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Aims Ferula L. is one of the largest genera from Apiaceae family with about 180 species, which 
grow in semi-arid rangelands. One of the challenges associated with this genus in their natural 
habitats is drought and additionally in case of Ferula haussknechtii H. Wolff ex Rech.f. species is 
allelopathy caused by companion with Artemisia persica Boiss.
Materials & Methods The present study aimed to investigate the roles of Arbuscular 
Mycorrhizal (AM) fungi in the growth, physiological characteristics, nutrient uptake, and 
survival of Ferula haussknechtii H. Wolff ex Rech. F. grown under the interactive influences 
of drought and allelopathy stress conditions. Four levels of allelopathy stress, three levels of 
drought stress, and two mycorrhizal treatments (AM and Non-AM) were applied to the pots in 
a completely randomized design with a factorial arrangement.
Findings Based on ANOVA results (p≤5%), the survival capacities of the Non-AM inoculated 
plants were significantly less than those of the AM inoculated plants for all allelopathic and 
drought stress levels. The maximum values of survival capacity were seen in AM×FC×A1 
treatment as 75% and the lowest survival capacity was observed in Non-AM×30%FC×A4 
as 29%. In general, AM fungi inoculation significantly increase the root:shoot ratios and 
mycorrhizal dependency values (p≤5%). Based on ANOVA results, the highest and lowest values 
for root:shoot ratios were observed as 0.71 and 0.27 for Non-AM×30%FC×A4 and AM×FC×A1 
treatments, respectively. Drought stress and allelopathic conditions have a destructive effect 
on total chlorophyll content. The maximum and minimum proline content (0.21 and 0.04) was 
observed in treatment of AM incubated with highest level of drought and allelopathic and in 
Non-AM incubated with lowest level of drought and allelopathic, respectively.
Conclusions AM fungi inoculation had a significant positive effect on total nitrogen and 
phosphorus content in plant tissues but a significant negative effect on total nitrogen and 
phosphorus content was observed in drought and allelopathic stress treatments.
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Introduction	
It	is	well	known	that	drought	stress	is	one	of	the	
most	influential	abiotic	factors	on	the	vegetation	
survival	 in	 arid	 and	 semi‐arid	 areas.	 In	 these	
areas,	the	only	native	and	tolerant	plant	species	
can	grow	[1].	This	stress	affects	the	growth	and	
production	 of	 plants	 and	 causes	 several	
biochemical	 and	 physiological	 changes	 [2,	 3].	
Drought	 stress	 reduces	 the	 nutrient	 uptake	 of	
the	roots	and	finally	leads	to	the	plant’s	death	[4].	
Hence,	 soil	 aridity	 stress	 could	 diminish	 the	
potential	 of	 rangeland	 production	 [5].	 Under	
drought	 stress,	 nutrient	 uptake	 and	 plant	
growth	 can	 be	 highly	 influenced	 by	 using	
biofertilizers.	
Allelopathy	may	have	direct	or	indirect	impacts	
on	the	germination,	growth,	and	evolution	of	the	
same	 species	 or	 other	 species	 [6].	 Allelopathic	
materials	 inhibit	 plant	 growth	 [7],	 affect	 the	
activity	of	microorganisms,	limit	processes	such	
as	nitrogen	 fixation	by	 symbiotic	bacteria,	 and	
reduce	nitrification	[8].	The	allelopathic	effects	of	
Artemisia	 species	on	various	plants	have	 been	
studied	in	other	research	[9].	This	biotic	stress	is	
one	 of	 the	 reasons	 for	 the	 lack	 of	 growth	 and	
establishment	 of	 plants	 in	 arid	 and	 semiarid	
regions	[10].	
As	a	result	of	fungi	activities,	the	application	of	
arbuscular	 mycorrhiza	 fungus	 (AM	 fungi)	 can	
increase	 the	 quantitative	 and	 qualitative	
properties	of	plants.	As	fungi	grow,	nutrients	are	
transferred	from	the	tissues	of	fungi	to	the	soil	
and	 plant.	 Thus,	 the	 inoculation	 of	 AM	 fungi	
could	 certainly	 effect	 some	 changes	 in	 the	 soil	
and	plant	 systems.	AM	fungi	 can	 spur	 the	 root	
system	of	the	plant,	making	the	plant	use	a	larger	
volume	of	soil	and	gain	access	to	soil	micropores	
[11].	 The	 acquisition	 of	 nutrients	 in	 AM	 fungi	
inoculation	can	increase	nutrition	uptake,	which	
in	 turn	 increases	 the	 dry	 weights	 and	 plant	
growth	 [12,	 13]	 and	 increase	 the	 symbiotic	
efficiency	 [14].	 The	 enhancement	 of	 total	
nutrients	 content	 of	 plant	 tissues	 after	 the	
inoculation	of	AM	fungi	has	demonstrated	by	the	
majority	of	researches	[15,	16].	
Ferula	as	a	genus	of	perennial	herbs	belongs	to	
the	 family	 Apiaceae,	 includes	 many	 species	
(about	180	species)	that	is	typical	of	dry	areas	of	
the	 Old	 World.	 In	 Iran,	 there	 are	 around	 30	
species,	 15	 of	 them	 are	 endemic	 [17].	 The	 large	
genus	 Ferula	 commonly	 used	 in	 traditional	
medicine	 and	 it	 is	 a	 promising	 source	 of	
biologically	active	 ingredients.	Plants	 from	this	
genus	 are	 a	 source	 of	 perfumes	 (F.	 gummosa	

Boiss.),	 spices	 (F.	 assa‐foetida	 L.)	 resins	 (F.	
sumbul	Willd.)	 and	 food	 (F.	 communis	 L.),	 but	
this	 rich	 ethnopharmacology	 also	 includes	
poisoning,	as	exemplified	by	ferulosis	[18].	Up	to	
now,	no	scientific	studies	have	been	done	on	the	
ecological	properties	of	F.	haussknechtii.	Ferula	
haussknechtii	H.	 Wolff	 ex	 Rech.	 F.	 is	 native	 in	
semi‐arid	 rangelands	of	 Iran.	Artemisia	persica	
Boiss	which	 grows	 in	mountainous	 rangelands	
may	have	allelopathic	effects	on	F.	haussknechtii.	
Objective:	 In	order	to	optimize	the	use	of	arid	
and	semi‐arid	lands,	the	objectives	of	this	study	
was	 to	 assess	 the	 effects	 of	 AM	 fungi	 on	 the	
survival,	 physiological	 traits,	 nutrient	 uptake,	
and	growth	of	F.	haussknechtii	grown	under	the	
interactive	 effects	 of	 allelopathy	 and	 drought	
stress	conditions.	
	
Materials	and	Methods	
Measurement	 procedures:	 This	 experimental	
study	 was	 conducted	 based	 on	 a	 factorial	
arrangement	 in	a	 completely	 randomized	design	
(with	4	replications)	in	the	greenhouse	of	Malayer	
University.	The	soil	was	provided	as	a	mixture	of	
sand,	 loam,	and	clay,	 in	2:1:1	(V:V:V)	ratio.	Then	
the	mixture	was	air‐dried,	sieved	through	a	2mm	
screen,	 and	 steam‐sterilized	 (on	 two	 successive	
days)	before	inoculation	and	planting.	
As	allelopathy	is	often	a	root	to	root	interaction	[9],	
the	root	of	A.	persica	was	obtained	from	a	natural	
rangeland,	 and	 then	was	 washed,	 air‐dried,	 and	
grinded	to	produce	a	uniform	powder.	The	ratio	of	
0	(as	control),	1,	5,	and	10%	w/w	of	this	powder	
was	mixed	with	 the	soil	 (respectively	defined	as	
A1,	 A2,	 A3,	 and	 A4).	 The	 soil	 moisture	 was	
maintained	in	Field	Capacity	(FC)	for	two	months	
to	complete	the	powder	decomposition.	After	that,	
two	mycorrhizal	treatments	(inoculated	with	AM	
fungi;	AM	and	without	AM	fungi	inoculation;	Non‐
AM)	and	three	drought	stress	treatments	(FC;	as	
control,	60%	FC,	and	30%	FC)	were	applied	to	the	
pots.	By	the	use	of	a	Clevenger	type	apparatus,	the	
root	dry	material	of	A.	persica	(200g)	was	distilled	
for	 3	 hours.	 The	 essential	 oil	 constituents	 of	 A.	
persica	roots	were	identified	based	on	the	method	
described	by	Rustaiee	et	al.	[19].	
Mycorrhizal	 inoculation	was	prepared	according	
to	the	method	described	by	Al‐Karaki	et	al.	[20].	The	
seeds	of	the	F.	haussknechtii	were	obtained	from	
the	natural	rangelands	(33°	52'	41"	N,	48°	28'	9"	E)	
of	 Aleshtar	 city,	 Lorestan	 Province,	 Iran.	 The	
gathered	 seeds	 were	 homogenized	 and	 their	
dormancy	was	evaluated	by	the	germination	test.	
After	seed	dormancy	had	detected,	the	seeds	were	
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put	in	30ml	of	GA3	solution	based	on	the	doses	and	
immersion	 times	 described	 by	 Fernandez	 et	 al.	
[21].The	 treated	 seeds	 of	 F.	 haussknechtii	 were	
planted	in	5kg	plastic	pots.	As	F.	haussknechtii	is	a	
slow‐growing	plant,	 to	 obtain	 enough	 volume	 of	
plant	biomass,	200	plants	per	pot	were	planted	at	
a	temperature	ranging	from	12	to	28°C	and	a	12h	
photoperiod	during	the	study.	
Thirty	days	after	plant	transplantation,	seedlings	
of	each	pot	were	thinned	down	to	100	seedlings	
and	the	soil	was	saturated	with	water	 to	 full	FC.	
Then,	 the	 plants	 were	 either	 maintained	 under	
well‐watered	(control)	conditions	or	put	to	water	
deficit	 stress	 by	 inhibiting	 water	 until	 the	 soil	
reached	a	water	content	of	60%	of	FC,	and	30%	FC.	
At	the	end	of	the	study,	the	plant	survival	capacity	
(%)	was	 determined	 by	 using	 Equation	 1	 [22].	 A	
plant	 was	 considered	 dead	 if	 it	 showed	 the	
necrosis	of	all	leaves,	stems,	and	roots.	
	
Survival	capacity	ሺ%ሻ ൌ
୘୦ୣ	୬୳୫ୠୣ୰	୭୤	ୱ୳୰୴୧୴ୣୢ	୮୪ୟ୬୲ୱ

୒୳୫ୠୣ୰	୭୤	୲୭୲ୟ୪	୮୪ୟ୬୲ୱ
ൈ 100																																			(1)	

	

The	root	to	shoot	ratio	was	calculated	to	measure	
the	growth	of	plants.	Hence,	at	the	end	of	the	study,	
the	soils	were	washed	with	water	and	plant	shoots	
and	 roots	were	 separated.	Afterward,	 shoot	 and	
root	dry	weights	were	determined	in	gr	after	they	
were	oven‐dried	at	70°C	for	48	hours.	
Response	 to	 mycorrhizal	 colonization	 or	
mycorrhizal	 dependency	 (MD)	 percentage	 for	
each	treatment	was	determined	by	Equation	2	[23].	
	
MD	ሺ%ሻ ൌ	
ୈ୰୷	୵ୣ୧୥୦୲	୭୤	୫୷ୡ୭୰୰୦୧୸ୟ୪	୮୪ୟ୬୲ିୟ୴ୣ୰ୟ୥ୣ	ୢ୰୷	୵ୣ୧୥୦୲	୭୤	୬୭୬୧୬ୡ୳୪ୟ୲ୣୢ	୮୪ୟ୬୲

ୈ୰୷	୵ୣ୧୥୦୲	୭୤	mycorrhizal	୮୪ୟ୬୲

	×100																																																																																					(2)	
	
A	spectrophotometer	was	used	to	determine	the	
chlorophyll	 contents	 of	 the	 plants	 [24]	 while	 the	
method	proposed	by	Bates	et	al.	[25]	was	chosen	to	
determine	 the	 proline	 contents.	 Total	 nitrogen	
contents	(TNC)	were	determined	using	Kjeldahl’s	
method	[26],	and	Total	Phosphorus	(TP)	contents	of	
plant	tissues	were	estimated	by	vanadomolybdate	
method	[27].	
Statistical	 analysis:	 The	 survival	 capacity,	
shoot	 height,	 root	 length,	 Root:	 shoot	 ratio,	
Mycorrhizal	 dependency,	 total	 chlorophyll,	
proline,	nitrogen,	and	phosphorus	contents	are	
the	 studied	 parameters	 in	 this	 research.	 The	
statistical	 analyses	were	performed	by	ANOVA	
using	SAS	10	software.	The	differences	between	
means	were	tested	for	significance	by	Duncan’s	
multiple	range	test	at	p≤0.05.	

Findings	
The	 essential	 oil	 constituents	 of	 A.	 persica	
roots:	The	major	constituents	of	the	essential	oil	
of	A.	persica	were	α‐pinene	(7.66%),	1,8‐cineole	
(6.2%),	trans‐pinocarveol	(10.1%),	pinocarvone	
(8.3%),	artedouglasia	oxide	(C,	D,	and	B;	21.3%),	
and	laciniata	furanone	(E,	F,	G,	H;	16.3%).	
The	 survival	 capacity:	 Survival	 capacity	
significantly	differed	across	various	 interactive	
treatments	 of	 AM	 fungi,	 drought	 stress,	 and	
allelopathic	conditions	in	F.	haussknechtii.	Based	
on	 ANOVA	 results,	 the	 maximum	 values	 of	
survival	 capacity	 were	 seen	 in	 AM×FC×A1	
treatment	 as	 75%	 and	 the	 lowest	 survival	
capacity	 was	 observed	 in	 Non‐AM×30%FC×A4	
as	 29%	 (Figure	 1).	 Generally,	 the	 survival	
capacity	 percentage	 reduced	 under	 drought	
stress	 and	 allelopathic	 conditions,	 but	 the	 AM	
fungi	 additions	 increased	 the	 survival	 capacity	
values.	 The	 Non‐AM	 inoculated	 plants	 had	
remarkably	 lower	 survival	 capacities	 than	 AM	
inoculated	plants	at	all	drought	and	allelopathic	
stress	levels	(Diagram	1).	
The	 growth	 rate:	 The	 shoot	 length	 of	 F.	
haussknechtii	was	seen	at	its	maximum	(21.1cm)	
and	 its	 minimum	 (5.5cm)	 at	 AM×FC×A1	 and	
Non‐AM×30%FC×A4	 treatments,	 respectively.	
There	 were	 not	 any	 remarkable	 differences	
between	 shoot	 height	 values	 at	 AM×FC×A1,	
AM×FC×A2,	 and	 AM×FC×A3	 treatments.	 In	
addition,	 no	 significant	 differences	 were	
observed	 in	 the	 shoot	 height	 under	 Non‐
AM×FC×A2,	 Non‐AM×FC×A3,	 and	 Non‐
AM×FC×A4	treatments	(Table	1).	
However,	 the	 root	 lengths	 of	 plants	 differed	
across	the	various	treatments.	As	demonstrated	
in	 Table	 1,	 the	 maximum	 and	 minimum	 root	
length	 values	 were	 seen	 in	 AM×60%FC×A1	
(15.3cm)	 and	 Non‐AM×30%FC×A4	 (7cm)	
treatments,	respectively.	The	root	length	values	
demonstrated	no	significant	differences	in	Non‐
AM×FC×A2,	 Non‐AM×FC×A3,	 and	 Non‐
AM×FC×A4	 treatments.	 Based	 on	 ANOVA	
results,	 the	maximum	and	minimum	values	 for	
root:	 shoot	 ratios	 were	 observed	 as	 0.71	 and	
0.27	 for	 Non‐AM×30%FC×A4	 and	 AM×FC×A1	
treatments,	respectively.	In	general,	the	results	
showed	 that	 root:shoot	 ratios	 and	 MD	 values	
significantly	increased	under	drought	stress	and	
allelopathic	conditions.	
The	total	chlorophyll,	proline,	nitrogen,	and	
phosphorus	 contents:	 The	 total	 chlorophyll	
content	of	F.	haussknechtii	differed	significantly	
in	 different	 studied	 treatments.	 The	 highest	
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content	of	total	chlorophyll	was	seen	as	9.4mg	g‐
1in	 AM×FC×A1	 treatment	 and	 the	 lowest	 was	
recorded	 as	 3.6mg	 g‐1	 in	 Non‐AM×30%FC×A4	
treatment	 (Table	 2).	 In	 general,	 the	 results	
showed	 that	 drought	 stress	 and	 allelopathic	
conditions	 have	 a	 destructive	 effect	 on	 total	
chlorophyll	 content	 of	 F.	 haussknechtii.	
Compared	with	the	control,	the	total	chlorophyll	
content	 of	 F.	 haussknechtii	 significantly	
increased	in	AM	fungi	inoculated	treatments.	
Generally,	 the	 interactive	 effects	 of	 AM	 fungi	
application,	drought,	and	allelopathic	stress	had	
a	 significant	 effect	 on	 increasing	 the	 proline	
content.	It	was	observed	that	in	AM×30%FC×A4	
treatment,	the	presence	of	proline	content	rose	
to	 its	 highest	 level	 (0.21µmol	 gFW‐1)	 while		
the	lowest	level	was	observed	in	Non‐

AM×FC×A1(0.04µmol	gFW‐1)	treatments.	
Compared	 with	 the	 control,	 a	 significant	
negative	effect	on	TNC	was	seen	in	drought	and	
allelopathic	 stress	 treatments.	 Moreover,	 a	
significant	 positive	 effect	 of	 the	 AM	 fungi	
inoculation	was	observed	on	the	 total	nitrogen	
content	(TNC)	in	plant	tissues	of	F.	haussknechtii.	
The	maximum	values	of	TNC	in	F.	haussknechtii	
were	seen	in	AM×FC×A1	(4.1%)	and	the	lowest	
value	 was	 reported	 as	 1.1%	 in	 Non‐
AM×30%FC×A4	 treatment	 (Table	 2).	 A	 similar	
trend	was	seen	in	the	change	of	total	Phosphorus	
Content	 (TP).	 The	 highest	 level	 of	 TP	 was	
recorded	 as	 3.7g	 kg‐1	 in	 AM×FC×A1	 treatment	
and	the	minimum	content	of	TP	was	reported	as	
0.8g	 kg‐1	 in	 Non‐AM×30%FC×A4	 treatment	
(Table	2).	

	

	
Diagram	1)	 The	 effect	 of	 Arbuscular	 Mycorrhizal	 fungi	 on	 the	 survival	 capacity	 of	 F.	 haussknechtii	 grown	 under	 the	
interactive	effects	of	allelopathy	and	drought	stress	conditions.	Different	letters	on	the	bar	graphs	represent	a	significant	
difference	at	p<0.05 
	
Table	1)	The	effect	of	Arbuscular	Mycorrhizal	fungi	on	root	length,	shoot	height,	mycorrhizal	dependency,	and	root:shoot	
ratio	of	F.	haussknechtii	grown	under	the	interactive	effects	of	allelopathy	and	drought	stress	conditions	
Treatments	 Shoot	height	(cm)	 Root	length	(cm)	 Root:	shoot	ratio	 Mycorrhizal	dependency	(MD)	
AM×FC×A1	 21.1±0.90	a*	 10.5±0.41	gh	 0.27±0.02	f	 21.07±1.13	e	Non‐AM×FC×A1	 16.6±0.72	cd	 8.7±0.26	ij	 0.27±0.02	f	
AM×60%FC×A2	 15.5±0.11	de	 14.2±0.19	b	 0.34±0.03	def	 31.73±2.01	cd	Non‐AM×60%FC×A2	 9.9±0.09	ij	 11±0.17	ef	 0.43±0.02	bcd	
AM×30%FC×A3	 11.1±0.10	hi	 11.9±0.13	de	 0.41±0.02	cde	 40.13±2.07	a	Non‐AM×30%FC×A3	 5.5±0.02	l	 7.2±0.13	k	 0.71±0.04	a	
AM×FC×A4	 17.7±0.62	bc	 9±0.11	ij	 0.28±0.02	f	 23.79±1.09	e	Non‐AM×FC×A4	 13.3±0.41	fg	 8.4±0.08	ij	 0.30±0.01	ef	
AM×60%FC×A1	 17.7±0.17	bc	 15.3±0.12	a	 0.32±0.03	ef	 28.33±1.06	cd	Non‐AM×60%FC×A1	 12.2±0.11	gh	 11.6±0.19	ef	 0.37±0.01	def	
AM×30%FC×A2	 11.1±0.06	hi	 12.5±0.17	de	 0.41±0.02	cde	 39.49±1.12	a	Non‐AM×30%FC×A2	 5.5±0.03	l	 7.2±0.13	k	 0.70±0.06	a	
AM×FC×A3	 19.9±0.12	ab	 9.3±0.18	hi	 0.27±0.02	f	 30.52±2.03	cd	Non‐AM×FC×A3	 13.3±0.08	fg	 8.4±0.14	ij	 0.30±0.01	ef	
AM×60%FC×A4	 14.4±0.09	ef	 13.1±0.10	cd	 0.35±0.03	def	 33.51±1.09	bc	Non‐AM×60%FC×A4	 8.8±0.03	jk	 10.7±0.17	fg	 0.47±0.01	bc	
AM×30%FC×A1	 14.4±0.13	ef	 12.8±0.18	cd	 0.33±0.02	def	 39.06±0.92	a	Non‐AM×30%FC×A1	 7.7±0.03	k	 8.3±0.16	j	 0.52±0.03	b	
AM×FC×A2	 19.9±0.11	ab	 10±0.14	gh	 0.27±0.02	f	 26.10±1.08	de	Non‐AM×FC×A2	 14.4±0.01	ef	 8.5±0.16	ij	 0.28±0.01	f	
AM×60%FC×A3	 15.5±0.12	de	 13.7±0.18	bc	 0.34±0.03	def	 37.20±2.01	ab	Non‐AM×60%FC×A3	 8.8±0.03	jk	 10.8±0.11	f	 0.48±0.04	bc	
AM×30%FC×A4	 10.3±0.05	i	 11.8±0.17	de	 0.44±0.02	bcd	 37.16±1.03	ab	Non‐AM×30%FC×A4	 5.5±0.02	l	 7±0.16	k	 0.73±0.08	a	
*Different	letters	on	the	same	column	show	a	significant	difference	at	p<0.05.	
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Table	2)	The	effect	of	Arbuscular	Mycorrhizal	fungi	on	chlorophyll,	proline,	total	nitrogen,	and	total	phosphorus	contents	
of	F.	haussknechtii	grown	under	the	interactive	effects	of	allelopathy	and	drought	stress	conditions	

Treatments	 Chlorophyll	content	(mg	g‐1)	 Proline	(µmol	gFW‐1)	 TNC	(%)	 TP	(g	kg‐1)	
AM×FC×A1	 9.4±0.34	a*	 0.11±0.02	def	 4.1±0.12	a	 3.7±0.11	a	
Non‐AM×FC×A1	 6.9±0.12	e	 0.04±0.01	g	 2.8±0.08	cd	 2.4±0.09	cd	
AM×60%FC×A2	 9.2±0.23	a	 0.14±0.03	bcde	 3.8±0.07	ab	 3.6±0.12	a	
Non‐AM×60%FC×A2	 6.3±0.13	f	 0.16±0.03	abcd	 2.6±0.08	de	 2.1±0.12	cde	
AM×30%FC×A3	 8.8±0.15	b	 0.20±0.04	a	 3.7±0.06	abc	 3.4±0.21	ab	
Non‐AM×30%FC×A3	 5.9±0.09	fg	 0.19±0.03	ab	 2.5±0.03	def	 1.9±0.12	def	
AM×FC×A4	 8.4±0.11	bc	 0.13±0.02	cde	 3.5±0.04	bc	 3.2±0.18	abc	
Non‐AM×FC×A4	 5.5±0.08	gh	 0.11±0.02	def	 2.2±0.11	efg	 1.7±0.07	ef	
AM×60%FC×A1	 8.1±0.11	c	 0.13±0.02	cde	 3.4±0.10	bc	 3±0.60	abc	
Non‐AM×60%FC×A1	 4.6±0.07	l	 0.16±0.03	abcd	 1.7±0.08	gh	 1.3±0.81	fg	
AM×30%FC×A2	 7.6±0.08	d	 0.19±0.02	ab	 3.2±0.12	c	 2.8±0.21	bc	
Non‐AM×30%FC×A2	 4.5±0.04	l	 0.18±	0.03abc	 1.7±0.06	gh	 1.2±0.03	fg	
AM×FC×A3	 7.2±0.09	e	 0.13±0.01	cde	 3±0.09	cd	 2.6±0.06	bcd	
Non‐AM×FC×A3	 4.4±0.02	l	 0.09±0.01	efg	 1.5±0.03	hi	 1.2±0.03	fg	
AM×60%FC×A4	 6.9±0.12	e	 0.15±0.02	bcd	 2.9±0.12	cd	 2.4±0.04	cd	
Non‐AM×60%FC×A4	 4.1±0.06	m	 0.17±0.03	abcd	 1.3±0.06	i	 1±0.02	fg	
AM×30%FC×A1	 5.3±0.09	hi	 0.19±0.02	ab	 2.1±0.03	efg	 1.6±0.03	ef	
Non‐AM×30%FC×A1	 3.9±0.04	m	 0.17±0.01	abcd	 1.3±0.09	i	 0.9±0.01	fg	
AM×FC×A2	 5.1±0.05	ij	 0.12±0.01	de	 1.9±0.04	fgh	 1.5±0.02	ef	
Non‐AM×FC×A2	 3.8±0.03	mn	 0.06±0.01	fg	 1.3±0.02	i	 0.9±0.01	g	
AM×60%FC×A3	 4.9±0.02	jk	 0.15±0.02	bcd	 1.9±0.09	fgh	 1.4±0.03	fg	
Non‐AM×60%FC×A3	 3.7±0.03	n	 0.16±0.03	abcd	 1.2±0.06	i	 0.8±0.01	g	
AM×30%FC×A4	 4.7±0.07	kl	 0.21±0.02	a	 1.8±0.11	gh	 1.3±0.02	fg	
Non‐AM×30%FC×A4	 3.6±0.06	n	 0.19±0.03	ab	 1.1±0.04	i	 0.8±0.01	g	
*Different	letters	on	the	same	column	indicate	a	significant	difference	at	p<0.05.	

	
Discussion	
Biotic	 and	 abiotic	 stresses	 like	 drought	 and	
allelopathy	have	negative	impacts	on	the	plants’	
survival	 capacity.	 In	drought	 stress	 conditions,	
the	secretion	of	secondary	metabolites	of	plants	
with	 allelochemical	 materials	 for	 chemical	
protection	increases	and	the	role	of	allelopathy	
interference	 becomes	 more	 evident	 [28].	 Based	
on	the	results	of	this	study,	AM	fungi	inoculation	
enhanced	 drought	 and	 allelopathic	 stress	
tolerance	 in	 F.	 haussknechtii.	 The	 survival	
capacities	 of	 Non‐AM	 inoculated	 plants	 were	
significantly	 less	 than	 those	 of	 AM	 inoculated	
plants	 at	 all	 drought	 and	 allelopathic	 stress	
levels.	The	development	of	hyphae	in	the	soil	can	
modify	and	enhance	the	water	relations	of	host	
plants	 [29].	 Compared	 with	 60%FC,	 the	
alleviation	 effect	 of	 AM	 fungi	 reduced	 under	
30%FC	 drought	 treatments	 (Diagram	 1).	 The	
allelopathic	 properties	 of	 A.	 persica	 became	
more	 evident	 under	 dry	 conditions.	 These	
results	 are	 in	 agreement	 with	 the	 study	 of	
Escudero	 et	 al.	 who	 found	 allelopathic	
properties	 of	 A.	 persica	 as	 biotic	 interference	
became	more	evident	under	drought	stress	[30].	
The	 shoot	height	 of	F.	haussknechtii	 decreased	
significantly	with	an	increase	in	the	root	ratio	of	
A.	 persica	 (Table	 1).	 There	 are	 similar	 reports	
about	 the	 suppuration	 of	 plants	 height	 under	
allelopathic	 conditions	 [31].	 Root	 length	 of	 F.	

haussknechtii	was	significantly	decreased	as	the	
root	ratio	of	A.	persica	increased.	These	findings	
are	in	accord	with	the	report	of	Afzal	et	al.	who	
stated	that	the	root	growth	of	Vigna	radiata	and	
Phaseolus	 vulgaris	 were	 decreased	 remarkably	
under	 allelopathic	 conditions	 [32].	 Shoot	 height	
reduction	under	allelopathic	conditions	may	be	
caused	 by	 root	 length	 reduction	 [33].	 In	 this	
regard,	 the	 root	 growth	 reduction	 under	
allelopathic	 stress	 may	 be	 caused	 by	 mitotic	
activity	reduction	of	root	cells	[34].	On	the	other	
hand,	 photosynthesis	 performance	 [35],	 growth	
hormones	 activity	 [36],	 protein	 synthesis,	 and	
water	 relations	 [37]	may	 alter	 negatively	 under	
allelopathic	stress.	
	

Based	on	ANOVA	results,	root:shoot	ratios	of	F.	
haussknechtii	 enhanced	 under	 drought	 and	
allelopathy	stress.	It	seems	that	under	biotic	and	
abiotic	 stresses,	 plants	 allocated	 more	
photosynthate	 to	 the	 roots	 and	 the	 root:shoot	
ratios	were	enhanced	[38].	
	

Under	 drought	 and	 allelopathy	 stress,	
mycorrhizal	 dependency	 increased	 in	 the	 AM‐
inoculated	 plants.	 It	 is	well	 known	 that	 plants	
with	AM	 fungi	 symbiosis	 tolerate	 stress	better	
than	 Non‐AM	 plants	 [39].	 In	 general,	 the	 MD	
values	had	a	significant	increase	under	drought	
stress	and	allelopathic	conditions.	Kumar	et	al.	
have	 reported	 similar	 results	 and	 have	 stated	
that	MD	values	significantly	increased	under	
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stressful	conditions	[40].	
The	 various	 drought	 stress	 and	 allelopathic	
conditions	have	a	destructive	effect	on	the	total	
chlorophyll	content	of	F.	haussknechtii	(Table	2).	
Earlier,	 a	 significant	 decrease	 in	 chlorophyll	
content	had	been	reported	by	drought	stress	in	
sunflower	 varieties	 [18].	 The	 decrease	 of	
chlorophyll	 content	 under	 drought	 stress	may	
be	due	to	damage	to	chloroplasts	done	by	active	
oxygen	 species	 [41].	 On	 the	 other	 hand,	 the	
reduction	 in	 the	 total	 chlorophyll	 content	 at	
different	allelopathic	levels	might	be	due	to	the	
presence	of	allele	chemicals.	Compared	with	the	
control,	 the	 total	 chlorophyll	 content	 of	 F.	
haussknechtii	significantly	increased	in	AM	fungi	
inoculated	 treatments.	 An	 increase	 in	 the	
chlorophyll	synthesis	and,	in	turn,	an	increase	in	
the	 photosynthesis	 rate	 under	 mycorrhiza	
treatment	 has	 been	 reported	 [42].	 The	 use	 of	
biofertilizers	 such	 as	 AM	 fungi	 increases	 the	
amount	of	nutritional	materials	available	to	the	
plant	such	as	nitrogen	and	as	a	result	increases	
the	overall	chlorophyll	content.	
According	 to	 the	 results,	 in	 AM×30%FC×A4	
treatment,	the	presence	of	proline	content	rose	
to	 its	highest	 level	 (0.21µmol	gFW‐1)	while	 the	
lowest	 level	 was	 observed	 in	 Non‐AM×FC×A1	
(0.04µmol	 gFW‐1)	 treatments.	 In	 biotic	 and	
abiotic	 stress	 conditions,	 plants	 accumulate	
osmolytes.	 As	 a	 protein	 amino	 acid	 osmolyte,	
proline	 can	 protect	 plants	 in	 stressful	
conditions.	Plants	inoculated	with	AM	fungi	can	
produce	and	accumulate	proline	in	their	tissues	
[43].	 Thus,	 the	 better	 growth	 of	 AM	 fungi	
inoculated	plants	(AM)	compared	to	that	of	Non‐
AM	 fungi	 plants	 in	 a	 drought	 and	 allelopathic	
stresses	 may	 be	 due	 to	 the	 increase	 of	 some	
osmolytes	 as	 proline.	 In	 agreement	 with	 the	
present	 investigation,	 Garg	 and	 Manchanda	
reported	 the	 accumulation	 of	 proline	 in	
mycorrhiza‐stressed	plants	[44].	
The	 TNC	 (%)	 and	 TP	 (g	 kg‐1)	 reduced	
significantly	 under	 the	 interactive	 effects	 of	
drought	and	allelopathic	stresses.	In	agreement	
with	this	investigation,	there	are	reports	that	the	
uptake	 of	 nutrients	 [45]	 and	 plant	 growth	 [46]	
reduced	 under	 drought	 stress	 and	 allelopathic	
stress	due	to	the	exertion	of	allelochemicals	[47]	
prevents	the	minerals	uptake	by	roots	[48].	On	the	
other	 hand,	 as	 a	 biological	 strategy,	 AM	 fungi	
inoculation	 helped	 plants	 to	 alleviate	 the	
adverse	 interactive	 effects	 of	 drought	 and	
allelopathic	 stresses	 and	 enhanced	 the	 uptake	
capacity	of	plants	absorbing	more	essential	

nutrients	such	as	N	and	P.	
The	 limitations	 of	 this	 research	 include	 plant	
species	 identification	 and	 seed	 collection	 of	
Ferula	haussknechtii	H.	
	
Conclusion	
In	conclusion,	the	damage	caused	by	allelopathy	
and	drought	stress	was	obviously	alleviated	by	
the	use	of	AM	fungi.	The	application	of	AM	fungi	
increased	 plant	 root	 symbiosis	 and,	 in	 turn,	
plant	 nutrient	 and	 water	 uptake,	 and	 finally	
improved	plant	growth.	All	the	quantitative	and	
qualitative	properties	of	F.	haussknechtii	grown	
under	 the	 interactive	effects	of	allelopathy	and	
drought	stress	conditions	were	 increased	after	
using	AM	fungi.	Therefore,	the	negative	effects	of	
allelopathy	as	a	biotic	stress,	and	drought	as	an	
abiotic	 stress,	 were	 alleviated	 by	 AM	 fungi	
addition.	The	growth	and	spread	of	plants	in	arid	
and	 semi‐arid	 rangelands	 follow	 a	 patch	 and	
inter‐patch	 pattern.	 The	 required	 amounts	 of	
biofertilizers	such	as	AM	fungi	for	the	alleviation	
of	 drought	 and	 allelopathic	 stresses	 are	much	
less	 than	 those	 of	 agricultural	 lands	 because	
they	are	only	used	in	the	patch	areas.	Hence,	AM	
fungi	addition	may	be	an	economical	method	for	
alleviating	abiotic	and	biotic	stresses	in	arid	and	
semi‐arid	 rangelands.	 However,	 further	 field	
studies	 must	 be	 conducted	 in	 natural	
rangelands.	
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