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Aims Artificial Neural Networks (ANNs) are powerful tools that are commonly used today
in prediction deposit-related sciences. The research aimed at predicting various five links of
heavy metals using the properties of deposit.

Materials & Methods 180 samples of surface sediments were taken from the Chahnimeh
reservoir and they were transferred to lab under standard conditions. Total Zinc concentration,
deposit properties and Zinc five bonds with deposit were measured. Efficiency of the ANN and
Multi-Layer Perceptron (MLP) model were evaluated to estimate the Zn bonds following the
measurement of parameters in the laboratory.

Findings Five links were predicted with the aid of ANNs and MLP model. Deposit properties
and total concentrations of heavy metals were considered as input and each of bonds were
considered as output

Conclusion Ultimately, the ANN showed good performance in the predicting the determination
of coefficients or R2 (0.98 to 1) and root mean square error or RMSE (0.7 to 0.01).
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1-Introduction

Sediments are one of the main components of
water reservoirs in which heavy metals can
exist [ 2. Accumulation of heavy metals in
environments such as soil and sediments can be
a potential danger for human health and life [3
4],

These metals can enter food chains [5 61 and
negatively  affect the ecosystem and
environmental health [79. Presence of heavy
metals in sediments is caused by erosion of soil
or stone or human activities [10-13. Today,
measurement of the total concentration of
heavy metals is a poor indicative of the
environmental status, because metals make
various bonds with sediments. In addition, the
mobility and availability of metals are different
given their physiochemical forms [1 11 14 15]
Sequential extraction processes suggested by
Tessier et al. 1151 in the form of 5-stage
processes are widely used for the prediction of
these forms. They include exchangeable,
carbonate-linked, iron manganese-linked and
carbonate-linked bonds together with the
remaining part. Meanwhile, artificial
intelligence methods have a high potential in
the prediction of these forms [2.16,17],

Artificial neural networks (ANNs) are
computer-based computational tools with a
similar performance to biological processes of
the human brain. These models are increasingly
applied in different sciences and technologies
[18-20], Unlike most models that are based on
assuming linearity between responses which
deal with the prediction of variables and their
normal distribution, ANNs models are able to
map nonlinear connections based on variables
in an ecological environment [21-23],

In a neural network, learning means the
determination of optimal values of weights and
other parameters such as the bias and the slope
of stimulation function to have the maximum
efficiency [24]. In functional estimation targets in
which the neural network is in charge of
establishing a connection between the groups
of input and output data, the network efficiency
is specified by defining the error between the
real output and the network output for the set
of training and test data. In the network
learning, the aim is the minimization of this
error by proper variation of weights and other
parameters of the network. A common method
widely used in this regard is called feed forward
neural networks (FNN) by the training

algorithm of Levenberg-Marquardt (LM). This
method has the highest efficiency compared
with other neural network methods, thus it was
chosen for this research. In case there are
sufficient numbers of layers and neurons in the
layers of these networks, they are able to
estimate every nonlinear function with a
desirable accuracy [251. Perceptron networks
benefit from the learning rule of post-emission
error, which is a generalized algorithm of
normal least squares.

So far, various researchers have successfully
used ANNs for environmental studies for
various purposes [26-31],

Mohammadi et al. 821 in the similar work
developed, the neural-fuzzy model (Subtractive
clustering), for the prediction of lead bonds in
Chahnimeh 1, Zabol, was able to account for
over 99% of lead bonds in the sediments;
considering statistical criteria of root mean
squares error (RMSE; 0.0337-0.0813) and
determination coefficient or Rz (0.92-0.99), this
model showed good performance with regard
to prediction.

2- Objective

Even though different studies have been
conducted for modeling and predicting heavy
metals present in sediment with the aid of
different methods, there are still numerous
unresolved problems in this field, including the
selection of the best combination of input
variables of the model for accurate prediction
of Zinc bonds in sediments of water reservoirs.
For instance which variables are suitable for
modeling as input; and what percentage of
observational data is required for model
training as well. Thus, the aims of this research
are to find the optimal combination of input
variables in the modeling, detect the optimal
number of data related to the model training,
and estimating of Zn bonds using ANNs method
in the surface sediments of water reservoir 1 of
Chahnimeh located in the Sistan plain.

3- Materials and Methods

3- 1- Description of the study area:
Chahnimeh reservoirs in Zabol, 3 natural
reservoirs are located in the south of Sistan
plain and have covered an area of 50kmz2. These
reservoirs supply the water required for two
cities of Zahedan and Zabol with a population of
around one million people. The water of these
reservoirs is provided by Hirmand River by a
canal with a capacity of 1000m3/s [331.



3- 2- Sampling: In this study, 180 samples
were collected from sediments in Chahnimeh 1.
As the sampling was carried out using grids of
500x500-m intervals (Figure 1), it was able to
provide a proper image of the studied area. The
results provided the mean of the 180 measured
points all samples were sealed in clean
polyethylene bags and brought back to the lab
to be air-dried and stored until further use.
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Figure 1) Map showing the geographical setting of
the Chahnimeh 1 reservoir

3- 3- Experimental methodology: To measure
the level of heavy metals in sediment samples,
first the samples should be prepared in an
atomic absorption device (Shimadzu AA-7000
spectrophotometer; Kyoto; Japan). For this
purpose, the clay part of soil which is the same
as the particles sieved through a 63-micron
sieve was used. After digestion of samples by
hydrofluoric acid (HF) 48% (Merck; Germany),
H;S04 95-97% (Merck; Germany), HCIO4 70-
72% (Merck; Germany), HCl 6 normal (Merck;
Germany), HNOs; 70% (Merck; Germany), the
concentration of all metals was measured by a
spectrophotometer instrument (Shimadzu AA-
7000 spectrophotometer; Kyoto; Japan). After
measurement of the total concentration, five
other experiments were conducted culminating
in liberation of 5 bonds of the metal total
concentration from the sediment through
Tessier method [151. Tessier method B4. The
detailed procedures employed in this process
were the following:

1) Exchangeable fraction: A total of 1g of the
air-dried sediment sample was extracted with
20ml of MgCl; (1mol/lm; pH=7) for 16h at
room temperature (25% to 30°C) under
agitation at 160rpm using a rotary bed.

2) Fraction bound to carbonates: The residue

from step 1 was extracted with 20ml of 1M
NaOAc (Adjusted to a pH of 5 with HOAc) for 5h
at room temperature under vigorous agitation
using a rotary bed.

3) Fraction bound to hydrous Fe-Mn oxides:
The residue from step 2 was extracted with
20ml of NH,0H and 4M HCI in 25% (v/v) acetic
acid in a water bath (96°C) with occasional
agitation.

4) Fraction bound to organic matter and
sulphides: The residue from step 3 was
extracted with 3ml of 2ZM HNO3z and 30% H:0:
(Adjusted to a pH of 2 with HNO3) for 2h in a
water bath (85°C) with occasional agitation.
Subsequently, 3ml of H,0, was added to the
extracted solution and left for 3h at 85°C. Then,
15ml of 3.2M NH40Ac in 20% HNO3z was added
to the solution and shaken continuously for
30min at room temperature.

5) Residual fraction: the residue from step 4
was extracted with 8 ml of aqua regia
(HCI+HNO3).

These five bonds included those that were
exchangeable, as well as those linked to
carbonate, iron, and manganese, and organic
compound bonds, together with a bond with
the remaining part.

3- 4- Artificial neural networks (ANNs):
Basically, an ANNs model consists of three
distinct layers. The input layer is introduced to
the model by input data. The weighting of all
input layers is almost done in this layer. A
hidden layer or layers in which data are
processed, and the output layer out of which
output is produced. Every layer contains one or
more basic elements called a neuron or node.
Each neuron has a threshold and an activity
function playing a role in the training process
35 36, A feed forward neural network is a
subgroup of network layers with no intralayer
relationships, but establish a relationship from
the neuron i to i+1 37. The number of input and
output units is dependent on the number of
input and output variables of the data 38l.

3- 5- Categorization of data and Analysis: In
this research, 70% of the data were selected for
training, 10% for validation, and 20% as test
data for the model. In the MLP neural network,
the training principle of Levenberg-Marquardt
was used for training together with Tribas
transfer and tangent hyperbolic functions. The
number of neuron in the hidden layer was
determined through trial and error. Finally,



modeling was performed by MATLAB 7.12
Software (MathWorks, Inc., Natwick, MA).

In order to compare the values of physical
properties predicted by the models applied in
this research with the values measured in the
laboratory and to compare the accuracy of the
existing models, the parameters of Coefficient
of Determination (RZ) and Root Mean Square
Error (RMSE) were utilized (Relation 1 and 2).

_ . XZ-2
1) RE =12 /Z’iV:l(Z—Z*)Z

2) RMSE = \/%Z{.V:l(z —7%)2

Where, Zis the estimated values at the ith
point, Z* is the mean of values predicted for the
properties, Z is the values observed for the ith
point, and N is the number of studied samples.
Data analysis was performed by Excel.

4- Results and Discussion
The present research studies the relationship
between some properties of sediments and

predicts the quintuple bonds of heavy metals
with the sediment using a neural network.

The descriptive statistics for the total
concentration of Zn, Zn fractions, and other
sediment properties of the studied regions
were calculated, as provided in Table 1. The
content of the total concentration of Zn in the
studied sediments had the highest dispersion
(804.52) with an average of 98.6. The results
obtained from the normal test indicated
that the distribution of studied properties in
Table 1, apart from organic carbon percentage
and percentage of sand particles, follows a
normal distribution. Correlation analysis
(Pearson coefficient) between the total
concentration of Zn and some properties
measured by Zn fractions was conducted by
SAS Software. In this analysis, the total Zn
concentration presented the highest positive
correlation (Pearson correlation coefficient)
and the cation exchange capacity showed a
negative correlation (-15%) with Zn fractions
(Table 2).

Table 1) Some statistics of the sediments properties in the studied region

N Min Max Range Mean Std.Deviation Variance Skewness Kurtosis
CEC 180 1.0 79.0 78.0 37.2 16.6 277.0 -0.05 -0.55
0C% 180 0.1 1.5 1.4 0.3 0.1 0.0 2.41 11.55
Sand% 180 04 987 98.3 15.1 19.5 382.4 2.09 4.00
Clay% 180 1.0 71.0 70.0 45.9 16.7 280.5 -0.73 -0.35
silt% 180 0.3 78.0 77.7 38.9 10.0 101.6 -0.30 2.65
Znf1 180 0.3 4.8 4.5 2.0 0.5 0.3 0.22 3.36
ZInf2 180 1.8 6.5 4.7 3.6 0.5 0.3 0.22 3.36
Znf3 180 9.2 1.4 7.8 4.7 1.7 3121 0.89 3.57
Znf4 180 4.4 1.3 3.1 7.7 1.0 1.1 0.22 3.36
Znf5 180 121 794 67.3 38.0 8.5 73.3 0.21 3.35
Zn total 180 30.6 2439 2133 98.6 28.3 804.5 0.68 3.34

Table 2) Correlation between some properties of
the Chahnimeh floor sediments and Zn fractions

Clay Silt Sand O0.C CEC Zn total
ZnF1 -0.10 0.11 0.03 0.04 -0.15 0.99
ZnF2 -0.10 0.11 0.03 0.04 -0.14 0.99
ZnF3 -0.10 0.11 0.03 0.07 -0.15 1.0**
ZnF4 -0.10 0.11 0.03 0.04 -0.15 0.99**
ZnF5 -0.10 0.11 0.03 0.04 -0.14 0.99**

The results of this study for total concentration
of Zinc are consistent with the results of some
other investigations [39 40l. Also, the results for
the five links for two first phases match with
the results reported by Li et al. 1. The
maximum amount of released metal was in

bonds 3 and 5 which corresponds the results of
other researchers [41-43],

In this research, in order to predict Zn fractions
by Multilayer Perceptron ANN method, a
general model was considered using
parameters including organic carbon
percentage (0C%), clay percentage (Clay%), Silt
percentage (Silt%), cation exchange capacity
(CEC), and total concentration of Zn. In this
model, the mentioned parameters were
regarded as network inputs and the measured
components of Zn were considered as the
target. Note that during the training process of
the models, the most appropriate number of
neurons in the hidden layer and the most



suitable function again in the hidden layer were
chose through trial and error in order to
increase the accuracy of training processes. The
results of modeling are provided in Table 2. So
as to train the data at the training stage of
Levenberg-Marquardt (LM) algorithm was
utilized. The results obtained from the
structures designed in the MLP neural network
architecture suggested that the most suitable
functions used in the hidden layer were of
Tribas and Tansig type. In the outer layer, the
linear function of Purelin was used Table 3.
According to Table 3, with regard to modeling
of different components of Zn using a general
model (Including 5 inputs) by MLP neural
network model, it can be stated that the MLP
neural network, with low RMSE and high R2
values, presents a very good performance in the
modeling and prediction of Zn fractions. The
results obtained from Table 3 also suggest that
Zn fractions modeling is also possible using
other properties of sediments and as evident
diagram 1, in the modeling created by the MLP
neural network, the predicted data are highly
congruent with the experimental data. This
follows that the modeling developed to
estimate Zn fractions using the inputs of
interest has been well able to estimate the
content of Zn fractions.

In any case, with regard to the modeling and
estimation of Zn fractions, the performance of
the MLP neural network can be described as
approvable. One thing worth mentioning here is

that artificial intelligence-based computational
methods have acted very successfully in this
research in terms of modeling. They have been
able to consider complex and nonlinear
relationships between Zn fractions and the
desired inputs (Organic carbon percentage,
cation exchange capacity, total Zn
concentration, and the percentage of clay and
silt particle concentrations).

Table 4 presents some statistics about the
experimentally measured data used at training
stages and test using the MLP neural network
model. In general, careful investigation of these
statistics indicates the validity of the modeling
and estimation of Zn fractions in the studied
region. As can be observed, the dispersion
range (Maximum and minimum) of the data
utilized at the training and test stages using the
MLP neural network model is equal in most
cases, and only in a few cases there is a slight
difference between the averages of data used at
the training and test stages.

In line with the forecast of heavy metals in
sediments, predicting the concentrations of
whole heavy metal with deposit characteristics
was done by some researchers who have
obtained successful results as the present one
[44, 45],

The results of the sequential extraction
indicated that each heavy metal had various
risk percentages in the five phases and
therefore should be taken into account for
different heavy metals.

Table 3) Description of the structure of models used in Zn fractions modeling and the results obtained from

Zn fractions modeling using some properties of soil

MLP Structure

Train Validation Test

Model/ Inputs output Neorun in

%
hidden layer HLTF

OLTF*

Description RMSE R RMSE R RMSE R

MLP1

0C, Clay, Silt, CEC,
Zn total

MLP2

0C, Clay, Silt, CEC,
Zn total

MLP3

0C, Clay, Silt, CEC,
Zn total

MLP4

0C, Clay, Silt, CEC,
Zn total

MLP5

0C, Clay, Silt, CEC,
Zn total

ZnF1 4

ZnF2 4

ZnF3 7

ZnF4 6

ZnF5 6

Tansig Purelin

Tribas Purelin

Tansig Purelin

Tribas Purelin LM algorithm™ 0.23 0.76 0.17 0.90 0.18 0.80

LM algorithm 0.10 0.90 0.10 0.95 0.17 0.71

LM algorithm 0.14 0.86 0.08 0.94 0.14 0.84

LM algorithm 0.12 0.87 0.13 0.89 0.12 0.88

Tribas Purelin LM algorithm 0.11 0.88 0.09 0.96 0.11 0.89

*HLTF (Hidden layer transfer function), OLTF (Output layer transfer function); **LM algorithm (Levenberg-Marquardt algorithm)
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using some properties of Chahnimeh floor sediments at the Test stage (a:MLP1; b:MLP2; C:MLP3; d:MLP4;
e:MLP5)



Table 4) Statistics about the input data at the
training and test stages, used for modeling and
prediction of Zn fractions

e/ CEC 0.C Clay Silt " Zn

Model/ Des. Total Fractions
MLP1

Train

Max 79.0 1.0 70.1 78.0 243.8 4.8
Min 1.0 0.1 1.0 0.3 30.6 0.3
Mean 36.3 0.3 45.2 385 97.2 2.0
Test

Max 75.0 1.5 70.1 64.0 155.4 3.1

Min 5.0 0.1 5.0 24.0 443 1.0

Mean 40.3 0.3 49.1 40.9 105.4 2.2
MLP2
Train
Max 79.0 1.5 71.0 58.0 165.1 5.0
Min 1.0 0.1 1.0 0.3 30.6 1.8
Mean 36.5 0.3 45.9 38.1 979 3.6
Test
Max 70.0 1.0 68.1 78.0 243.9 6.5

Min 25 0.1 6.1 69 609 2.9

Mean 38.0 0.2 44.5 41.2 102.7 3.7

MLP3

Train

Max 79.0 1.5 70.1 78.0 243.9 140.0
Min 1.0 0.1 1.0 0.3 30.6 9.2

Mean 38.0 0.3 46.4 38.5 99.1 47.3
Test

Max 65.0 0.7 69.6 64.0 152.3 81.2
Min 2.5 0.1 13.0 249 31.2 12.5
Mean 35.7 0.3 45.9 42.3 97.0 46.0
MLP4

Train

Max 79.0 1.5 71.0 78.0 243.9 13.0
Min 1.0 1.0 1.0 0.3 30.6 4.4

Mean 37.1 0.3 45.3 38.5 99.1 7.7

Test

Max 70.0 0.5 68.0 60.0 137.6 9.1

Min 50 0.1 6.1 69 624 6.4

Mean 37.8 0.2 47.5 38.6 93.2 7.5

MLP5

Train

Max 79.0 1.5 71.0 78.0 243.9 79.4
Min 1.0 0.1 1.0 0.3 31.2 12.1
Mean 37.7 0.3 46.3 39.2 98.2 37.9
Test

Max 73.0 1.0 69.6 60.0 165.0 57.1
Min 2.5 0.1 5.0 20.0 56.0 26.2
Mean 37.9 0.3 49.6 39.8 105.0 40.1

5- Conclusion

In the present research, modeling and
estimation of Zn fractions were evaluated and
investigated using parameters including
organic carbon percentage (0C%), clay
percentage (Clay%), silt percentage (Silt%),
cation exchange capacity (CEC), and the Zn total
concentration by the MLP neural network

method. Overall, the results indicated that the
MLP neural network has had a very desirable
performance in the estimation of Zn fractions.
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