soil moisture monitoring through
ground-based or remote sensing techniques
can enhance the accuracy and reliability of
the estimated time series of SM data. One
of the limitations is the need for distributed
gages of soil moisture data, particularly in
countries like Iran. Additionally, gathering
in-situ soil moisture data is time-consum-
ing and labor-intensive. Manual collection
of measurements at various points requires
deploying and maintaining soil moisture
sensors in the field, which can be demand-
ing, especially in larger areas or regions with
limited accessibility. Therefore, developing
models that can use limited data and pro-
vide reasonable estimates of soil moisture is
valuable. However, exploring the impact of
different temporal conditions on the mod-
els' performance in predicting soil moisture
is recommended for future work.

Conclusion

Based on research findings, the combination
of the optical trapezoid method and deep
learning models has demonstrated accept-
able performance in estimating soil mois-
ture levels. The relative moisture content
derived from the optical trapezoid method
is a highly suitable input for deep learning
models, significantly enhancing their per-
formance. However, it is worth noting that

this input has yet to substantially impact the
performance of other models, particularly
the partial least squares (PLS) model. This
may be attributed to the inherent simplicity
of the PLS model's structure, which limits its
capability to improve beyond a certain ex-
tent. Therefore, incorporating auxiliary data
has yet to lead to a significant enhancement
in its performance. Combining the optical
trapezoid method with the group method
of data handling (GMDH) model yields av-
erage performance results. This approach
may be suitable if the user does not require
extremely high accuracy and precision and
a relative estimation of soil moisture varia-
tions is sufficient. Notably, the GMDH model
offers the advantage of lower computational
cost compared to deep learning models. In
contrast, the deep learning long short-term
memory (LSTM) model, despite its higher
computational cost and more extended cal-
ibration time requirements, has exhibited
significantly superior accuracy and preci-
sion in estimating soil moisture compared to
the other two models. This can be attributed
to the complex and multi-layered structure
inherent in deep learning methods, which al-
lows for comprehensive analysis and repre-
sentation of underlying patterns in the data.
Additionally, the LSTM model's high feature
extraction capability from raw input data
contributes to its exceptional performance
in estimating surface soil moisture.

In conclusion, combining the optical trape-
zoid method with deep-learning LSTM mod-
els presents promising outcomes for soil
moisture estimation. It surpasses the other
models in terms of accuracy and precision,
albeit at the expense of increased computa-
tional costs and longer calibration time. Nev-
ertheless, the GMDH model remains a viable
alternative when computational efficiency
takes precedence over achieving high accu-
racy. The results follow those of Ahmadinee
zhad Baghban and Moosavi 2%, Zhou et al. [,


https://ecopersia.modares.ac.ir/search.php?sid=24&slc_lang=en&author=Ahmadinezhad+Baghban
https://ecopersia.modares.ac.ir/search.php?sid=24&slc_lang=en&author=Ahmadinezhad+Baghban

Yinglan et al. %, Achieng Y, and Joshi et al.
321, which proved the ability of deep learning
in modeling natural processes like soil mois-
ture modeling.

Ethical Permission

All necessary ethical permissions were ob-
tained for the execution of this study.
Conflicts of Interest

The authors declare no conflict of interest.
Funding/Supports

This research received no specific grant from
funding agencies in the public, commercial,
or not-for-profit sectors.

Authors' Contributions

V. Moosavi: Conceptualization; Formal anal-
ysis; Investigation; Project administration;
Supervision; Software; Writing - original
draft.

G. Zuravand: Data curation; Formal analysis;
Validation; Visualization; Software; Writing
- original draft.

SR. Fallah Shamsi: Conceptualization; For-
mal analysis; review & editing.

References

1. Rouse J.W, Haas R.H., Schell ]J.A.,, Deering D.W.
Monitoring vegetation systems in the great plains
with ERTS third earth resources technology sat-
ellite-1 symposium. NASA Spec 1974; 351(1):
309-317.

2. Fathalolomi S., Vaezi E.R., Alavi Panah K., Ghor-
bani A. Modeling the effect of biophysical prop-
erties and surface topography on the spatial
distribution of soil moisture in summer (case
study: Balkhali Chai watershed). Echohydrolo-
gy.2020;7(3):563-581.

3. Koohbanani H., Yazdani R. Mapping the moisture
of surface soil using Landsat 8 imagery (case
study: suburb of Semnan city). Geogr. Environ.
Sustain. 2019; 8(3): 65-77

4. Tabatabaeenejad A., Burgin M., Duan X., Mogh-
addam M. P-band radar retrieval of subsurface
soil moisture profile as a second-order polyno-
mial: First AirMOSS results. IEEE. 2014; 53(2):
645-658.

5. Sanli EB., Kurucu Y, Esetlili M.T,, Abdikana S.
Soil moisture estimation from RADARSAT-1,
ASAR, and PALSAR data in agricultural fields
of Menemen plain of western turkey. Int. Arch.

10.

11.

12.

13.

14.

15.

16.

Photogramm. Remote Sens. Spat. Inf. Sci. Beijing
2008;75-81.

Srivastava H.S., Patel P, Sharma Y., Navalgund
R.R. Large-area soil moisture estimation using
multi-incidence-angle RADARSAT-1 SAR data.
IEEE. T. Geosci.Remote.2009;47(8):2528-2535.
Silva B.M,, Silva S.H.G., Oliveira G.C.d., Peters PHCR,
Santos W.J.R.d., Curi N. Soil moisture assessed by
digital mapping techniques and its field valida-
tion. Cienc.Agrotecnologia.2014;38(2):140-148.
Javadi P, Asadi H., Vazife M. Estimation of spa-
tial changes of soil moisture using random
forest method and environmental characteris-
tics obtained from satellite images in Margh-
ab basin of Khuzestan. Iran J. Soil Water Res.
2022;52(11):2859-2874.

Foroughi H. Naseri A.A, Boroomandnasab S,
Hamzeh S., Jones S.B. Presenting a new method
for soil-moisture estimation using optical re-
motely-sensed imagery. Iran. J. Soil Water Res.
2019; 50(3): 641-652.

Shokri S.h., Farrokhian Firoozi A., Babaeian E.
Estimation of soil moisture by combining phys-
ical and hydraulic characteristics of soil with re-
mote sensing optical data using machine learn-
ing method. Iran. J. Soil Water Res. 2022; 53(7):
1575-1591

Sadeghi M., Babaeian E., Tuller M., Jones S.B. The
optical trapezoid model A novel approach to re-
mote sensing of soil moisture applied to Senti-
nel-2 and Landsat-8 observations. Remote Sens.
Environ. 2017; 198(1): 52-68.

Sedaghat A., Shabanpoor M., Norozi E.A., Fallah
E., Bayat H. Using spectral indices in estimating
soil surface moisture based on machine learning
algorithm. Iran. J. Soil Water Res. 2021; 52(12):
3001-3018.

Sedaghat A., Shabanpoor M., Norozi E.A., Fallah
E., Bayat H. Modeling soil surface moisture using
machine learning models and Sentinel-2 satellite
data. The 17th Iranian Congress of Soil Science
and the 4th National Conference on Water Man-
agement in the Farm, Wise Soil Revival and Wise
Water Governance 2021.

Norozi Aghdam A. Behbahani M.R., Rahimi
Khoob E., Aghighi H. Moisture model of the soil
surface layer using From the index NDVI (a case
study: pastures of Razavi Khorasan province).
Environ. Mag. 2008; 34(48): 127-136.

Norozi Aghdam A., Karami V. Application of re-
mote sensing technology in monitoring and eval-
uation of irrigation networks drainage in use.
The twelfth conference of the National Commit-
tee Irrigation and Drainage of Iran 2009;
Bagheri K., Bagheri M., Hoseynzade E.A., Parvin
M. Estimation of soil moisture using optical, ther-
mal, and radar remote sensing (case study: lands



17.

18.

19.

20.

21.

22.

23.

24.

south of Tehran). Iran. . Water. Sci. Eng. 2019;
13(47): 63-74.

Zeyliger A.M., Muzalevskiy K.V, Zinchenko E.V,
Ermolaeva O.S. Field test of the surface soil mois-
ture mapping using Sentinel-1 radar data. Sci. To-
tal Environ. 2022; 807(2): 121-151.

Ramezani Charmhine E.A., Zonemat Kermani
M. Investigating the effectiveness of multi-layer
perceptron neural network support vector re-
gression and variable linear regression methods
to predict the level of underground water (study
area: Shahrekord plain). J. Water. Manag. Res
2017; 8(15): 1-12.

Avazpoor S., Bakhtiari B., Ghaderi K. Investigat-
ing the effectiveness of neural network and mul-
tivariate regression methods in estimating total
solar radiation in several representative stations
of arid and semi-arid climates. Iran J. Soil Water
Res. 2019; 50(8): 1855-1869.

Golkar E. Ahmadi M.M., Qaderi K., Rahimpour
M. Peak velocity of pollutant transport predic-
tion in rivers using Group Method Data Handling
(GMDH) and intelligent hybrid method (GM-
DH-HS). J. Water Waste 2018; 30(1): 64-76.
Godarzi M.R., Godarzi H. Investigating the effec-
tiveness of data group classification method and
wavelet transformation in runoff forecasting
(study area: Ghareso watershed). Sci. Res. J. Irrig.
Water Eng. 2020; 10(4): 67-81.

Moosavi V., Talebi A., Hadian MR Development of
a hybrid wavelet packet forecasting group meth-
od of data handling (WPGMDH) model for runoff.
Water Resour. Manag 2017; 31(1): 43-59

Adalat MH, Azmi R, Bagherinejad J. An enhanced
LSTM. Method to improve the accuracy of the
business process prediction. Indus. Manag. Per-
spec 2020; 10(39): 71-97.

Jordan M. A. Parallel distributed processing ap-

25.

26.

27.

28.

29.

30.

31.

32.

proach. Adv. Psychol. 1997; 121(1): 471-495.
Yu M., Xu E, Xu W, Sun ], Cervone G. Using long-
term memory (LSTM) and internet of things
(IoT) for localized surface temperature forecast-
ing in an urban environment. IEEE. 2021; 9(1):
137406-137418.

LiuZ.H.,Meng X.D., Wei H.L., Chen L, Lu B.L., Wang
Z.H., Chen L. A regularized LSTM method for pre-
dicting remaining useful life of rolling bearings.
Int. ]. Automat.Comput. 2021; 18(4): 581-593.
Haddadian H., Karimi E., Esfandiar poor E., Hagh
nia Gh. RMSE and NRMSE to calculate the effec-
tive value of the error of models with different
training data sets. The 14th Congress of Soil
Sciences of Iran Vali Asr University of Rafsanjan
2015; 16-18 September.

Ahmadinezhad Baghban F, Moosavi V. Convolue
tional neural networks (CNN)-signal processing
combination for daily runoff forecasting. ECOPa
ERSIA 2022; 10(3): 231-243.

Zhou Y., Zhang Y., Wang R., Chen H., Zhao Q., Liu
B., Shao Q. Cao L., Sun S. Deep learning for daily
spatiotemporally continuity of satellite surface
soil moisture over eastern China in summer. ].Hy-
drol. 2023; 619: 129308.

Yinglan A., Wang G., Hu P, Lai P, Xue B., Fang Q.
Root-zone soil moisture estimation based on re-
mote sensing data and deep learning. Environ.
Res 2022; 212: 113278.

Achieng K.0. Modelling of soil moisture retention
curve using machine learning techniques: Artifi-
cial and deep neural networks vs support vector
regression models. Comput.Geosci 2019; 133:
104320.

Joshi R.C,, Ryu D., Lane P.N.J., Sheridan G.J. Sea-
sonal forecast of soil moisture over Mediterra-
nean-climate forest catchments using a machine
learning approach.].Hydrol.2023;619:12930.


https://ecopersia.modares.ac.ir/search.php?sid=24&slc_lang=en&author=Ahmadinezhad+Baghban
https://ecopersia.modares.ac.ir/article-24-60974-en.pdf
https://ecopersia.modares.ac.ir/article-24-60974-en.pdf
https://ecopersia.modares.ac.ir/article-24-60974-en.pdf
https://www.sciencedirect.com/journal/environmental-research
https://www.sciencedirect.com/journal/environmental-research
https://www.sciencedirect.com/journal/computers-and-geosciences/vol/133/suppl/C

