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Aims In recent years, interest in quantifying ecosystem services (ESs) has dramatically grown 
among the scientific society. By increasing global environmental crises as a result of population 
growth, it is becoming increasingly essential to quantify the impacts that human activities have 
on ESs. Soil and water assessment tool (SWAT) is a process-based distributed hydrological 
model that has been widely recommended to quantify the ESs. The purpose of the present 
study is to employ the SWAT model for quantifying the flood regulation ecosystem service in 
one of the highest flood prone watersheds in the west of Iran.
Materials & Methods In this study, after calibration and validation of daily and monthly 
discharge using SUFI-2 algorithm, the flood regulation index (FRI) was calculated for each year 
of simulation period (1989-2017).
Findings The results show that climate variables such as precipitation could severely affect 
the quantities of FRI in different years. According to middle of 95PPU, the FRI varies from 0.22 
in the wettest year of 1994 to 0.72 in the driest year of 2017 with precipitation values of 1080 
and 380mm, respectively. The results also indicate that lower, middle, and upper limits of FRI 
95PPU show the correlation coefficient of 28, 66, and 72% with the precipitation values in 
different years.
Conclusion The available knowledge on the application of SWAT model in addressing ESs 
can be similarly used in the regions with corresponding environmental challenges of the low 
delivery level of regulation ESs.
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Introduction	
Ecosystem	 services	 (ESs)	 are	 the	 collective	
benefits	 that	 human	 communities	 gain	 from	
ecosystems,	and	are	classified	into	four	types	of	
provisioning,	 regulating,	 supporting,	 and	
cultural	services	[1].	Over	the	past	three	decades,	
global	 warming	 and	 climate	 change	 have	
dramatically	influenced	the	level	of	ESs	delivery	
[2].	 Therefore,	 understanding	 the	 impacts	 of	
climate	 change	 on	 ESs	 is	 of	 significance	 and	 it	
can	 help	 decision‐makers	 to	 analyze	 various	
strategies	and	policies	 [3,	4].	 In	recent	years,	the	
quantification	of	ESs	has	been	an	innovative	and	
sustainable	approach	to	addressing	the	effects	of	
climate	change	on	ecosystems	[5].	Quantification	
of	 ESs	 could	 provide	 valuable	 insights	 for	
decision	 and	 policy‐makers,	 and	 they	 can	
evaluate	 and	 compare	 the	 possible	 results	 of	
decisions	that	they	might	take	[6]. 
To	quantify	the	effects	of	ecosystem	changes	on	
ESs,	using	tools	and	models	is	inevitable.	There	
are	two	classes	of	emerging	tools	that	are	being	
used	for	ESs	assessment:	ESs	specific	tools	and	
traditional	 hydrological	 tools.	 The	 multi‐scale	
integrated	 model	 of	 ecosystem	 services	
(MIMES)	 [7],	 the	 artificial	 intelligence	 for	
ecosystem	 services	 (ARIES)	 [8],	 and	 the	
integrated	valuation	of	ecosystem	services	and	
tradeoffs	 (InVEST)	 [9]	 are	 among	 the	 most	
popular	 ESs	 specific	 tools,	 focusing	 mainly	 on	
end	services	and	visualization	of	these	services	
across	a	landscape	[10].	An	example	of	traditional	
hydrological	 models	 is	 the	 soil	 and	 water	
assessment	 tool	 (SWAT)	 which	 is	 unable	 to	
directly	 simulate	 the	 ESs	 and	 needs	 post	
processing	analysis	[11].	Hence,	some	researchers	
have	 attempted	 to	 develop	 various	 indices	 for	
quantifying	ESs	using	SWAT	outputs	[4].	
In	response	 to	various	climate	change	policies,	
ESs	 assessment	 has	 attracted	 the	 considerable	
attention	 of	 scientific	 community	 in	 different	
ecosystems	around	the	world.	Gathenya	et	al.	[3]	
used	SWAT	model	 to	 investigate	sediment	and	
flood	 regulatory	 ESs	 in	 Nyando	 river	 basin	 in	
Kenya.	 They	 reported	 that	 a	 10%	 increase	 in	
rainfall	 would	 increase	 flood	 risk	 by	 50%	
increase	in	flow	at	the	outlet	of	the	basin.	Jung	et	
al.	[12]	conducted	an	ecosystem	assessment	study	
in	South	Korea	and	they	concluded	that	climate	
change	 and	 global	 warming	 would	 bring	 a	
decrease	in	water	availability	and	an	increase	in	
flood	 risk.	Tang	et	al.	 [2]	 indicated	 that	 climate	
change	had	a	dramatic	impact	on	ESs	in	Eastern	
Tibetan	 Plateau	 in	 China.	 They	 reported	 that	

35%	of	 the	 study	 area	 showed	 increase	 in	ESs	
and	 the	other	 65%	decrease.	Newton	et	al.	 [13]	
stated	that	increases	in	frequency	and	intensity	
of	 extreme	 weather	 events	 resulting	 from	
climate	change	are	the	main	changes	that	affect	
ESs	 in	 different	 coastal	 lagoons	 around	 the	
worlds.	
The	present	study	aims	 to	use	SWAT	model	 to	
assess	the	flood	regulation	ES	under	past	climate	
change	in	Dez	watershed	in	Khuzestan	Province,	
western	 Iran.	 One	 of	 the	 most	 important	
environmental	 challenges	 in	 this	 region	 is	 the	
increasing	occurrence	of	severe	and	destructive	
floods	 which	 has	 been	 greatly	 affected	 by	
climate	change	in	recent	years	[14,	15].	Khuzestan	
Province	 is	 one	 of	 the	 highest	 flood	 prone	
provinces	 in	 Iran,	 in	 which	 the	 occurrence	 of	
devastating	floods	has	caused	human	casualties	
and	economic	losses	over	the	past	50	years.	For	
example,	 in	 the	 last	 flood	of	March	2019,	 over	
50000	people	were	forced	to	leave	their	houses	
and	the	 flood	caused	about	138	million	dollars	
economic	losses.	
One	 of	 the	 biggest	 challenges	 of	 using	 SWAT	
model	 is	 the	 uncertainty	 associated	 with	 the	
modeling	 outputs.	 Miserably,	 the	 previous	
studies	in	Iran	which	have	used	SWAT	model	for	
environmental	modeling	have	reported	the	final	
results	according	to	the	best	fitted	parameters.	
This	 is	 wrong	 and	 misleading,	 because	 this	
cannot	 express	 the	 uncertainty	 of	 simulated	
variables.	 In	 this	 study,	 the	 simulation	 results	
were	 presented	 as	 95PPU	 to	 express	 the	
uncertainty	of	SWAT	parameters	and	structure.	
This	 is	 the	 first	 study	 in	 Iran	 that	 uses	 SWAT	
model	to	quantify	the	effects	of	climate	change	
on	flood	regulation	ES	addressing	the	modeling	
uncertainty. 
The	main	objective	of	 this	study	 is	 to	calculate	
the	Flood	Regulation	Index	(FRI)	for	each	year	of	
the	 simulation	 period	 (1989‐2017)	 to	
understand	 how	 climate	 variables	 such	 as	
precipitation	could	affect	it.	The	purpose	of	the	
present	 study	 is	 also	 to	 show	 that	 available	
knowledge	on	the	application	of	SWAT	model	in	
addressing	 ESs	 can	 be	 similarly	 used	 in	 the	
regions	 with	 corresponding	 environmental	
challenges	of	the	low	delivery	level	of	regulation	
ESs.	
	
Materials	and	Methods	
Study	area	
The	 study	 area	 is	 a	 part	 of	 Dez	 watershed	 in	
Lorestan	Province,	western	Iran	(Figure	1).	It	is	
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located	 on	 the	 western	 slopes	 of	 the	 Zagros	
Mountains	between	48.3‐50.3	°E	and	32.4‐34.1	
°N	 with	 an	 area	 approximately	 of	 17611km2.	
Bakhtiari	and	Sezar	are	 the	main	tributaries	of	
Dez	watershed	which	join	together	to	form	the	
main	 river	 of	 Dez.	 northern	 parts	 of	 the	
watershed	 are	 predominantly	 covered	 with	
agriculture	 and	 rangeland.	 Also,	 the	
predominant	landuse	in	the	south	are	rangeland	
and	Oak	 forest.	The	 topography	of	 the	basin	 is	
characterized	 by	 mountains	 in	 the	 east	 and	
north	with	the	elevation	up	to	4075m	and	plains	
in	the	west	and	south	with	the	elevation	down	to	
92m.	 The	 region	 is	 affected	 by	Mediterranean	

climate	 conditions	 with	monsoon	 season	 from	
November	 to	 May.	 The	 average	 annual	
precipitation	is	around	705mm	which	more	than	
93%	 of	 which	 occurs	 in	 the	 rainy	 season.	
Because	 of	 the	 mountainous	 nature	 of	 most	
parts	of	the	region,	precipitation	mainly	falls	in	
the	 form	 of	 snow	 in	 autumn	 and	 winter.	 The	
average	 annual	 discharge	 in	 Talezang	 station	
located	 at	 the	 near	 of	 the	 basin’s	 outlet	 is	
293m3/s	 and	 148m3/s	 for	 the	 wet	 and	 dry	
seasons,	 respectively,	with	the	maximum	value	
of	 514m3/s	 in	 April	 and	 the	 minimum	 one	 of	
72.5m3/s	in	September	(Figure	1).	

	

	
Figure	1)	Location	of	watershed,	drainage	network,	river	and	climate	gage	stations	
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Description	of	hydrology	simulator	
Soil	 and	 water	 assessment	 tool	 (SWAT)	 is	 a	
robust	 watershed	 scale	 model	 which	 is	
developed	by	Jeff	Arnold	[11]	for	the	United	States	
Department	of	Agriculture	(USDA),	Agricultural	
Research	 Service	 (ARS).	 As	 the	 most	 popular	
hydrological	 model,	 SWAT	 has	 been	 used	 in	
different	 parts	 of	 the	 world	 for	 hydrological	
modeling	 of	 watersheds.	 SWAT	 is	 a	 time‐
continuous	 and	 physical‐based	 model	 that	
operates	 on	 the	 daily	 time	 step.	 It	 is	 able	 to	
simulate	 the	 impact	 of	 land	 management	
practices	on	water	quantity	and	quality	in	large,	
complex	 watersheds.	 There	 are	 10	 major	
components	 in	 SWAT,	 including	 hydrology,	
sedimentation,	weather,	 soil	 temperature,	crop	
growths,	 nutrients,	 pesticides,	 agricultural	
management,	 channel	 routing,	 and	 reservoir	
routing.	SWAT	uses	a	digital	elevation	model	to	
generate	stream	network	channels	and	partition	
the	watershed	into	a	number	of	sub‐watersheds.	
The	smallest	spatial	unit	in	SWAT	is	hydrological	
response	unit	(HRU)	which	is	unique	in	landuse,	
soil	types	and	topography	characteristics.	SWAT	
simulates	 the	 hydrology	 of	 a	watershed	 in	 the	
two	 following	 steps.	 The	 first	 step	 is	 the	
simulation	of	water	quantity	and	quality	in	each	
sub‐basins	and	the	second	step	is	routing	of	the	
calculated	 components	 through	 the	 channel	
network	 to	 the	 outlet	 of	 watershed.	 The	
following	equation	is	used	by	SWAT	to	simulate	
the	components	of	hydrology	in	a	watershed:	
	

SW୲=	SW଴ ൅ ∑ ሺRୢୟ୷ െ Qୱ୳୰ െ ETୟ െwୱୣୣ୮ െ Q୥୵ሻ
୲
୧ୀଵ 	

	

Where	SWt	 is	soil	water	content	at	time	step	t,	
SW0	 is	 initial	 soil	 water	 content,	 Rday	 is	 daily	
precipitation,	 Qsur	 is	 surface	 runoff,	 Eta	 is	
evapotranspiration,	wseep	is	percolation,	and	Qgw	
is	groundwater	flow.	
SWAT	 offers	 two	 methods	 for	 computation	 of	
surface	runoff;	modified	SCS	Curve	Number	[16]	
and	Green	and	Ampt	infiltration	equation	[17].	It	
uses	a	methodology	described	by	Ritchie	[18]	to	
calculate	actual	 evapotranspiration.	Also,	 there	
are	 three	 options	 in	 SWAT	 for	 estimating	 the	
potential	of	evapotranspiration;	Hargreaves	[19],	
Priestly‐Taylor	[20],	and	Penman‐Monteith	[21].	A	
detailed	description	of	SWAT	can	be	found	in	the	
studies	of	Arnold	et	al.	[11]	and	Gassman	et	al.	[22].	
Model	inputs	and	set	up	
Input	data	description	
The	 required	 temporal	 and	 spatial	 data	 for	
SWAT	calibration	and	validation	were	obtained	

from	 diverse	 sources.	 Digital	 elevation	 model	
(DEM)	 was	 extracted	 from	 Aster	 Global	 DEM	
with	 a	 resolution	 of	 30m	 which	 is	 available	
through	the	USGS	Earth	Explorer	site	[23].	DEM	is	
used	 by	 SWAT	 for	 watershed	 delineation,	
stream	 channel	 network	 definition,	 and	
calculation	 of	 sub‐basin’s	 topographic	
characteristics	such	as	area,	slop	and	slop	length.	
A	landuse/landcover	map	created	by	the	Iranian	
Space	Agency	(ISA)	was	also	used	to	develop	the	
hydrological	 model.	 It	 has	 a	 resolution	 of	
1:2500000	 and	 represents	 9	 various	 landuse	
classes.	The	soil	type	map	of	the	study	area	was	
constructed	 from	 the	 soil	 map	 of	 the	 world	
provided	 by	 FAO‐UNESCO	 (FAO,	 1974)	 with	 a	
spatial	 resolution	 of	 5km.	 Based	 on	 the	 FAO	
classification,	there	are	6	different	soil	types	in	
the	 region.	 Various	 physical	 and	 chemical	 soil	
properties	 for	 different	 layers	 were	 obtained	
from	a	study	by	Schuol	et	al.	[24]	to	complete	the	
soil	databases	file	within	the	model.	In	addition,	
the	 observed	 meteorological	 data	 including	
daily	precipitation	and	minimum	and	maximum	
air	temperature	from	January	1986	to	December	
2013	were	collected	from	two	sources	including	
the	 Iranian	Meteorological	 Organization	 (IMO)	
and	 the	 Iranian	Water	Resources	Management	
Organization	(IWRMO).	River	daily	discharge	at	
Talezang	hydrometric	station	was	also	obtained	
from	 the	 IWRMO	 for	 the	 time	 period	 of	 1989‐
2013	 for	 model	 calibration	 and	 validation.	
Figure	1	 illustrates	 the	 geographic	 locations	of	
meteorological	and	hydrological	stations	in	the	
study	area.	
Model	set	up	
After	 collection	 of	 the	 above	 data,	 a	 value	 of	
10000ha	 was	 selected	 for	 drainage	 threshold	
area	 to	 delineate	 the	 watershed.	 Selection	 of	
smaller	 values	 for	 drainage	 threshold	 area	 is	
resulted	 in	 more	 number	 of	 sub‐basins,	 finer	
stream	network	definition,	and	 longer	time	 for	
running	 the	 model.	 The	 multiple	 HRU’s	
(Hydrological	Response	Units)	and	single	slope	
options	 within	 the	 model	 were	 also	 used	 to	
generate	 HRU’s.	 With	 these	 specifications,	 the	
watershed	area	was	characterized	into	the	100	
sub‐basins	and	258	HRU’s.	Considering	the	data	
availability,	two	SWAT	projects	were	built	in	Arc	
SWAT	2012	for	the	period	of	1989‐2013	at	daily	
and	monthly	 timescales.	 The	 initial	 3	 years	 of	
simulation	period	were	regarded	as	the	warm‐
up	to	minimize	the	undesirable	effect	of	default	
parameters	values	within	the	model.	
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Sensitivity	analysis	
Calibration	 of	 a	model	with	 a	 large	 number	 of	
parameters	 is	 difficult	 [25].	 Therefore,	
identification	of	 the	most	 sensitive	parameters	
to	 an	output	 SWAT	variable	 is	 an	optional	 but	
highly	 recommended	 procedure	 before	 the	
calibration	 [26].	 Sensitivity	 analysis	 is	 a	method	
that	reveals	and	ranks	the	contribution	of	each	
input	 parameter	 to	 an	 output	 variable.	 Two	
types	of	sensitivity	analysis	are	available	within	
the	 SWAT‐CUP	 program:	 Global	 sensitivity	
analysis	which	allows	all	parameters	change	at	a	
time	 and	 one‐at‐a‐time	 sensitivity	 analysis	
which	allows	one	parameter	changes	at	a	time,	
while	all	other	parameters	are	kept	constant.	In	
the	 present	 study,	 both	 types	 of	 them	 were	
performed.	Global	sensitivity	analysis	provides	
two	statistics	of	t‐test	and	p‐value	to	quantify	the	
relative	 significance	 and	 sensitivity	 of	 each	
parameter,	 respectively.	 In	 absolute	 value,	 the	
higher	 value	 of	 t‐test	 and	 the	 smaller	 p‐value	
indicate	 the	 more	 significant	 and	 the	 more	
sensitive	parameter,	respectively.	
Model	 calibration,	 validation	 and	
uncertainty	analysis	
Calibration	 is	 the	 process	 of	 adjustment	 and	
optimization	 of	 sensitive	model	 parameters	 in	
order	 to	 get	 a	 reasonable	 match	 between	
simulation	and	observation.	Computer	modeling	
works	are	rife	with	various	sources	of	errors	and	
uncertainties.	 Thus,	 it	 is	 necessary	 to	 quantify	
the	 uncertainty	 in	 model	 predictions.	 Without	
consideration	 of	 uncertainty,	 calibration	 of	 a	
model	is	meaningless.	Hence,	any	analysis	using	
a	 calibrated	 model	 needs	 to	 include	 the	
uncertainty	 in	 the	 results.	 SUFI‐2	 is	 an	
optimization	 algorithm	 within	 the	 SWAT‐CUP	
program	which	 allows	 the	 sensitivity	 analysis,	
combined	 calibration‐uncertainty	 process	 and	
validation	of	SWAT	model.	It	is	developed	by	Dr.	
Abbaspour	[26]	for	the	Swiss	Federal	Institute	of	
Aquatic	 Science	 and	 Technology	 (Eawag).	 In	
SUFI‐2,	 all	 the	 sources	 of	 uncertainties	 are	
considered	by	the	propagation	of	uncertainty	in	
the	 model	 parameters,	 expressed	 as	 ranges.	
Assigning	 the	 uncertainty	 in	 the	 input	
parameters	 is	 resulted	 in	 uncertainty	 in	 the	
model	 output	 variables,	 which	 expressed	 as	
uncertainty	 band.	 The	 uncertainty	 band	 is	
generated	 at	 2.5%	 and	 97.5%	 levels	 of	 the	
cumulative	 distribution	 of	 an	 output	 variable	
which	is	simulated	by	Latin	hypercube	sampling	
(LHS)	 from	 the	 parameter	 ranges	 (95PPU).	 In	
the	present	study,	in	order	to	show	the	impact	of	

uncertainty	 in	 model	 structure	 and	 model	
parameters,	 the	 95PPU	 box	 plots	 for	 the	 flood	
regulation	 service	 were	 calculated	 and	
presented.	
There	are	two	factors	that	assess	the	outcomes	
of	 uncertainty	 analysis:	 P‐factor	 which	 is	 the	
percentage	 of	 observed	 data	 enveloped	 by	
95PPU	 and	 R‐factor	 which	 is	 the	 average	
thickness	 of	 95PPU	 divided	 by	 the	 standard	
deviation	 of	 measured	 data.	 The	 value	 of	 P‐
factor	ranges	from	zero	to	1,	while	the	value	of	
R‐factor	 varies	 from	 zero	 to	 ∞.	 According	 to	
some	 studies,	 values	 of	 P‐factor	 >0.7	 and	 R‐
factor	 around	 1	 are	 satisfactory	 for	 discharge	
calibration	 [26,	 27].	 Furthermore,	 the	 three	
following	 statistical	 indices	 were	 calculated	 to	
evaluate	the	performance	of	model	in	simulating	
discharge:	Coefficient	of	determination	(R2)	[28],	
Nash‐Sutcliffe	 efficiency	(NSE)	 [29],	 and	percent	
bias	(PBIAS)	[30].	R2	ranges	from	zero	to	1,	where	
the	higher	values	denote	the	higher	agreement	
between	simulation	and	observation.	NSE	varies	
between	‐∞	and	1,	where	the	value	of	1	indicates	
the	perfect	model	prediction.	PBIAS	falls	within	
‐∞	and	+∞	with	the	optimal	value	of	zero,	where	
the	smaller	values	represent	better	simulation.	
The	 equations	 for	 R2,	 NSE,	 and	 PBIAS	 are	 as	
follows:	
	

R2=	
ሾ∑ ሺ୕ౣ,౟ିഥ୕ౣሻሺ୕౩,౟ିഥ୕౩౟ ሻሿమ

∑ ሺ୕ౣ,౟ିഥ୕ౣሻమ౟ 	∑ ሺ୕౩,౟ିഥ୕౩ሻమ౟
	

	

NSE=	1‐
∑ ሺ୕ౣି୕౩ሻ౟

మ
౟

∑ ሺ୕ౣ,౟ିഥ୕ౣሻమ౟
	

	
PBIAS=	100˟

∑ ሺ୕ౣି୕౩ሻ౟౟

∑ ୕ౣ,౟౟
	

	
Where	Qm	is	the	measured	variable	(discharge	or	
sediment),	Qs	is	the	simulated	variable,	Qഥ୫is	the	
mean	of	measured	variable	and	Qഥୱ	is	the	mean	
of	 simulated	variable	 for	 each	 time	 step	 i.	 The	
performance	 of	 model	 in	 simulating	 monthly	
discharge	is	considered	very	good	when	PBIAS	
falls	within	±15	and	NSE	is	above	0.75	(Table	1)	
[31].	

	
Table	 1)	 The	 criteria	 for	 assessing	 the	 performance	 of	
SWAT	model	(Moriasi	et	al.)	[31]	
Performance	
Rating	 NSE	 PBIAS	(%)	

Very	good	 0.75<NSE≤1.00	 PBIAS<±10	
Good	 0.65<NSE≤0.75	 ±10≤PBIAS<±15	
Satisfactory	 0.5<NSE≤0.65	 ±15≤PBIAS<±25	
Unsatisfactory	 NSE≤0.5	 PBIAS≥±25	
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Quantifying	 the	 flood	 regulation	 ecosystem	
services	
In	the	present	study,	a	methodology	by	Logsdon	
and	Chaubey	 [4]	was	used	 to	quantify	 the	 flood	
regulation	 ES.	 In	 this	 method,	 the	 flood	
regulation	 ES	 is	 determined	 according	 to	 the	
three	components	of	quantity,	duration,	and	the	
extent	of	flooding	events.	The	following	equation	
provides	the	flood	regulation	index	(ERI)	where	
DF	 is	 the	 duration	 of	 flood	 (day),	 QF	 is	 the	
magnitude	of	flood,	RF	is	the	number	of	flood	per	
year,	w1,	w2,	and	w3	are	the	user	weights	added	
for	 each	 components	 of	 flood	 (where	 the	
summation	 of	 weights	 is	 1),	 and	 LT	 subscript	
indicates	 the	 calculation	 of	 each	 components	
using	 historical	 long‐term	 data.	 First,	 the	
historical	 flow	 data	 at	 Talezang	 station	 at	 the	
outlet	 of	 the	 watershed	 was	 used	 to	 calculate	
flood	 flow	 (Q10	 of	 the	 flow),	 and	 then	 this	was	
used	to	determine	the	three	long‐term	historical	
components	of	 flood.	 In	general,	 the	FRI	varies	
between	 zero	 and	 1,	 where	 the	 value	 of	 1	
indicates	 that	 there	 is	no	 flood	 in	 a	given	year	
and	 the	 magnitude	 less	 than	 1	 suggests	
diminished	flood	regulation	service.	
RRI=	

ଵ

ୣ୶୮	ሾ୵భ൬
ీూ

ీూై౐
൰ା୵మ൬

్ూ
్ూై౐

൰ା୵య൬
౎ూ

౎ూై౐
൰ሿ
	

Findings	and	Discussion	
Sensitivity	analysis	results	
Initially,	 25	 parameters	 that	 had	 effect	 on	
discharge	 were	 chosen	 from	 the	 previous	
studies	 in	 the	 literature	 and	 were	 used	 in	
sensitivity	 analysis	 [32‐35].	 Then,	 14	 most	
sensitive	 parameters	 were	 selected	 for	 the	
calibration‐uncertainty	process	according	to	the	
results	of	the	sensitivity	analysis	(Table	2).	The	
parameters	 attributed	 to	 the	 surface	 runoff	
(CN2.mgt),	 snow	 process	 (SMTMP.bsn,	
SFTMP.bsn,	 SMFMN.bsn,	 SMFMX.bsn),	 physical	
channel	 characteristics	 (ALPHA_BNK.rte,	
CH_K2.rte,	 CH_N2.rte),	 water	 movement	 in	
aquifers	 (GW_REVAP.gw,	 GWQMN.gw,	
RCHRG_DP.gw),	 and	 HRUs	 properties	
(CANMX.hru,	 EPCO.hru,	 SLSUBBSN.hru)	 were	
found	 as	 the	 most	 influential	 parameters	 on	
discharge.	 The	 most	 sensitive	 parameter	 was	
“SCS	 runoff	 curve	 number	 for	 moisture	
condition	 II”	 (CN2.mgt),	 followed	by	 “baseflow	
alpha	factor	for	bank	storage”	(ALPHA_BNK.rte)	
and	“effective	hydraulic	conductivity	in	the	main	
channel”	(CH_K2.rte).	
Calibration‐uncertainty	analysis	results	
The	 model	 calibration	 and	 validation	 were	
carried	 out	 using	 the	 daily	 and	 monthly	

observed	 discharge	 at	 Talezang	 station.	 First,	
the	model	was	calibrated	from	1989	to	2006	by	
adjusting	 the	 selected	 influential	 parameters	
from	the	sensitivity	analysis	in	the	previous	step	
(Diagrams	 1	 and	 2).	 Then,	 the	 model	 was	
validated	 from	 2007	 to	 2013	 using	 the	
calibrated	parameter	ranges	without	any	further	
changes	 (Diagrams	 3	 and	 4).	 The	 calibrated	
parameters	and	their	optimal	values	are	listed	in	
Table	2.	The	efficiency	statistics	of	R2,	NSE,	and	
PBIAS	 for	 the	 monthly	 and	 daily	 discharge	
simulations	are	summarized	in	Table	3.	The	NSE	
value	of	>0.8	and	PBIAS	value	of	<10%	indicate	
a	 very	 good	 performance	 of	 SWAT	 model	 in	
simulating	 monthly	 discharge	 for	 both	
calibration	and	validation	periods	according	to	
the	guidelines	suggested	by	Moriasi	et	al.	[31].	The	
performance	 of	 model	 was	 also	 evaluated	
satisfactory	for	the	calibration	and	validation	of	
daily	 discharge.	 It	 is	 obvious	 that	 the	
performance	 of	 model	 has	 been	 better	 for	
monthly	 discharge	 simulation	 than	 daily	
discharge.	
According	to	the	results	of	uncertainty	analysis,	
more	 than	 85%	 of	 daily	 and	 monthly	
observations	were	captured	 in	the	95PPU	band	
for	both	calibration	and	validation	(Table	3).	The	
R‐factor	values	were	also	obtained	around	1	for	
both	calibration	and	validation	for	both	daily	and	
monthly	time	scales.	These	values	are	reasonable	
values	for	uncertainty	analysis,	according	to	the	
suggestions	by	Abbaspour	et	al.	[26].	
	

SWAT	performance	in	quantifying	FRI	
The	 three	 components	 of	 flooding	 events	
(magnitude,	 duration,	 and	 number)	 were	
calculated	 using	 the	 SWAT	 simulated	 daily	
discharge	at	the	outlet	of	the	watershed	for	each	
year	 of	 the	 simulation	 period.	 The	 values	 of	
components	 and	 the	 corresponding	 calculated	
FRIs	 are	 listed	 in	 Table	 4.	 The	 FRI	 quantities	
were	 also	 determined	 using	 the	 observed	
discharge	data.	Diagram	5	graphically	compares	
the	 simulated	 (depicted	 as	 95PPU)	 with	 the	
observed	 FRIs.	 As	 seen	 in	 Diagram	 5,	 the	
simulated	 FRIs	 95PPU	 captured	 most	 of	 FRIs	
calculated	 with	 the	 observed	 data.	 Only	 the	
observed	FRI	in	3	years	of	2005,	2007,	and	2015	
have	not	been	fallen	within	the	FRI	95PPU	box.	
The	results	also	show	that	middle	of	95PPU	(as	
a	 representative	 of	 simulated	 FRIs)	 correlates	
78%	with	the	observed	FRI	quantities	(Diagram	
6‐a).	So,	the	SWAT	outputs	can	be	satisfactorily	
used	in	modeling	the	flood	regulation	ES	in	Dez	
watershed.	
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Table	2)	The	most	sensitive	parameters	to	streamflow	and	their	optimal	values	
Parameters*	 Description	 File	 Final	value	
r_CN2	 Curve	number	 .mgt	 [‐0.1,	0.1]	
v_GWQMN	 Threshold	depth	of	water	for	return	flow	to	occur	 .gw	 [550,	850]	
v_GW_REVAP	 Groundwater	"revap"	coefficient	 .gw	 [0,	0.05]	
v_RCHRG_DP	 Deep	aquifer	percolation	fraction	 .gw	 [0.7,	0.9]	
v_SLSUBBSN	 Average	slope	length	 .hru	 [115,	135]	
v_ALPHA_BNK	 Baseflow	alpha	factor	for	bank	storage	 .rte	 [0.05,	0.25]	
v_CH_K2	 Effective	hyd.	Cond.	in	the	main	channel	 .rte	 [105,	125]	
v_CH_N2	 Maanning’s	n	value	foe	the	main	channel	 .rte	 [0.09,	0.16]	
v_EPCO	 Plant	uptake	compensation	factor	 .hru	 [0.7,	0.9]	
v_SFTMP	 Snowfall	temperature	 .bsn	 [1.5]	
v_SMTMP	 Snowmelt	base	temperature	 .bsn	 [3.5]	
v_SMFMX	 Melt	factor	for	snow	on	June	21	 .bsn	 [7.5]	
v_SMFMN	 Melt	factor	for	snow	on	December	21	 .bsn	 [2.5]	
v_CANMX_RANGE	 Maximum	canopy	storage	for	range	 .hru	 [79]	
*	r_	means	that	the	existing	parameter	value	is	multiplied	by	(1+a	given	value),	while	v_	means	that	the	default	parameter	is	replaced	by	a	given	value.	

	

	(A)	

	(B)	
Diagram	1)	Precipitation	(upper)	and	comparison	between	the	observed	and	simulated	daily	streamflow	(lower)	from	
1989	to	1998	(A)	and	from	1998	to	2006	(B)	
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Diagram	2)	Precipitation	(upper)	and	comparison	between	the	observed	and	simulated	monthly	streamflow	(lower)	from	
1989	to	2006	(calibration	period)	
	

	
Diagram	3)	Precipitation	(upper)	and	comparison	between	the	observed	and	simulated	daily	streamflow	(lower)	from	
2007	to	2013	(validation	period)	
	

	
Diagram	4)	Precipitation	(upper)	and	comparison	between	the	observed	and	simulated	monthly	streamflow	(lower)	from	
2007	to	2013	(validation	period)	
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Table	3)	Results	of	calibration,	validation,	and	uncertainty	analysis	
Time	step	and	process	 R2	 NSE	 PBIAS	 P‐factor	 R‐factor	
Monthly	
Calibration	 0.84	 0.83	 ‐0.4	 0.92	 0.93	
Validation	 0.81	 0.80	 +9.2	 0.89	 0.60	
Daily	
Calibration	 0.62	 0.62	 +2.4	 0.91	 0.99	
Validation	 0.64	 0.60	 +22.7	 0.84	 1.02	
	
	
Table	4)	The	components	of	flood	and	the	FRI	quantities	for	each	year	

Year	
Magnitude	of	flood	(m3	s‐1)	 Duration	of	flood	(Day)	 Number	of	flood	 FRI	
L.	 M.	 U.	 L.	 M.	 U.	 L.	 M.	 U.	 L.	 M.	 U.	

1989	 0	 1180	 2754	 0.0	 1.8	 5.0	 0	 4	 5	 0.13	 0.36	 1.00	
1990	 1624	 1341	 1162	 1.0	 2.0	 2.7	 1	 2	 4	 0.34	 0.40	 0.43	
1991	 0	 1137	 1294	 0.0	 1.0	 2.4	 0	 3	 5	 0.21	 0.43	 1.00	
1992	 0	 1098	 1244	 0.0	 3.1	 6.0	 0	 7	 6	 0.21	 0.25	 1.00	
1993	 1264	 1039	 1142	 1.0	 3.8	 4.3	 1	 6	 9	 0.19	 0.27	 0.50	
1994	 1309	 1346	 2365	 1.0	 5.4	 2.2	 3	 8	 8	 0.15	 0.22	 0.40	
1995	 0	 1279	 1515	 0.0	 1.0	 1.0	 0	 1	 2	 0.41	 0.50	 1.00	
1996	 0	 1131	 1126	 0.0	 1.7	 2.7	 0	 3	 7	 0.26	 0.41	 1.00	
1997	 0	 1160	 1042	 0.0	 1.5	 6.5	 0	 2	 2	 0.32	 0.45	 1.00	
1998	 0	 1229	 1461	 0.0	 1.7	 2.5	 0	 3	 6	 0.25	 0.39	 1.00	
1999	 0	 949	 983	 0.0	 1.0	 1.8	 0	 1	 5	 0.36	 0.57	 1.00	
2000	 1307	 1114	 1248	 1.0	 1.7	 2.2	 1	 4	 9	 0.21	 0.37	 0.49	
2001	 1293	 1872	 1169	 1.0	 1.0	 3.5	 1	 3	 6	 0.26	 0.32	 0.49	
2002	 824	 1130	 1164	 1.0	 1.8	 3.8	 1	 5	 7	 0.23	 0.34	 0.60	
2003	 1420	 1347	 1421	 1.0	 1.8	 2.9	 2	 6	 8	 0.2	 0.28	 0.43	
2004	 1180	 1266	 1550	 1.0	 3.0	 3.8	 1	 3	 8	 0.19	 0.35	 0.52	
2005	 1473	 1459	 1213	 2.0	 7.0	 5.7	 1	 2	 6	 0.21	 0.26	 0.42	
2006	 1369	 1082	 1465	 1.5	 4.3	 8.3	 2	 4	 4	 0.19	 0.31	 0.42	
2007	 0	 1126	 1457	 0.0	 1.0	 2.3	 0	 4	 4	 0.31	 0.4	 1.00	
2008	 0	 0	 889	 0.0	 0.0	 1.0	 0	 0	 4	 0.43	 1.00	 1.00	
2009	 0	 0	 969	 0.0	 0.0	 1.0	 0	 0	 2	 0.51	 1.00	 1.00	
2010	 0	 894	 1203	 0.0	 1.0	 1.0	 0	 1	 2	 0.45	 0.58	 1.00	
2011	 0	 1257	 1475	 0.0	 1.0	 1.5	 0	 1	 2	 0.4	 0.50	 1.00	
2012	 0	 1107	 2554	 0.0	 1.0	 1.0	 0	 1	 1	 0.29	 0.71	 1.00	
2013	 0	 857	 1103	 0.0	 1.0	 1.7	 0	 1	 3	 0.42	 0.69	 1.00	
2014	 0	 1237	 1515	 0.0	 1.0	 1.2	 0	 1	 2	 0.45	 0.55	 1.00	
2015	 0	 1245	 1413	 0.0	 1.0	 1.6	 0	 0	 3	 0.4	 0.5	 1.00	
2016	 0	 1298	 1565	 1.0	 1.0	 1.1	 0	 1	 3	 0.43	 0.53	 1.00	
2017	 0	 760	 1050	 0.0	 1.0	 1.0	 0	 1	 1	 0.5	 0.72	 1.00	
	
	

	
Diagram	5)	Precipitation	(upper)	and	simulated	FRI	95PPU	(lower)	
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Diagram	6)	(a)	Correlation	between	observed	and	simulated	FRI	and	the	correlation	between	precipitation	and	(b)	lower	
limit	of	FRI,	(c)	middle	limit	of	FRI	and	(d)	upper	limit	of	FRI	

	
SWAT	uncertainty	in	quantifying	FRI	
The	height	of	FRI	95PPU	box	varies	in	different	
years,	 indicating	 different	 uncertainties	 in	
quantifying	 the	 flood	 regulation	 ES	 due	 to	
changing	 climate	 variables.	 For	 example,	 the	
uncertainty	 in	quantifying	FRI	 for	 the	 years	of	
2000‐2006	 is	 lower	 than	 the	one	 for	 the	years	
1995‐1999	with	smaller	height	of	95PPU	and	the	
nearly	equal	observed	FRIs.	The	height	of	95PPU	
box	ranges	from	a	minimum	of	0.1	in	1990	to	a	
maximum	of	0.87	in	1989.	The	best	performance	
of	model	is	observed	for	1990,	where	the	height	
of	 95PPU	 box	 is	 too	 small	 but	 captures	 the	
observed	FRI.	These	results	suggest	that	climate	
variables	could	severely	affect	the	uncertainty	of	
modeled	FRI.	
Impact	of	climate	change	on	FRI	
According	 to	 the	middle	 of	 95PPU	 results,	 the	
FRI	quantity	varies	from	0.22	in	the	wettest	year	
of	1994	to	0.72	in	the	driest	year	of	2017	with	
precipitation	 values	 of	 1080mm	 and	 380mm,	
respectively.	The	notable	change	in	FRI	values	in	
different	 years	 results	 from	 only	 change	 in	
climate	 variables	 and	 it	 indicates	 that	 the	
delivery	 level	 of	 flood	 regulation	 ES	 could	 be	

severely	 affected	 by	 climate	 change.	 This	 also	
can	be	seen	in	Diagrams	6‐b	to	6‐d,	 illustrating	
the	 correlation	 coefficients	of	 28,	 66,	 and	72%	
between	the	lower,	middle,	and	upper	limits	of	
FRI	95PPU	and	precipitation.	
In	a	further	analysis,	the	average	annual	FRI	was	
also	 determined	 for	 the	 dry,	 average,	 and	 wet	
years	during	the	simulation	period	(Diagram	7).	
According	 to	 the	middle	 of	 95PPU	 results,	 the	
average	 annual	 FRI	was	0.66,	 0.37,	 and	0.3	 for	
dry,	 average,	 and	 wet	 years	 with	 the	 average	
annual	 precipitation	 of	 539,	 737,	 and	 922mm,	
respectively.	 Also,	 the	 average	 annual	 FRI	was	
0.44	 for	 the	 total	 simulation	 period	 with	 the	
average	annual	precipitation	of	710mm.	
FRI	relative	variation	compared	to	the	long‐
term	average	
Diagram	8	depicts	the	relative	annual	variation	
of	 FRI	 and	 the	 precipitation	 compared	 to	 the	
long‐term	 historical	 average	 ones	 (FRI=	 0.44	
and	Precipitation=	710mm/year).	It	can	be	seen	
that	 the	 years	 with	 a	 relative	 decrease	 in	
precipitation	 experience	 a	 relative	 increase	 in	
FRI,	and	on	the	contrary	the	years	with	a	relative	
increase	in	precipitation	experience	a	relative	
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decrease	 in	 FRI.	 For	 example,	 the	 maximum	
decrease	 in	 precipitation	 by	 46%	 in	 the	 driest	
year	of	2017	led	to	an	increase	in	FRI	by	64%,	

whereas,	 in	 the	 wettest	 year	 of	 1994,	 the	
maximum	 precipitation	 increase	 by	 53%	
resulting	in	a	decrease	in	FRI	by	50%.	

	

	
Diagram	7)	The	long‐term	annual	FRI	for	the	dry,	average	and	wet	years	
	

	
Diagram	8)	Variation	of	precipitation	and	FRI	quantities	compared	to	the	long‐term	average	annual	ones	

	
Conclusion	
	

In	the	present	study,	the	SWAT	model	was	used	
to	quantify	FRI	in	Dez	watershed,	in	the	west	of		
	

Iran.	 The	 results	 of	 this	 study	 showed	 that	
simulated	FRI	95PPU	boxes	bracketed	most	 of	
the	FRI	calculated	with	 the	observed	data.	The	
outcomes	also	indicated	that	the	delivery	level	of	
flood	regulation	ES	could	be	severely	influenced	
by	climate	change.	This	study	could	be	useful	for	
the	 SWAT	 users	 to	 address	 the	 modeling	
uncertainty	in	their	future	research	projects	and	
studies.	 Furthermore,	 the	 available	 knowledge	
on	the	application	of	SWAT	model	in	addressing	
ESs	 can	 be	 similarly	 used	 in	 regions	 with	
corresponding	environmental	challenges	of	the	
low	delivery	level	of	regulation	ESs.	
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