

New Record and Description of *Dermacentor marginatus* (Acari: Ixodidae) from *Ovis orientalis arkal* (Mammalia: Bovidae) in Northeastern Iran

ARTICLE INFO

Article Type Original Research

Authors

Jafari B.¹ *MSc,* Shakeri Moghaddam H.¹ *MSc,* Vaeznia P.² *MSc,* Hosseinzadeh M.S.³ *PhD,* Kayvanfar N. *⁴ *PhD*

How to cite this article

Jafari B., Shakeri Moghaddam H, Vaeznia P, Hosseinzadeh M.S, Kayvanfar N. New Record and Description of *Dermacentor marginatus* (Acari: Ixodidae) from *Ovis orientalis arkal* (Mammalia: Bovidae) in Northeastern Iran. ECOPERSIA. 2020;8-(3):163-168.

¹Biology Department, Science Faculty, Ferdowsi University of Mashhad, Mashhad, Iran

²Ferdowsi Technologies Incubator Center, Mashhad, Iran

³Biology Department, Science Faculty, University of Birjand, Birjand, Iran

⁴Institute of Applied Zoology, Ferdowsi University of Mashhad, Mashhad, Iran

*Correspondence

Address: Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran. Postal code: 9177948974 Phone: +98 (51) 38806928 Fax: +98 (51) 38806929 kayvanfar@um.ac.ir

Article History

Received: June 3, 2018 Accepted: January 18, 2020 ePublished: September 20, 2020

ABSTRACT

Mouflon (*Ovis orientalis*, Linnaeus, 1758) is a mammal with four subspecies in Iran. *Ovis orientalis arkal* is one of the subspecies that is distributed in east and northeast of Iran. This subspecies, like other Iranian mammals' species, is vulnerable in International Union for Conservation of Nature (IUCN). If necessary, actions are not considered for the protection of this species, it faces extinction in Iran. The study and identification of mammals' ticks are vital since ticks are one of the most important factors that can transmit many dangerous diseases to animals. They transmit viral, unicellular and rickettsia factors which may cause encephalitis, tularaemia, paralysis, and poisoning in animals and human as well. In the present study, hard ticks of *Ovis orientalis arkal* in Tandooreh and Hezar Masjed Mountains were surveyed during the period 2014-2015.

In the present study, 175 ticks have been separated from eight heads of *Ovis orientalis arkals'* carcasses. After maintaining ticks in vials consisting glycerine 5% and alcohol 75%, they were transferred to the laboratory and identification was done. Based on the results, hard ticks were recorded. They include Dermacentor, Rhipicephalus, Hyalomma, Haemaphysalis, and *Dermacentor marginatus* (Sulzer, 1776) which have been reported for the first time in this study.

Keywords Dermacentor marginatus; Infection; Ixodidae; Mammals; Ovis orientalis

CITATION LINKS

[1] Ticks (Acari: Ixodidae) of livestock and their seasonal activities, northwest of ... [2] Ticks and control ... [3] Diagnostic medical ... [4] Dermacentor ticks (Acari: Ixodoidae: Ixodidae) of the new ... [5] Laboratory identification of arthropod ... [6] Primary report on distribution of tick fauna in ... [7] The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: ... [8] Current status of tick fauna in north of ... [9] Rickettsia slovaca from Dermacentor marginatus ... [10] Replication of tick-borne encephalitis (TBE) virus in ticks ... [11] Comparison of virulence of Coxiella burnetii isolates ... [12] Animal babesiosis: An emerging zoonosis also in ... [13] Fauna of the ... [14] Zum vorkommen und zur vektoriellen bedeutung der zecken dermacentor ... [15] Tick reservoirs for piroplasms in central and northern ... [16] Tick infestations on sheep and goats in the Black Sea region of ... [17] The ecological niche of Dermacentor marginatus in ... [18] Ticks feeding on humans: A review of records on human-biting Ixodoidea ... [19] Range expansion of Ixodes ricinus to higher altitude, and co-infestation of ... [20] Wild sheep and goats and their ... [21] Wild sheep of ... [22] Evolution of wild sheep in ... [23] The mountain ungulates of Ladakh ... [24] The status of Ladakh urial Ovis orientalis ... [25] Status and conservation of large mammals in ... [26] The behaviour of ungulates and its relation to ... [27] Morphological study on Dermacentor marginatus (Acari: Ixodidae) ... [28] A world checklist of genera, subgenera, and ... [29] Central-European ticks ... [30] Mortality patterns in nondomestic hoofstock (Ovis orientalis laristanica, Capra aegagrus, Capra ibex nubiana) ... [31] Lehrbuch der Parasitologie für die Tiermedizin ... [32] Zoo and wild animal ... [33] Asiatic mouflon and measures necessary for its ... [34] Biodiversity, genetic diversity, and protected ... [35] South Asian mammals, their diversity, distribution and ... [36] Population status, biology and ecology of the Maral, Cervus ... [37] A survey on fauna of ticks in west ... [38] Species diversity and distribution of ticks (Acari: Ixodidae) in Zabol ... [39] Survey on cattle ticks in Nur, north of ... [40] Occurrence of soft and hard ticks on ruminants in ... [41] A study of tick fauna in Tandoureh National Park ... [42] Geographical distribution of Dermacentor marginatus and Dermacentor ...

Copyright© 2019, TMU Press. This open-access article is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) under the Attribution-NonCommercial terms.

Introduction

Ticks, the most important obligate bloodsucking ectoparasites especially in ruminants, are very important in the fields of medicine and hygiene. Not only do these ectoparasites hurt domestic livestock and wildlife with their feeding, but they also could cause severe damages. Ticks could cause severe diseases. Moreover, these parasites can transmit various pathogens including bacteria, helminths. protozoa, viruses, and fungi to humans and animals [1-3]. In fact, ticks are considered to be the most important vectors of zoonoses, so-called tick-borne diseases such as Lyme disease, Rocky Mountain spotted fever. tick-borne meningoencephalitis, babesiosis and Crimean-Congo hemorrhagic fever (CCHF) [4, 5]. Recently, 702 species of ticks are recognized from 14 genera of the family Ixodidae and are important in transmitting diseases [6,7].

14 species of Hyalomma, 11 species of Haemaphysalis, 8 species of Ixidious, 5 species of Rhipicephalus, one species of Boophilus, and 3 species of Dermacentor from Ixodidae have been reported from domestic mammals in Iran [8]. Dermacentor consists of 34 species, which have a cosmopolitan distribution with native species on all continents except Australia. Hosts of Dermacentor ticks include large and small mammals such as horses, deer, cattle, lagomorphs, peccaries, porcupines, tapirs, desert bighorn sheep, and humans [4].

Dermacentor ticks are the vectors of many pathogens including Rickettsia rickettsii, which causes Rocky Mountain spotted fever and Coxiella burnetii causing Q fever. Moreover, other pathogens such as Anaplasma marginale, Francisella tularensis, Babesia caballi, and Flavivirus which cause anaplasmosis in cattle, tularemia, equine piroplasmosis, and Powassan encephalitis, respectively, are transmitted through Dermacentor ticks. These ticks produce a neurotoxin that causes tick paralysis [4]. Furthermore, Dermacentor marginatus, European ornate sheep tick, is a common vector of Ricketsiia slovaca, the causative agent of tickborne lymphadenopathy (TIBOLA) in southern Europe [9]. *D. marginatus* may also play a role as a vector of tick-borne encephalitis virus (TBEV), Coxiella burnetii and the protozoan parasite Babesia canis [10-12].

Dermacentor marginatus, is found in Portugal, southern Europe, Iran, Kazakhstan, and the mountain areas of central Asia [13]. The species

has usually been reported from domestic mammals especially sheep in Germany, Turkey, and Italy (Figure 1) [14-16]. They are also found in other domestic hosts such as dogs, cattle, goats, and horses. Ticks have also been reported from wild animals including deer, hare, hedgehog, wolf, and wild boar [9, 17]. However, the juvenile tick often feeds on small mammals like rodents and insectivores of the genera Myodes, Apodemus, Microtus, and rabbits [17-19].

Wild sheep, *Ovis orientalis*, is a member of the order Artiodactyla, family Bovidae and subfamily Caprinae and is listed as vulnerable (VU) by IUCN. *Ovis orientalis* has eight subspecies and according to the latest records of IUCN, they are distributed in Afghanistan, northwestern India (Kashmir), northeastern, southern, and southeastern Iran, southwestern Kazakhstan, Oman (where it is possibly introduced), Pakistan, Tajikistan, Turkmenistan, Armenia, southern Azerbaijan, northern Iraq, western Iran, Uzbekistan, and south-central, eastern Turkey. The subspecies are distributed as follows (Figure 2):

- 1- *Ovis orientalis isphahanica*: It occurs only in southwestern Esfahan in east-central Iran.
- 2- *Ovis orientalis laristanica*: It inhabits southern and southeastern Iran.
- 3- Ovis orientalis arkal: It is the resident of Kazakhstan, Turkmenistan, Uzbekistan, and northeast Iran including Golestan, Gorkhod, Serany, and Tandooreh national parks.
- 4- *Ovis orientalis bocharensis*: It is found in Tajikistan, Turkmenistan, and Uzbekistan and the southwestern part of the Pamir [20, 21].
- 5- Ovis orientalis cycloceros: It was observed in Turkmenistan, Pakistan, and Afghanistan, throughout the Hindu Kush and the mountains of central Afghanistan, extending from the Zebak mountains in the north to the Seyah Koh range in the southwest.
- 6- Ovis orientalis gmelinii: It is the resident of the mountain foothills and rolling steppe of northwestern and southwestern Iran, northern and northeastern Iraq, Trans Caucasus, southwestern Azerbaijan [22].
- 7- Ovis orientalis vignei: This subspecies occurs only in India, northern Pakistan, and Afghanistan [23-25].
- 8- Ovis orientalis punjabiensis: This subspecies is distributed in Pakistan and probably India [26]. Aesthetically, urial sheep is one of the species that attracts nature supporters' attention around the world. According to the species

165 Jafari B. et al.

status in IUCN red list and the role of ticks in transmission of pathogenic agents, conservation of these sheep is important. Therefore, in this study, it is focused on ticks of urial sheep (*Ovis orientalis arkal*) in Tandooreh National Park and Hezar Masjed Mountains in northeast of Iran.

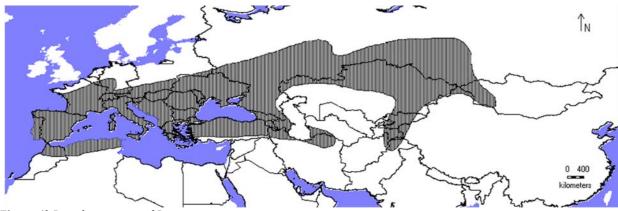


Figure 1) Distribution map of Dermacentor marginatus

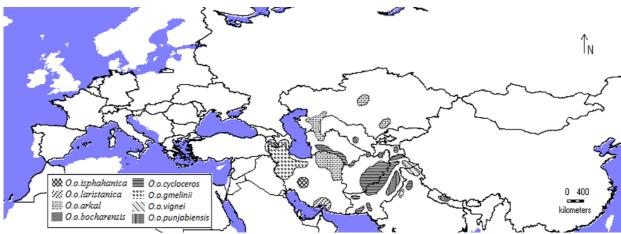


Figure 2) Distribution map of subspecies of Ovis orientalis

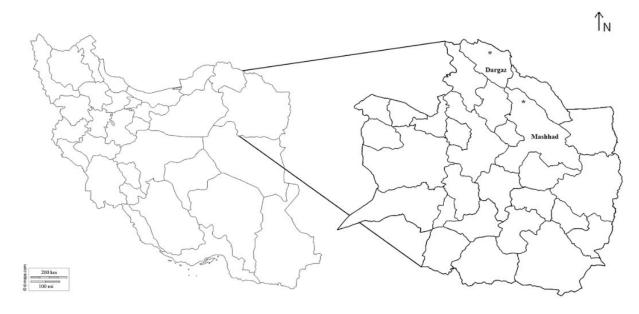
Materials and Methods Sample collection

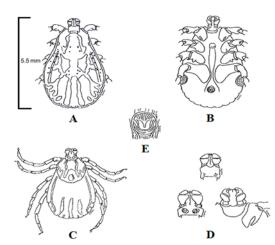
Ticks of wild sheep *Ovis orientalis arkal* were collected during spring 2013 to summer 2015. Sampling was done in Tandooreh National Park and Hezar Masjed Mountains. The national park is located in northeastern Iran, close to the border of Turkmenistan. The park is mountainous with frequent rocks, hill, and deep valleys. The vegetation is diverse and nutritionally rich and the region is a very suitable habitat for urial sheep (Figure 3).

In the current study, the samples were collected from Environmental Department of Razavi Khorasan, northeastern Iran. Ticks were removed from head, neck, pinna, groin, anus, and scrotum or testis, which have high blood flow. In order to remove ticks from infected positions, first ticks were anesthetized using

ethanol 70% and then they were removed using forceps with 45 angles along their mouth appendages. Removal of the whole body of ticks was performed without leaving their chelicerae on hosts' body.

In this study, a total number of 175 ticks were removed from the bodies of 8 ovis orientalis. They were stored in tubes filled with ethanol 70% and glycerin 5%. Different characters of specimen including sampling time, locality of sampling, host tissue, host type, age, gender, and name of collector were written on the tubes. After that, the specimens were transported to zoology laboratory of Ferdowsi University of Mashhad identification. The ticks were studied using a stereoscopic microscope (Olympus SZ40; Olympus; Japan) and recognized with pictorial keys [19, 27-29].




Figure 3) Map of sampling locality to investigate ticks on mouflon, Razavi Khorasan, Iran

Findings

A total number of 175 ticks were collected from wild sheep. The ticks included 78 males and 97 females. The ticks were identified as follows: Dermacentor niveus, Rhipicephalus turanicus, Dermacentor raskemensis, Hyalomma marginatum, Homaphysalis solkata, Hyalomma Egypt, and Dermacentor marginatus. This is the first record of Dermacentor marginatus of wild sheep in Iran.

Description of *Dermacentor marginatus*

The size of unfed tick is medium (4-5mm). Lateral suture is absent. Integument texture has striations. Mouthparts are anterior. Palp articles 2 are broad in Dermacentor. Basis capituli has straight lateral margins and it is rectangular dorsally. Legs have no pale rings. Legs are slender. Pulvilli are always present. Scutum is present in the female (a conscutum is present in the male). Enamel (ornamentation) is present on scutum and conscutum of most of Dermacentor, forming a white pattern. Eyes are present and usually flat to slightly convex. Festoons are present in males. Spiracular plates are large and posterior to legs 4. Spiracle goblets are scattered over the spiracle plates. Ventral plates are absent in males. Anal groove is posterior to the anus. Coxae 4 is very large. Coxae 1 has large and equal paired spurs (all features apply to both sexes except where stated; Figure 4) [19].

Figure 4) Adult tick of *Dermacentor marginatus*; A: Male, dorsal view; B: Male, ventral view; C: Female, dorsal view; D: Mouthparts, the upper one belongs to the male and the lower ones belong to the female; E: Genital aperture

Discussion and Conclusion

Ticks as ectoparasites suck blood from their hosts and carry pathogenic agents. Hard ticks including Hyalomma, Rhipicephalus, and Haemaphysalis in northwestern Iran infect livestocks [4]. So far, some species of Hyalomma, Rhipicephalus, Ixodes, Haemaphysalis, Boophilus, and Dermacentor have been reported from the Iranian domestic mammals [8]. Hard ticks Dermacentor are vectors of many pathogens including *Rickettsia rickettsi, Babesia ovis, Babesia motasi, Theilieria lesoquardi,*

Theileria recondite, and Theileria ovis and they can infect livestock [4, 30, 31]. Wild sheep, Ovis orientalis, is one of the hosts that can be infected by ticks and they are susceptible to Babesia and Theileria [32]. Ovis orientalis has been stated by IUCN as vulnerable and its conservation is very important. Furthermore, the total number of Ovis orientalis arkal estimated in ex-Soviet republics at the beginning of the 1960s until 1980s was declined sharply [20,33]. This reduction could be seen in Turkmenistan in 1980s as well [34]. In Afghanistan, O. orientalis was on the country's first protected species list in 2009, prohibiting all hunting and trading of this species within the country. The population was estimated to be at least 20,000 animals in the mid-1970s [35], of which around 15,000 were estimated to inhabit Golestan National Park alone [36], although there are no recent data in Iran. In this study, hard tick Dermacentor *marginatus* was identified in urial sheep, located in northeastern Iran, for the first time.

Previous investigations on ticks in Iran mostly focused on livestock such as cow, goat, camel, and sheep [37-40]. A few of ticks were reported from wildlife [41].

According to the importance of large mammals like urial sheep, its dangerous state in IUCN red list

(https://www.cites.org/eng/app/index.php) and its vulnerability to some pathogenic species, identification of pathogenic agents in these species is vital. The main activity periods of unfed adults are in spring and autumn, but may extend throughout the winter in more southern regions [19, 42]. This is probably the reason that Dermacentor marginatus was not recorded in the previous investigation by Razmi and Ramon [41]. Therefore, the current study suggests more and comprehensive sampling especially during spring and autumn. Moreover, identification of ecto- and endo-parasites especially ticks of urial sheep subspecies is necessary. More studies would help shed light on the distribution of *D. marginatus* as one of the most important vectors of tick-borne pathogens.

Acknowledgments: The authors would like to show their gratitude to Zarif and Mohammdian for preserving specimens and Tabatabaie for his constructive comments and Dr. Lari, and Tooki for scientific editing. In addition, the authors acknowledge Environmental Department of Razavi Khorasan Province for their cooperation in the present study.

Ethical permissions: The authors commit that the study will not be published in another journal, and all its points will be allocated to the magazine ECOPERSIA.

Conflicts of interests: The Authors state that there is no conflict of interests.

Contribution: Bahareh Jafari (First Authors' author), Original researcher/Statistical analyst (10%); Hanieh Shakeri Moghaddam (Second author), Original researcher/Statistical analyst (10%); Pooria Vaeznia (Third author), Assistant (10%); Mahboubeh Hosseinzadeh MS (Fourth Sadat author), Introduction author/Discussion author (10%); Nasrin Kayvanfar (Fifth author), Original researcher/Methodologist/Discussion author (60%) Funding/Support: This study has been conducted with a personal expense.

References

- 1- Ramezani Z, Chavshin AR, Telmadarraiy Z, Edalat H, Dabiri F, Vatandoost H, et al. Ticks (Acari: Ixodidae) of livestock and their seasonal activities, northwest of Iran. Asian Pac J Trop Dis. 2014;4(Suppl 2):S754-7.
- 2- Jongejan F, Uilenberg G. Ticks and control methods. Revue Scient et Technique. 1994;13(4):1201-26.
- 3- Garcia L. Diagnostic medical parasitology. 5^{th} Edition. Washington, D.C.: ASM Press; 2007.
- 4- Yunker CE, Keirans JE, Clifford CM, Easton ER. Dermacentor ticks (Acari: Ixodoidae: Ixodidae) of the new world: A scanning electron microscope atlas. Proc Entomol Soc Wash. 1986;88(4):609-27.
- 5- Mathison BA, Pritt BS. Laboratory identification of arthropod ectoparasites. Clin Microbiol Rev. 2014;27(1):48-67.
- 6- Rahbari S, Nabian S, Shayan P. Primary report on distribution of tick fauna in Iran. Parasitol Res. 2007;101(2):175-7.
- 7- Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Pena A, Horak IG, et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa. 2010;2528:1-28.
- 8- Nabian S, Rahbari S, Shayan P, Haddadzadeh H. Current status of tick fauna in north of Iran. Iran J Parasitol. 2007;2(1):12-7.
- 9- Masala G, Chisu V, Satta G, Socolovschi C, Raoult D, Parola P. Rickettsia slovaca from Dermacentor marginatus ticks in Sardinia, Italy. Ticks Tick Borne Dis. 2012;3(5-6):393-5.
- 10- Nosek J, Kozuch O. Replication of tick-borne encephalitis (TBE) virus in ticks Dermacentor marginatus. Angew Parasitol. 1985;26(2):97-101.
- 11- Kocianová E, Kovacova EI, Literák I. Comparison of virulence of Coxiella burnetii isolates from bovine milk and from ticks. Folia Parasitologica. 2001;48(3):235-9.
- 12- Pietrobelli M, Cancrini G, Moretti A, Tampieri MP. Animal babesiosis: An emerging zoonosis also in Italy?. Parassitologia. 2007;49(suppl 1):33-8.
- 13- Pomerantzev BI. Fauna of the USSR.: Arachnida. Vol. 4, no. 2. Ixodid ticks (Ixodidae), Issue 41. Washington, D.C.: American Institute of Biological Sciences; 1959.
- 14- Liebisch A, Rahman MS. Zum vorkommen und zur vektoriellen bedeutung der zecken dermacentor marginatus (Sulzer, 1776) und Dermacentor reticulatus (Fabricius, 1794) in Deutschland [Prevalence of the ticks

- Dermacentor marginatus (Sulzer, 1776) and Dermacentor reticulatus (Fabricius, 1794) and their importance as vectors of diseases in Germany]. Tropenmed Parasitol. 1976;27(4):393-404.
- 15- Iori A, Gabrielli S, Calderini P, Moretti A, Pietrobelli M, Tampieri MP, et al. Tick reservoirs for piroplasms in central and northern Italy. Vet Parasitol. 2010;170(3-4):291-6.
- 16- Aydın MF, Aktaş M, Dumanlı N. Tick infestations on sheep and goats in the Black Sea region of Türkiye. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2012;18(suppl A):A17-22.
- 17- Walter M, Brugger K, Rubel F. The ecological niche of Dermacentor marginatus in Germany. Parasitol Res. 2016;115(6):2165-74.
- 18- Estrada-Peña A, Jongejan F. Ticks feeding on humans: A review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol. 1999;23(9):685-715.
- 19- Martello E, Mannelli A, Ragagli Ch, Ambrogi C, Selmi M, Ceballos LA, et al. Range expansion of Ixodes ricinus to higher altitude, and co-infestation of small rodents with Dermacentor marginatus in the Northern Apennines, Italy. Tick Tick Borne Dis. 2014;5(6):970-4.
- 20- Shackleton DM. Wild sheep and goats and their relatives. Gland: IUCN; 1997.
- 21- Sapozhnikov GN. Wild sheep of Tajikistan. Dushanbe: Donish; 1976.
- 22- Valdez R, Nadler CF, Bunch TD. Evolution of wild sheep in Iran. Evolution. 1978;32(1):56-72.
- 23- Fox JL, Nurbu C, Chundawat RS. The mountain ungulates of Ladakh, India. Biol Conserv. 1991;58(2):167-90
- 24- Mallon D. The status of Ladakh urial Ovis orientalis vignei in Ladakh, India. Biol Conserv. 1983;27(4):373-81.
- 25- Mallon DP. Status and conservation of large mammals in Ladakh. Biol Conserv. 1991;56(1):101-19.
- 26- Schaller GB, Mirza ZB. The behaviour of ungulates and its relation to management. Morges: Unwin Brothers Limited; 1974.
- 27- Ioniță M, Mitrea I, Minculescu F. Morphological study on Dermacentor marginatus (Acari: Ixodidae) by environmental scanning electron microscopy. Scientia Parasitologica. 2005;1-2:111-5.
- 28- Keirans JE, Robbins RG. A world checklist of genera, subgenera, and species of ticks (Acari: Ixodida) published from 1973-1997. J Vector Ecol J Soc Vector Ecol. 1999;24(2):115-29.
- 29- Nosek J, Sixl W. Central-European ticks (Ixodoidea). Graz: Mitt Abt Zool Landesmus Joanneum; 1972.

- 30- Deiss R, Hammer C, Müller DW, Deb A, Clauss M, Hammer S. Mortality patterns in nondomestic hoofstock (Ovis orientalis laristanica, Capra aegagrus, Capra ibex nubiana) indicate species-specific differences in disease susceptibility in small ruminants. The International Conference on Diseases of Zoo and Wild Animals, 2010 May 12-15, Madrid, Spain. Zürich: University of Zurich; 2010.
- 31- Eckert J, Friedhoff K, Zahner H, Deplazes P. Lehrbuch der Parasitologie für die Tiermedizin [Textbook of parasitology for animal medicine]. Stuttgart: Georg Thieme Verlag; 2008.
- 32- Fowler M. Zoo and wild animal medicine. 8th Edition. Unknown Publisher city: Elsevier Health Sciences, Saunders; 2014.
- 33- Savinov YF, Bekenov LB. Asiatic mouflon and measures necessary for its protection: Rare mammal species of the USSR and their protection. Moscow: Nauka; 1977. [Russian]
- 34- Atamuradov HI, Fet GN, Fet V, Valdez R, Feldman WR. Biodiversity, genetic diversity, and protected areas in Turkmenistan. | Sustain For. 1999;9(1-2):73-88.
- 35- Srinivasulu Ch, Srinivasulu B. South Asian mammals, their diversity, distribution and status. 1st Edition. New York: Springer-Verlag; 2012.
- 36- Kiabi BH, Ali Ghaemi R, Jahanshahi M, Sassani A. Population status, biology and ecology of the Maral, Cervus elaphus maral, in Golestan National Park, Iran. Zool Middle East. 2004;33(1):125-38.
- 37- Telmadarraiy Z, Bahrami, A, Vatandoost H. A survey on fauna of ticks in west Azerbaijan Province, Iran. Iran J Public Health. 2004;33(4):65-9.
- 38- Ganjali M, Dabirzadeh M, Sargolzaie M. Species diversity and distribution of ticks (Acari: Ixodidae) in Zabol County, eastern Iran. J Arthropod Borne Dis. 2014;8(2):219-23.
- 39- Ghasemi Moghaddam A, Seyed MR, Rasouli M, Hosseinzade S, Darvishi MM, Rakhshanpour A, et al. Survey on cattle ticks in Nur, north of Iran. Asian Pac J Trop Biomed. 2014;4(3):209-12.
- 40- Nabian S, Rahbari S. Occurrence of soft and hard ticks on ruminants in Zagros mountainous areas of Iran. J Arthropod Borne Dis. 2008;2(1):16-20.
- 41- Razmi GR, Ramoon M. A study of tick fauna in Tandoureh National Park, Khorasan Razavi province, Iran. Acarina. 2012;20(1):62-5.
- 42- Rubel F, Brugger K, Pfeffer M, Chitimia-Dobler L, Didyk YM, Leverenz S, et al. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick Borne Dis. 2016;7(1):224-33.