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Aims The main objective of the current study was to assess the efficiency of four-time series
prediction methods to forecast the values of total dissolved solids (TDS) using a time series of
over sixteen years.

Materials & Methods The applied methods comprised of autoregressive integrated moving
average (ARIMA) as the most traditional method, two neural network based techniques
including multilayer perceptron (MLP) along with extreme learning machines (ELM) and a
novel approach known as temporal hierarchies (TH) which was applied for the first time in
water resources and water quality researches.

Findings It was found that with respect to the forecasting accuracy, the MLP outperforms the
ARIMA model for the training series where the MAPE (%) and MASE (mg/1) were reduced from
5.109 to 3.146 and 0.553 to 0.323, respectively. On the other hand, the forecasting accuracy of
ELM was lower than that of MLP however the respective out-of-sample generalization ability of
this model was higher with MAPE and MASE values of 6.526 and 0.683.

Conclusion Meanwhile, it was concluded that temporal hierarchies gave the best results for
the test part of time series. The main shortcoming of neural network based approaches was
their reduced out-of-sample prediction due to overfitting. Based on the results, TH is a viable
alternative for conventional time series forecasting techniques.
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Introduction

Deterioration of water quality is a widespread
phenomenon in developing countries. With the
advent of advanced and efficient on-line systems
for analysis of water quality, application of time
series analysis techniques has increased in
environmental researches in order to provide
early predictions about future trends in water
quality, as well as facilitate decision making for
managers (1. Among different methods, auto-
regressive (AR), moving average (MA), hybrid of
the latest two approaches known as ARMA,
along with auto-regressive integrated moving
average (ARIMA) were the most conventional
techniques for time series analysis in water
resources and water quality studies [ 3l
However even though, following successful
usage of neural network as a machine learning
approach in different fields of studies, this
method was also popular in time series
prediction of water quality and quantity [+ 51
There have been multiple applications of time
series forecasting in water quality researches.
For example, a hybrid method of heuristic
Gaussian cloud transformation and fuzzy time
series was applied by Deng et al. [!1 to predict the
time series of dissolved oxygen (DO), chemical
oxygen demand (COD), water temperature, and
electrical conductivity (EC) in China. A combined
method of empirical mode decomposition
(EEMD), as well as ARIMA, was utilized by Wang
et al. 161 in order to improve the forecasting
accuracy of traditional ARIMA technique for
forecasting annual runoff time series [¢l. Arya
and Zhang [71 applied bivariate and D-Vine
copula for first-order and higher-order Markov
processes in order to model water quality time
series. The best performed Markov process was
then utilized for risk assessment with respect to
the Value-at-Risk (VaR) criterion at Snohomish
and Chattahoochee River Watersheds, USA. It
was concluded that these techniques are able to
properly model dissolve oxygen (DO),
temperature and nitrate time series with high
accuracy 7. More recent studies, 8] compared
the performance of artificial intelligence (Al),
back propagation neural network (BPNN),
adaptive neuro fuzzy inference system (ANFIS),
support vector machine (SVM), as well as ARIMA
for forecasting of dissolved oxygen in the
Yamuna River, India. It was concluded that for
different sampling stations considered, ANFIS

together with SVM performed better than the
other models. Additionally, Fabro et al. 1]
introduced a new model combining recurrent
neural network (RNN) with improved
Dempster/Shafer (D-S) evidence theory (RNNs-
DS) for prediction of permanganate index, pH,
total phosphorus, and dissolved oxygen from
Jiuxishuichang monitoring station near Qiantang
River, China. The results demonstrated that in
comparison with support vector regression
(SVR) and backpropagation neural network
(BPNN) along with three RNN models, the new
model shows higher accuracy and better
stability as indicated by four performance
indices.

In this context, among water quality parameters,
total dissolved solids (TDS) is a representative
parameter implying combined effects of
inorganic and organic components, although
contribution of inorganic parameters is far
higher. With respect to inorganic parameters,
some water quality variables such as calcium
(Ca%*), magnesium (Mg?+), sulfate (SO04%),
sodium (Na*), chloride (Cl), bicarbonate
(HCO3), potassium (K*), and nitrate (NO3) play
a significant role. Other than the Iatest
parameter, none of the mentioned water quality
variables pose a significant risk to the health of
water consumers [101,

On the other hand, high TDS values may indicate
degradation of groundwater quality in areas
where overexploitation is prevalent meaning
that abstraction exceeds recharge and
groundwater consumption is not sustainable [11].
Moreover, high levels of TDS in coastal aquifers
may reflect seawater intrusion to groundwater
system [12l. Therefore, in view of water
management, this parameter is of paramount
importance to distinguish areas of aquifer that
are at risk. The main objective of the current
study was to investigate the feasibility of
selected time series forecasting techniques for
predicting temporal changes of TDS. Meanwhile,
four methods were used for this purpose
including two neural network based time series
forecasting approaches, ARIMA as the most
applied traditional method for time series
prediction along with a novel technique known
as temporal hierarchies. To the best of the
author’s knowledge, this is the first time that the
latest technique is being applied in
environmental and water resources researches.



Materials and Methods
Time series forecasting
The dataset used in the current study obtained
from the monthly monitoring network of
Khuzestan Water and Power Authority (KWPA)
and consisted of potassium (K*), sodium (Na+),
magnesium (Mg?+), calcium (Ca?*), bicarbonate
(HCOs3), sulfate (S04%), chloride (CI-), and total
dissolved solids (TDS) collected between 1996
and 2012. Since TDS is representative of all
other investigated water quality parameters so,
it was applied for time series prediction.
For prediction purposes, the respective time
series was separated into training and test set to
have an out-of-sample data to investigate the
generalization ability of each method of interest.
The series between 1996 and 2007 were utilized
for training and the last five years were retained
as the test set to be consistent with the approach
followed by Taneja et al [131 and
Shirmohammadi et al. 14, Since the time series
of TDS was positively skewed, the TDS data were
log-transformed in order to comply with the
normality requirement. In addition, the
stationary requirement was fulfilled by
differencing of the time series. Three different
modeling algorithms were used for time series
prediction including autoregressive integrated
moving average (ARIMA), ensemble of neural
networks (NN) which consisted of extreme
learning machine (ELM) and multilayer
perceptron (MLP) plus a novel technique known
as temporal hierarchies (TH).
Autoregressive integrated moving average
(ARIMA) models have been used widely for time
series predictions [15l. The main shortcoming of
this method is that it cannot handle nonlinear
relationships while both linear and nonlinear
patterns are dominant in a time series data [16l.
In ARIMA modeling technique, the predicted
values are assumed to be a linear function of the
preceding observed values plus random errors.
(1)
ARIMA (p, d, q)

Where the non-seasonal part of the model is
specified as (p, d, q). In the above-mentioned
equation, the order of non-seasonal
autocorrelation and regular differencing are
represented by p and d whereas the order of
non-seasonal moving average (MA) is defined by
q, respectively.

On the contrary, it has been known from
previous researches that forecasting accuracy of

ensemble of neural networks is higher than
single neural networks since they are less
sensitive to poor initial values and are more
efficient, accordingly [7l. The limitation of
ARIMA models for prediction of linear time
series has encouraged some of the researchers
to apply neural networks (NNs) for time series
prediction since they have high efficiency for
both linear and nonlinear relationships [18], In
this context, the functional form of prediction by
multilayer perceptron can be defined as:

(2)
Yia =58, +Zﬂh¢(7/0i +Z7/hi P:)
h=1 i1

The forecasts (Y,,,) are predicted values at time

t+1 from the lagged observations (e.g. preceding
time series values). In this respect, the network
weights are denoted by w=(f,y) where

ﬂ:[ﬂp"-aﬂH] and }/=[7/11,....,}/H,] for the

output and hidden layers, while the associated
bias for the respective layers are represented by

B, and y,; . On the contrary, H ,¢#(.) and p, are

in turn the number of hidden nodes, non-linear
transfer function and number of inputs. By
comparing the output to the observed time
series, the values of neural network weights and
biases are updated iteratively such that the error
is minimized. Meanwhile, each multilayer
perceptron was trained 20 times with different
random initializations (starting weights and
biases) to avoid trapping in local minima of the
error surface [19. Since minor changes in the
starting weights can result in different
estimates, an ensemble of all neural networks
was used to assess the uncertainty in the results.
Multiple ensemble methods such as mean and
median have been suggested, however,
following the recommendation made by
Kourentzes et al. 18], the mode was applied since
it is insensitive to outliers. The optimal number
of hidden nodes was found by assigning 20% of
randomly selected data as validation part and
finding the minimum mean squared error of the
model for the different numbers of hidden nodes
varying between 1 and 20. An alternative to
ensembling in the neural network is the extreme
learning machine (ELM) algorithm. The main
distinguishing feature of this method compared
to MLP is that there is no need to tune the hidden
layer but the output weighs are subsequently
resolved using the least squares method.



On the contrary, in the temporal hierarchies
(TH) algorithm [20, all possible temporal
aggregations of a time series are computed
resulting in an integer number of observations
per year. For instance, the monthly time series
data is aggregated to 2-monthly, quarterly, 4-
monthly, biannual and annual time series. These
time series are regarded as forecast followed by
their reconciliation using the hierarchical
reconciliation algorithm. It has been claimed
that this method has higher accuracy compared
to that of conventional methods and the
forecasting ability of this approach is especially
higher for time series with long seasonal
periods. There have so far been no studies using
this approach for time series prediction of water
quality.

Performance analysis of forecasting models
Six error metrics were utilized to assess the
performance of models. The performance
criteria consisted of mean error (ME), mean
absolute error 21, root mean squared error
(RMSE), mean percentage error (MPE), mean
absolute percentage error (MAPE), and mean
absolute scaled error (MASE) according to the
following equations:

(3)
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(4)
MAE =lzn“|xt—x]|
NS
(5)
RMSE =\/li(xt ~-X,)?
NS
) 6
1 X, =X
MPE :Fg‘(tx—tt)
) )
100 & X, =X
MAPE = — ;‘ txt L
(8)

X, =X
1 n
72’Xt_xt—1|

=

t

Q. =

9)
MASE =mean(|q, |)

Where X and X are the observed and
estimated values in time series, respectively.
The best models are those for which the MAPE is
lower than 10% that are regarded as potentially
very good while the models for which MAPE is
above 30% are deemed to be potentially
inaccurate. In addition, one of the advantages of
MASE is that it is not dependent on the scale of
original data in time series [22l.

Model selection in time series analysis

In time series analysis, Akaike’s information
criterion (23] is often used for model selection
however, it should not be used as the sole
criterion for this purpose since there are some
other criteria such as Akaike’s bias-corrected
information criterion (AICc) and Bayesian
information criterion (BIC). In model selection, a
model with the smallest AIC is usually
preferable. The modified version of AIC (e.g.
AlICc) and BIC have been proposed since for
autoregressive models AR (p), AIC is likely to
overestimate p while AICc and BIC contain a
penalty parameter to avoid over-fitting. Like
that of AIC, a model with minimum BIC is
preferable. As a whole, in large samples, BIC
performs better while for that of smaller
samples, where the number of parameters is
large, AICc outperforms that of BIC. Thus,
despite the popularity of original AIC for model
selection, especially in time series analysis, some
experts prefer AICc and BIC.

Findings and Discussion

Groundwater quality

Quality assurance checks balancing the
anion/cation constituents were inconclusive
due to presence of nitrates (which was not
measured) arising from intensive agricultural
activity in the region. Assessment of ionic ratios
[24] was also applied and the results produced in
Table 1. The results indicate that all of the ionic
or parametric ratios are within the suggested
ranges. The higher values of Mg?* compared to
that of Ca2* might be attributed to the outcrops
of ultramafic rocks in the northern part of the
study area resulting in a Mg?*>Ca?* in some
samples [24 251, The data used are therefore of
reasonable quality and appropriate to be used
for this study.



Table 1) Summary of reliability checks for water quality

parameters*

Ionic or Value Reference
parametric ratios 1stQu. Median 3rd Qu.

TDS/EC 0.639 0.663 0.735 0.55-0.76
Na+*/K+ 33.161 89.182 192.268 Na*>>K+*
Caz+/Mg2+ 0.662 0.849 1.227 Ca?*=Mg?*
Na+/Cl- 1.384 1.544 1945 Na+=Cl
Caz+/S042- 1.716 2.669 5.173 Ca2*2S04%

*Other than TDS and EC for which units of mg/l and puS/cm have
been used, the scale of all other major ions is meq/I.

The geology within the study area is
characterized by Bakhtiari conglomerate and
Aghajari formations followed by outcrops of the
Lahbari member and quaternary alluvial
sediments in the northwestern part of the region
(26, The lithology of the latter two formations
consists mainly of gypsum which contributes
significantly to the ionic content of the
groundwater through water-rock interaction.
Diagram 1 presents a piper diagram. Referring
to the piper diagram (Diagram 1), the
groundwater quality in the studied station
belongs to calcium sulfate waters since the
majority of samples are located in the top
quadrat of the diamond.

Chloride

Diagram 1) Representation of chemistry of groundwater
sample through piper diagram

Gypsum is the most abundant calcium sulfate
mineral that is created under sedimentary
conditions. Besides, there are small quantities of
calcium bicarbonate and sodium chloride
waters based on the results of the piper diagram
however the contribution of these water types is
far less important than calcium sulfate. As
mentioned by Hounslow [24], unless otherwise
Ca?+ is removed by precipitation or ion-
exchange, in regions where Ca?* emanates from

gypsum or anhydrite, the concentrations of Ca2*
are higher than that of SO4%-. So, with respect to
the results of Table 1, the detection of Ca2* can
be attributed to the dominance of gypsum.

The small levels of sodium chloride may be
attributed to seawater encroachment into the
aquifer in ancient times, due to the proximity of
the study area to the Persian Gulf. The
correlation heatmap in Figure 1 provides
corroborating information about the sources of
anions and cations and relationship with other
quality parameters such as TDS, total hardness
(TH), and electrical conductivity (EC). The high
correlation coefficient between TDS, EC, and TH
indicates that Ca2?* and Mg?* are the main
constituents of TDS [271. The other fact that can
be deduced from this panel is the high
correlation between Ca?* and SO42- which is in
agreement with the results of piper diagram.
Moreover, the high correlation between Na* and
Cl- may indicate the salinization of groundwater
in recent years.

TH
08

06
Na
04
Mg
o2
Ca

HCO3
r-02
Cl

DS

EC

Figure 1) Correlation heatmap of groundwater quality
parameters

Time series prediction

The observed time series of TDS next to the
results of time series decomposition including
trend, seasonal, and random components have
been illustrated in Diagram 2.

It can be concluded that after accounting for the
seasonal and random components, the overall
trend of TDS is a gradual decrease from about
2000mg/1 to roughly 1000mg/l between 1996
and 1997. Since then, the TDS level was
approximately stable by 1999 but it started to
increase steadily to more than 50000mg/1 in
2002 however it slumped suddenly to less than



1000mg/1 where it remained at this level by
2012. The most influential components are
trend, followed by seasonal and random parts.
The strong seasonal component reflects the
impacts of precipitation on dissolution of
minerals from geological formations that
repeated seasonally and increased during rainy
seasons. The strongest random component was
coincided with the peak of trend component
implying that this sudden rise may be due to
error.

Decomposition of additive time series

observed

50000 4000 8000

trend

1000 3000

400

seasonal
o

random

-400
I T T T Y T T T N T

-4000 0 4000

T T T
Time

Diagram 2) Original versus decomposed components of
TDS time series

One of the requirements of prediction with
autoregressive integrated moving average
(ARIMA) models is that the time series should be
stationary, i.e., there is no systematic change in
mean and variance of the time series [28l. In
practice, differencing is usually performed in
order to convert a non-stationary time series to
satisfy the stationary requirement. The
autocorrelation of the TDS time series next to
that of first, second, and third difference
autocorrelations are shown in Diagram 3.

The existence of a trend is noticeable in the
original series as the autocorrelation function
(ACF) versus lag does not decay to zero and the
difference from zero for the first, second, and
third difference series is small, according to the
ACF. Hence, from parsimony considerations of
Laio et al. [29], the first difference was selected.
Following a trial and error optimization
procedure, the final selected model was ARIMA
(0, 1, 1). The Akaike’s bias-corrected
information criterion and Bayesian information

criterion (BIC) for this model were 23.52 and
29.18, respectively [23. In addition, the
associated values of mean error or ME (mg/l1),
root mean squared error or RMSE (mg/1), mean
absolute error or MAE (mg/1), mean percentage
error or MPE (%), mean absolute percentage
error or MAPE (%), and mean absolute scaled
error or MASE (mg/1) for the training set were -
0.007, 0.259, 0.154, -0.836, 5.109, and 0.553,
whereas for the test set they were 0.000, 0.089,
0.068, -0.085, 2.399, and 0.246, respectively
(Table 2).

The best unbiased method for time series model
selection is to use a hold-out sample which is not
exposed to the model of interest during training.
In this context, among the respective
performance criteria, MAPE is the most popular
and it is a scale-independent index, although
some investigators advise caution because it
yields infinite values for zero or close-to-zero 30
311, On the other hand, MASE has been claimed to
be the best available scale for this purpose and
was adopted for the present study [241.

For forecasting with MLP, the optimized NN was
trained 20 times to produce an ensemble
forecast containing a single hidden layer with 17
hidden nodes that were obtained using a trial
and error procedure. With respect to the
forecasting accuracy of this modeling technique,
it should be noted that this model outperforms
the ARIMA model for the training series where
the MAPE (%) and MASE (mg/1) are reduced
from 5.109 to 3.146 and from 0.553 to 0.323,
respectively (Table 2). In spite of this, the
performance of this model related to all of the
other criteria was worse than that of ARIMA for
the test set implying that the model has over-
fitted the training data. This is a prevalent
problem in modeling with NN and originates
from a limited number of training data so the
network fits the sampling noise instead of the
true relationship between input and output 821,
For ELM, an optimized NN with 100 hidden
nodes was created. Although 100 hidden nodes
may seem to be a large number, however as
emphasized by Kourentzes et al. [20], the lasso
algorithm used for estimation of weights is a
shrinkage estimator that has the capability to
eliminate most of the connections. The
forecasting accuracy of ELM is lower than that of
MLP where the values of MAPE and MASE
increased to 4.705% and 0.487mg/],
respectively. Nonetheless, it is clear that the
over-fitting problem persists for this model



which may result in poor generalization ability
for unseen data. The respective values of MAPE
and MASE are significantly lower than MLP
model though.

The final model used for time series prediction
is a novel technique known as temporal
hierarchies (TH) [20]. The results show that TH is
the best performing model with MAPE (%) and
MASE (mg/1) for the training set decreasing to
3.428 and 0.381 from 4.705 and 0.487 when
compared to the ELM. Despite the fact that MLP
outperformed in view of the training part
however the out-of-sample forecasting ability of
TH was far better and of the same order of
magnitude as ARIMA model. In order to consider
the performance of these models graphically, the
predicted versus observed time series were
depicted for the test part (Diagram 4).
Considering the results, a continuous increase
and decrease were forecasted by MLP and ELM
time series forecasting models whereas the
predicted values by ARIMA implied no change
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over the following years (e.g. a horizontal line).
The only model by which the fluctuations of the
test part were captured (though slightly
different from actual values) was the TH model.
This superior capability provides enough
evidence about the outperformance of TH for the
test part compared to the other applied models.
In this respect, due to the combination of
information contained in different aggregation
levels during reconciled forecasts, the identified
trends in the lower aggregation levels positively
contribute toward the highest level (e.g. annual
level), therefore the predictions are more
accurate in this approach [201. Besides its higher
forecasting accuracy, one of the advantages of
TH compared to conventional methods is the
reduction of uncertainties at each individual
level since different temporal information is
covered by each time series. Their aggregation
results are therefore more robust with less
variability in addition to having an improved
signal to noise level [20],
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Diagram 3) Autocorrelation function (ACF) of original time series versus the first, second, and third difference series



Table 2) Time series prediction by different algorithms

Method Training set Test set

ME RMSE MAE MPE MAPE MASE ME RMSE MAE MPE MAPE MASE
ARIMA* -0.007 0.259 0.154 -0.836 5.109 0.553 0.000 0.089 0.068 -0.085 2399 0.246
MLP** -0.005 0.168 0.098 -0.161 3.146 0.323 0.429 0.514 0.430 14.703 14.727 1.541
ELM*** 0.000 0.277 0.148 -0.027 4.705 0.487 0.017 0.217 0.190 5.787 6.526  0.683
TH**** 0.000 0.152 0.106 -0.334 3428 0.381 -0.069 0.129 0.095 -2496 3.367 0.342

*: Autoregressive integrated moving average; **: Multilayer perceptron; ***: Extreme learning machines; ****: Temporal hierarchies
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Diagram 4) Predicted time series for the test part (test_ts) using ARIMA (a), MLP (b), ELM (c), and TH (d) models in

logarithmic scale

Conclusion

The ionic ratios of the groundwater
anion/cation constituents indicated the impact
of ultramafic rocks on the quality of
groundwater exhibited by higher values of Mg2+
compared to that of Ca?*. Additionally, piper
diagram proved the fact that the groundwater
quality in the studied station belongs to calcium

sulfate waters. Moreover, the identified elevated
levels of Ca2* in some parts of the aquifer can be
ascribed to the dominance of gypsum.

In the present study, the out-of-sample
forecasting ability of the temporal hierarchies
(TH) was superior to multilayer perceptron
(MLP) however of the same order of magnitude
as autoregressive integrated moving average



(ARIMA) model. With respect to the graphical
comparison of the forecasted models for the test
set, the only model that could capture the
fluctuations of test part was the TH. It seems as
if one of the main reasons for the better
performance of TH compared to the other
investigated models is the combination of
information contained in different aggregation
levels during reconciled forecasts.

Nevertheless, the major disadvantage of NNs
compared to ARIMA and TH according to the
findings of this study is the problem of over-
fitting resulting in low generalization ability
(out-of-sample prediction). This study is the first
application of the TH algorithm in water quality
predictions and is recommended for future
studies, given the positive results.
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