

Greenhouse Gas Inventory Estimates from Agriculture Sector in Jammu and Kashmir State of India

ARTICLE INFO

*Article Type*Original Research

Authors

Sharma U. C. * *PhD*, Sharma V. 1 *PhD*

How to cite this article

Sharma U C, Sharma V. Greenhouse Gas Inventory Estimates from Agriculture Sector in Jammu and Kashmir State of India. ECOPERSIA. 2018;6(2):121-130.

ABSTRACT

Aims Greenhouse gas (GHG) emission estimates were made from agriculture sector in Jammu and Kashmir to assess the 2015 situation and future trends in emission which would help in formulating a policy for mitigation.

Materials & Methods The Intergovernmental Panel on Climate Change (IPCC) tier-II methodology (IPCC, 1997) has been adopted for estimating methane (CH4) emissions from enteric fermentation in livestock and Tier-I methodology for other sectors of agriculture for GHG emission.

Findings Agriculture in J and K accounted for a total GHG emission of 5.411 Tg of carbon dioxide (CO2)e in the year 2015. Source-wise, enteric fermentation was responsible for emittance of 160.233 Gg of CH4 and 1.399 Gg of nitrous oxide (N2O), manure management for 8.25 Gg of CH4 and 0.276 Gg of N2O, rice cultivation for 28.75 Gg of CH4, cultivated soils for 1.988 Gg of N2O, and residue burning for 0.405 Gg of CH4, 0.029 Gg of N2O, and 118.01 Gg of CO2.

Conclusion Higher GHG emission from enteric fermentation was mainly due to higher population of livestock in the state. The most effective methods for reducing GHG emissions in the state would be to adjust the part of animal feed to decrease digestion time, using feed additives to reduce metabolic activity of rumen bacteria that produce CH4, and increase nitrogen-use efficiency by applying nitrogenous fertilizer or manure to crops as per crop needs and time of need.

Keywords Agriculture Sector; Greenhouse gases; Jammu and Kashmir; Inventory

CITATION LINKS

[1] Greenhouse gas emissions from India ... [2] Greenhouse gas inventory ... [3] Agricultural soils as a sink to mitigate CO₂ ... [4] Soil carbon sequestration to mitigate ... [5] Climate change 2007 the physical ... [6] Decoding urban India's carbon footprint: Spatial-numerical mapping of thermal ... [7] Assessment of climate change impacts ... [8] Carbon budgets for climate ... [9] Atmospheric gas concentrations over the ... [10] Modeling greenhouse gas emissions from rice-based ... [11] Simulating trends in soil organic carbon in ... [12] Uncertainty should be powerful motivator ... [13] Fertilizer management practices ... [14] A review of global potentially available ... [15] Changes in cropping pattern in Jammu ... [16] Nitrous oxide, climate change and ... [17] High performance computing of data for a new sensitivity analysis ... [18] Direct emission of nitrous oxide from ... [19] Assessment of greenhouse gas emissions ... [20] Impact of resource-conserving technologies ... [21] Emission factors for open and domestic biomass ... [22] 2004 methane and nitrous oxide emissions ... [23] Exchange of trace gases between terrestrial ecosystem ... [24] Revised 1996 IPCC guidelines for national greenhouse ... [25] N₂O and CH₄ emissions from soils under ... [26] Annual report ... [27] Novel climates, no-analog communities ... [28] Management implications of global ... [29] Historical warnings of future food insecurity ... [30] Elevated ozone reduces methane emissions ... [31] Ecological physiology of diet and digestive ... [32] In vitro total gas, CH_a, H₂, volatile ... [33] Modeling methane emissions from ... [34] Greenhouse gas emissions from Indian ... [35] Inventory of methane and nitrous ... [36] The impact of nitrogen fertilizer use on greenhouse ... [37] Nitrous oxide emissions from fertilized ... [38] Increased soil emissions of potent greenhouse gases under increased atmospheric ... [39] Agroecosystems, nitrogen-use efficiency, and nitrogen ... [40] Global metaanalysis of the nonlinear response of soil nitrous oxide (N20) emissions to fertilizer ... [41] Agriculture crop residue burning in the indo-gangetic plains: A study using IRS-P6 AWiFS satellite...

*Department of Soil Science, Faculty of Agriculture, Centre for Natural Resources Management, India ¹Department of Soil Science, Faculty of Agriculture, Agricultural Sciences & Technology University, Chatha, Punjab, India

Correspondence

Address: Centre for Natural Resources Management, V.P.O Tarore, District Jammu-181133, Jammu & Kashmir, India.

Phone: +91-1912472044

ucsharma2@rediffmail.com

Article History

Received: January 9, 2017 Accepted: March 22, 2018 ePublished: June 26, 2018

Copyright© 2018, TMU Press. This open-access article is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) under the Attribution-NonCommercial terms.

Introduction

Rapid increase in carbon dioxide (CO₂) concentration in the atmosphere along with other greenhouse gases (GHGs), such as nitrous oxide (N₂O) and methane (CH₄), is a major concern due to its impact on climate change.[1,2] Therefore, there is an urgent need to adopt effective measures for mitigating the threat of global climate change. Land use change such as deforestation and land degradation also contributes to anthropogenic CO₂ emission. [3, 4] Carbon sequestration by terrestrial vegetation has been identified by the Intergovernmental Panel on Climate Change (IPCC), as one of the most effective alternatives for reducing the GHG emission.[5-7] India and many other developing countries will obtain even this limited amount of carbon space only if the developed countries reduce their emissions sharply. [8] Globally, the concentrations of CO₂, CH₄, and N₂O in the atmosphere are increasing at 0.4%, 3.0%, and 0.22% per year, respectively.[9] Apart from causing global warming, N₂O is also responsible for the destruction of the stratospheric ozone. [10] Quantification of GHG emissions from soil is needed for global modeling studies in the context of ecosystem modification and climate change.[11] Due to climate change, the people of the world are moving into an uncertain and changing climate regimen, with consequences that are likely to differ regionally in severity.[12]

CH, is a simple hydrocarbon compound that is most familiar as the main constituent of natural gas. In emission from agriculture sector, a significant amount of GHGs is emitted from livestock production with animals directly contributing to emissions through enteric fermentation and manure management. Linquista et al.[13] reported that flooded rice systems emit both CH₄ and N₂O. Agricultural soils under appropriate contain management can substantial amounts of soil C in the form of soil organic matter (SOM). Eitelberg et al.[14] mentioned that non-utilized and non-forested land, containing sufficient carbon, is available for agriculture.

Near about 75% of the Jammu and Kashmir's population is dependent on agriculture in one way or the other. Increasing GHG emissions from agriculture sector becomes a cause for concern in the context of climate change. Climate change with the emission of GHG s and climate extremes will have direct and indirect effects on the crops, soils, livestock, and pests. The purpose of this study was to assess GHG emissions from agriculture sector from the state of Jammu and Kashmir (J and K) and see a trend of emissions over time to understand its future implications.

Materials and Methods Study area

The state of J and K, having an area of 222, 236 km², is strategically located in the Northwest corner of India. It shares its borders with China in the east, Pakistan in the west, Afghanistan and Russia in the north, and plains of Punjab and Himachal in the south and southeast. The state lies between 32°17' to 37°05' North latitudes and 72°31' to 80°20' East longitudes. The state has the diverse climate, extreme variations in temperature and rainfall where different types of crops can be grown and livestock reared. Jammu, Kashmir, and Ladakh regions have different climates and cultural identities. Rice is the major crop in Kashmir zone, followed by maize, barley, and wheat, whereas maize and wheat are predominant in Jammu region, while barley is major crop in Ladakh region.[15] With the change in climate of the state, the cropping patterns are likely to vary. Hence, it is important to study the present status of GHG emission and measures to mitigate.

Methodology

The IPCC tier-II methodology^[16] has been adopted for estimating CH_4 emissions from enteric fermentation in livestock and Tier-I methodology for animal manure management. The methodology for enteric fermentation takes into account age distribution and hence the weight of the animals. For ruminants, Tier-II method was adopted for CH_4 emission; however, default IPCC emission factors were used for

other animals.^[5] CH₄ conversion factor and CH, emission factor values for the present estimation broadly conform to the National Dairy Research Institute emission values. The age groups of livestock adopted in the present estimation are the same as those adopted by Swamy and Bhattacharya.[17] N₂O emission from soils was determined with the equation as suggested by Bouwman.[18] Emissions of N₂O and CH₄ from poultry enteric fermentation were investigated using the values as suggested by Wang and Huang.[19] The GHG emission from rice production was calculated as per the method suggested by Pathak et al.[20] The GHG from residue burning was determined as per the method suggested by Jain et al.[21] The CO2e was calculated by multiplying the values by multiplying factor 21 for CH, and 310 for N_2O . The CH_4 has 21 times and N_2O 310 times more warming potential than CO₂.

Findings

Area under different crops in J and K

The area under different crops has been shown in Table 1. Among the cereal crops, maize leads with an area of 310.9 thousand ha, followed by wheat and rice. Total area under cultivation was 1119 thousand ha during 2012–2013 (J and K Governmet 2012–2013). Between 2005–2006 and 2012–2013, the area under maize is showing a declining trend with annual compound growth rate (ACGR) of –0.45%, while the area under wheat and rice has increased with ACGR of 2.07% and 0.81%, respectively, during the above period (Figure 1).

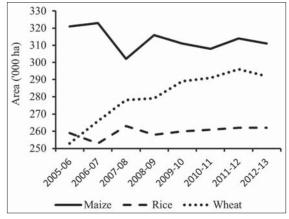
Source: Digest of Statistics, Directorate of Economics and Statistics, J and K (2012–2013)

GHG Emissions in I and K

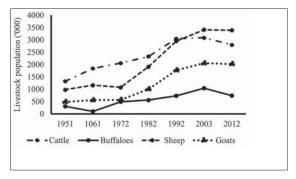
Livestock population

In Jammu and Kashmir, the population of cattle, buffaloes, sheep, and goats registered an ACGR of 1.646, 2.385, 2.431, and 2.807% between 1951 and 2003, respectively. However, between 2003 and 2012, a decline in ACGR of -1.075, -3.714, -0.068, and -0.201 has been observed in above categories of livestock, respectively (Figure 2). The livestock population in J and K in 2012 was

about 9.2 million, with cattle, buffaloes, sheep, and goats constituting 30.4%, 8.0%, 36.9%, and 21.9%, of the total population, respectively (Table 2).


The poultry population was 8.24 million during the year 2012. The number of livestock per thousand persons in J and K is 792.2, compared to a national statistic of 409.6 in India. The more number of livestock in the state is expected to have larger share in GHG emission as against other sources of emission in agriculture sector.

Source: 19^{th} Livestock Census, Ministry of Agriculture, India, 2012


Emission by livestock

CH₄ and CO₂ emission in Jammu and Kashmir from livestock sector is given in Table 3.

Emission of CH₄ by cattle, buffaloes, sheep, goats, pigs, horses/ponies, mules/donkeys and camels in J and K was estimated at 93.015, 34.893, 18.876, 9.735, 0.003, 2.914, 0.742, and 0.051 Gg, respectively (Table 3).

Figure 1: Trends of area under major cereal crops in Jammu and Kashmir

Figure 2: Growth trend of livestock population in Jammu and Kashmir

Table 1: Area under different major crops in Jammu and Kashmir ('000 ha) (2012–2013)

Crop	Area	Crop	Area
Rice	274.0	Oilseeds	35.5
Wheat	292.4	Fruits/vegetables	100.7
Maize	310.9	Spices/condiments	2.4
Coarse cereal	30.0	Fodder crops	46.3
Pulses	26.8	Total	1119.0

Table 2: Livestock population in Jammu and Kashmir ('000)

Livestock	Number	Livestock	Number
Cattle	2798	Mules	36
Buffaloes	739	Donkeys	17
Sheep	3390	Camels	1
Goats	2018	Yaks	54
Pigs	2	Total	9199
Horses, ponies	144	Poultry	8240

Total emission of $\mathrm{CH_4}$ is estimated to be 160.233 Gg, which is equivalent to 3.365 Tg of $\mathrm{CO_2}\mathrm{e}$ warming potential. The crossbred cattle accounted for 1041.9 Gg of $\mathrm{CO_2}\mathrm{e}$ and indigenous cattle 911.3 Gg of $\mathrm{CO_2}\mathrm{e}$ emissions in the state.

Manure management

Management of livestock manure is one of the main sources of GHG emissions, producing mainly $\mathrm{CH_4}$ and $\mathrm{N_2O}$. These emissions are dependent on how manure is stored, as liquid-stored manure mainly produces $\mathrm{CH_4}$ while dry manure enhances production of $\mathrm{N_2O}^{[22]}$ By and large, dry manure is used in J and K. Emission of $\mathrm{CH_4}$ and $\mathrm{N_2O}$ from the manure management was estimated to be 8253 Gg and 0.276 Gg, respectively, during 2015 with a global warming potential equivalent to 258.87 Gg of $\mathrm{CO_2}$ (Table 4).

Rice production and GHG emission

In J and K, total area under rice is about 274000 ha, of which 113568 ha is irrigated and 156832 ha is rainfed, while about 4000 ha is upland rice (Table 5). Total $\mathrm{CH_4}$ emissions have been estimated as 18.398 Gg from irrigated rice fields and 10.351 Gg from rainfed rice. This amounts equivalent to a warming potential of 603.729 Gg of $\mathrm{CO_2}$ emissions from rice fields. $\mathrm{ECOPERSIA}$

Emission from cultivated soils

Primarily, biogenic production of N_2O in the soil results from two processes, namely, bacterial oxidation of mineral nitrogen (N) to nitrate under aerobic condition known as nitrification and during the reduction of nitrate to molecular nitrogen under anaerobic condition called denitrification. [23]

AtmosphereAtmosphere

Soil organic $\uparrow N_2 O$ $\uparrow N_2 O$ matter,

Fertilizer, manure \rightarrow NO₃ \rightarrow N_{2↑} \rightarrow NH4

Nitrification Denitrification

(1)

Emissions of N_2O occur in the soil through the processes of nitrification and denitrification. Nitrites and nitrates are converted to N_2O and N_2 during the aerobic processes of nitrification as illustrated below: $[^{24,25]}$

Nitrification

$$NH_{4}^{+} + O_{2} \rightarrow H^{+} + H_{2}O + NO_{2}^{-} \uparrow$$

$$NO_{2}^{-} + O_{2} \rightarrow NO_{3}^{-}$$

$$Denitrification$$
(2)

 $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$ Emission of N₂O from area cultivated for various crops is given in Table 6. In J and K, total N₂0 emission was 1.9881 Gg (616.3 Gg CO₂e) from cultivated soils during 2015. We included the soils where agricultural (cereals, oilseed, pulses, etc.) and horticultural (fruits and vegetable) crops are grown. The annual N₂O emission from cultivated soils under rice, wheat, maize, coarse cereals, pulses, oilseeds, fruits and vegetables, spices and condiments, and fodder crops is given in Table 6. The emission of N₂O from soils cultivated with cereals was 82.6% compared to 17.4% from soils cultivated with other crops.

Residue burning

When there is open burning of crop residue, a number of GHGs are emitted from combustion. The average annual amount Spring 2018, Volume 6, Issue 2

Table 3: Livestock methane emission in Jammu and Kashmir

Livestock	CH ₄ (Mg)	CO ₂ e (Gg)	Livestock	CH ₄ (Mg)	CO ₂ e (Gg)
Cattle crossbred			>1 year	4281.76	89.91
<1.5 years	7995.12	167.89	Total	18876.36	396.40
1.5-2.5 years	6997.46	146.94	Goats		
>2.5 years	34626.96	727.16	<1 year	2043.91	42.92
Indigenous			>1 year	7691.92	161.53
<1.5 years	3976.08	83.49	Total	9735.83	204.45
1.5-3.5 years	6219.81	130.62	Pigs		
>2.5 years	33199.90	697.20	Exotic	1.58	0.033
Total	93015.33	1953.30	Indigenous	1.81	0.038
Buffaloes			Total	3.39	0.071
<1 year	1196.84	25.13	Horses/ponies		
1–3 years	5132.72	107.79	<3 years	536.51	11.27
>3 years	28564.19	599.85	>3 years	2378.18	49.94
Total	34893.75	732.77	Total	2914.69	61.21
Sheep			Mules/donkey	742.04	15.58
Exotic			Camels		
<1 year	2954.29	62.04	<4 years	6.55	0.14
>1 year	10310.79	216.53	>4 years	45.26	0.95
Indigenous			Total	51.81	1.09
<1 year	1329.52	27.92	Grand total	160233.20	3364.87

CH4: Methane, CO2: Carbon dioxide

Table 4: GHG emission from manure management (Gg)

Livestock	CH ₄	N ₂ O	CO ₂ e
Cattle	5.001	0.149	151.21
Buffaloes	2.217	0.046	60.82
Sheep	0.306	0.042	19.45
Goat	0.177	0.027	12.08
Horses/mules/donkeys	0.548	0.009	14.30
Others	0.004	0.003	1.01
Total	8.253	0.276	258.87

CH₄: Methane, CO₂: Carbon dioxide, GHG: Greenhouse gas

of crop residue generated in J and K is 1.59 Mt and the surplus quantity is 0.28 Mt;^[26] however, the quantity burnt varied from study to study. The quantities shown for crop residue burning in J and K state appear to be exaggerated. We have found that a very limited quantity of 0.11 Mt crop residue

Table 5: Methane emission from rice cultivation in Jammu and Kashmir

Area (ha)	CH ₄ emission (Gg)	CO ₂ e (Gg)
113568 (irrigated)	18.398	386.358
156832 (rainfed)	10.351	217.371
270400 (total)	28.749	603.729

CH₄: Methane, CO₂: Carbon dioxide

(mostly rice straw) is burnt in the state as there is no system of residue burning in the fields. The sources of crop residue generation in the state are limited, that is, mostly from cereal and pulse crops. By and large, full quantity of wheat and maize straw and limited rice straw are used as animal feed during winters when there is a scarcity of fodder and the livestock is mostly stall-fed. Total emission of CO_2 , CH_4 , and N_2O by crop residue burning in J and K during 2015 was

108.015, 0.405, and 0.029 Gg, respectively, having 135.10 Gg of CO_2 e warming potential (Table 7).

Annual GHG emission from different sources

The estimate shows that annual emission of CO₂e from agriculture sector in the state of J and K is 3.798, 0.259, 0.603, 0.616, and 0.135 Tg from enteric fermentation, manure management, rice cultivation, cultivated soils, and residue burning, respectively (Figure 3). The total annual emission in 2015 is estimated at 5.411 Tg of CO₂e. The carbon sequestered through land use, land-use change, and forestry (LULUCF) by cropland was 1.526 Tg during the period. Hence, the net emission from agriculture sector in that state was 3.885 Tg of CO₂e. Per capita annual gross emission of GHG from agriculture sector in the state is 416 kg and net emission 299 kg of CO₂e. N₂O emission has been of the

Table 6: N₂O emission from cultivated soils

Crop	N ₂ O (Gg)	CO ₂ e (Gg)
Rice	0.5176	160.456
Wheat	0.5196	161.076
Maize	0.5583	173.073
Other coarse cereal	0.0453	14.043
Pulses	0.0356	11.036
Oilseeds	0.0538	16.678
Fruits and vegetables	0.1882	58.342
Spices and condiments	0.0038	1.178
Fodder crops	0.0659	20.429
Total	1.9881	616.311

CO2: Carbon dioxide

Table 7: GHG emitted from crop residue burning in Jammu and Kashmir

GHG	Emittance (Gg)	CO ₂ e (Gg)
CO ₂	118.015	118.015
CH ₄	0.405	8.505
N_2O	0.029	8.990
Total		135.510

CH₄. Methane, CO₂: Carbon dioxide, GHG: Greenhouse gas

order of 1.988 Gg from soils, 0.029 Gg from residue burning, and 0.276 Gg from manure management. Percentage contribution of different sectors to GHG emission is shown in Figure 4. Enteric fermentation accounted for 70.1% GHG emission in J and K, followed by cultivated soils (11.4%), rice cultivation (11.2%), manure management (4.8%), and crop residue burning (2.5%) (Figure 4). A large quantity of GHG emission due to enteric fermentation in the state is due to very high population of livestock.

Trend in GHG emission over time

The annual GHG emissions in J and K state in terms of Tg of CO₂e emitted between 1980 and 2015 are given in Figure 5. According to our estimates, the annual emission of GHG from agriculture sector in the state during 2015 was 5.411 Tg of CO₂e while LULUCF was -1.526 Tg (Figure 5). Maximum annual CH, emission in the state is from livestock (3.798 Tg) which accounted for 70.1% of the total emissions from agriculture sector. The annual rate of emission of CO2e of GHG has been found to be 0.1052, 0.0884, and 0.1905 Tg, during 1980-1990, 1990-2000, and 2000-2015, respectively. A sharp rise in GHG emission was observed between 2000 and 2015, which was largely due to enteric fermentation, increase in the use of synthetic fertilizers (2), and slight increase in area under rice cultivation.

Discussion Climate change and agriculture

Agriculture has always experienced a variable climate, but the changes presently underway driven by human-caused increases in GHG emissions are proceeding at a rate that will rapidly propel agriculture into new environmental circumstances.[27] Morgan *et al.*^[28] reported that these changes are already causing species shifts in agroecosystems such as rangelands and forests and affecting water and nutrient cycling. Crops such as wheat, corn, and cotton are already being genetically adapted to grow under a wide variety of environments. Crop yields are significantly affected by consistently high temperatures during the

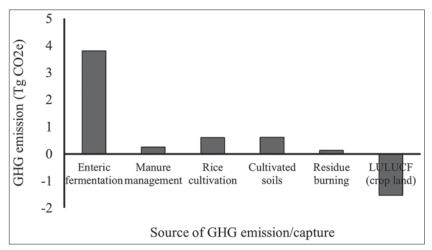
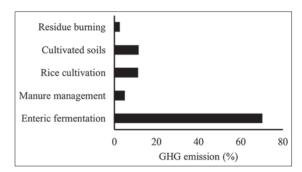
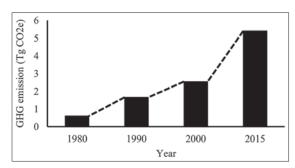




Figure 3: Greenhouse gas emission from different sources and land use, land-use change, and forestry in Jammu and Kashmir

Figure 4: Percentage emission of greenhouse gas from different sources in Jammu and Kashmir

Figure 5: Trend in Greenhouse gas emission from 1980 to 2015

crop growth period. $^{[29]}$ On the other hand, a warming environment with a longer growing season is likely to enhance productivity in regions where cold temperatures currently limit growth, such as high-altitude or high-latitude regions. Toet $et\ al.$ $^{[30]}$ reported that many environmental factors influence the production and consumption of CH_4 and N_2O .

Emissions from livestock

Like the other trace gases, CH_4 is present naturally in the atmosphere in small amounts and is derived from a variety of natural and human-induced sources. CH_4 is produced during the normal digestive processes of animals. Particularly, ruminant is the major contributors due to the type of digestive process by which carbohydrates are broken down by microorganisms and CH_4 is released as a by-product of enteric fermentation. [31] Relatively, small amounts of CH_4 are produced by non-ruminants. [32]

There are many factors such as treatment, storage, and transportation of livestock manure which are responsible for producing $\mathrm{CH_4}$ and $\mathrm{N_2O}$ emissions. $\mathrm{CH_4}$ is produced by the anaerobic decomposition of manure. $\mathrm{N_2O}$ emissions are produced through both direct and indirect pathways. Denitrification of the organic N from livestock excretions and N cycle during nitrification encourages direct emission of $\mathrm{N_2O}$. The temperature, moisture, and manure storage or residency time affect the amount of $\mathrm{CH_4}$ produced because they influence the growth of the bacteria responsible for $\mathrm{CH_4}$ formation.

GHG from rice production

The $\mathrm{CH_4}$ -producing bacteria (methanogens) produce $\mathrm{CH_4}$ to the atmosphere from the soils cultivated with flooded rice during the processes involved in $\mathrm{CH_4}$ emission, as

well as, CH₄ oxidation within oxic zones of the soil and flood water by CH₄-oxidizing bacteria. Rice fields are an important source of atmospheric CH,, the second most important GHG as a result of anaerobic conditions. Cao et al.[33] reported that period between flooding of the soil and initiation of methanogenesis can be different in different soils. Different application rates of N fertilizer to rice significantly influenced the simulated yield, N uptake, and emissions of GHG from soil.[34] Due to increased root growth in rice with N application, higher amounts of root exudates and debris are generated, supplying C for the heterotrophic microbes, which enhance CO₂ and CH₄ emission considerably.

Emission from cultivated soils In the present study, the emission of N₂O from cultivated soils mainly depended on the nature of the crop, nitrogen status of the soil, and Napplied to the crop. It is supported by the earlier reports.[35, 36] Agricultural soils under appropriate management contain substantial amounts of soil C in the form of SOM. Proper management of agricultural soils cannot only sequester carbon but in turn enhance the quality of soils. Chemical fertilizers have been a major focus in the production or flux of N₂O from agricultural soils.[37] High doses of N application can result in significant release of CO₂, especially in the presence of soil moisture and increased labile pool of carbon.[38] Emission of N₂O by the application of N to the soil occurs directly from the soils to which the N is added and through volatilization and leaching of N. The uptake of fertilizer N by crops during the growing season, generally, varies from 30% to 60%. Nitrogen applied in excess of crop needs is particularly susceptible to loss.[39] Increased N use efficiency through management practices reduces N₂O emissions because higher amount of N is assimilated by the crop. Nitrogen availability is the single best predictor of N₂O fluxes in cropped ecosystems. [40] The N₂O emissions are high when N fertilizer is applied at rates greater than crop need.

Emission from residue burning

In the state of Jammu and Kashmir, the crop residue is burnt on very limited quantities

because a significant part of the crop straw is used for feeding livestock. Badarinath^[41] estimated the GHG emissions from rice and wheat straw burning in Punjab during May–October 2005 and suggested that emissions from wheat crop residues in Punjab are relatively low compared to those from paddy fields.

Conclusion

Majority of scientists are of the view that climate change is underway and is largely induced by human activities. CO2, CH4, and N₂O are the major GHGs that are directly affected by human agricultural activities and a matter of concern for global warming. Although these causes of GHG emissions cannot be completely eliminated, they can be lowered through (i) modified land use and management, (ii) agricultural activities can mitigate emissions increasing sequestration of C in SOM and plant biomass, (iii) the rate at which GHG emissions in Jammu and Kashmir are increasing is a matter of concern. The great potential of C sequestration in cropland will provide a promising approach to reduce the atmospheric concentration for mitigating climate change, (iv) increasing nitrogen use efficiency by applying N fertilizers and manure as per crop needs, (v) reducing emissions from ruminant livestock and animal waste by adjusting the part of animal feed to decrease digestion time, using feed additives to reduce metabolic activity of rumen bacteria that produce CH₄, and (vi) growing rice cultivars that inhibit CH, production. The most effective method for reducing GHG emissions would be to increase nitrogen-use efficiency by applying nitrogenous fertilizer or manure to crops as per crop needs and time of need, reducing emissions from ruminant livestock, animal waste, and rice cultivation by adjusting the part of animal feed to decrease digestion time, using feed additives to reduce metabolic activity of rumen bacteria that produce CH, capturing CH₄ emissions from livestock manure, introducing more efficient water and fertilizer management, and growing rice cultivars that inhibit CH₄ production.

Acknowledgment

The authors are grateful to the Government of Jammu and Kashmir for access to the data on livestock population, area under crops, and quantity of fertilizers used.

Ethical Permissions

Not reported.

Conflicts of Interest

The authors declared that they have no conflicts of interest.

Authors' Contributions

Both the authors contributed to the development of the paper.

Funding/Support

No funding support was required for the development of this paper as it is based on calculations only.

References

- 1. Sharma S, Bhattacharya S, Garg A. Greenhouse gas emissions from India: A perspective. Curr Sci. 2006;90(3):326-33.
- Sharma SK, Choudhury A, Sarkar P, Biswas S, Singh A, Dadhich PK, et al. Greenhouse gas inventory estimates for India. Curr Sci. 2011;101(3):405-15.
- 3. Paustian K, Andrén O, Janzen HH, Lal R, Smith P, Tian G, et al. Agricultural soils as a sink to mitigate CO₂ emissions. Soil Use Manag. 1997;13(s4):230-44.
- 4. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123(1-2):1-22.
- Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, et al, editors. Climate change 2007 the physical science basis [Internet]. Cambridge: Cambridge University Press; 2007 [Cited 2017 Mar 19]. Available from: https://www. ipcc.ch/publications_and_data/publications_ ipcc_fourth_assessment_report_wg1_report_the_ physical_science_basis.htm.
- Sethi M. Decoding urban India's carbon footprint: Spatial-numerical mapping of thermal energy emissions. Curr Sci. 2015;108(9):1616-23.
- Motiee H, McBean E. Assessment of climate change impacts on groundwater recharge for different soil types-guelph region in Grand River Basin, Canada. Ecopersia. 2017;5(2):1731-44.
- 8. Kanitkar T, Jayaraman T, D'Souza M, Purkayastha P. Carbon budgets for climate change mitigation a GAMS-based emissions model. Curr Sci. 2013;104(9):1200-6.
- Battle M, Bender M, Sowers T, Tans PP, Butler JH, Elkins JW, et al. Atmospheric gas concentrations over the past century measured in air from firn at

the South Pole. Nature. 1996;383:231-35.

- 10. Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, et al. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Glob Biogeochem Cycles. 2004;18(1):GB1043.
- 11. Li C, Frolking S, Crocker GJ, Grace PR, Klir J, Korcdhens M, et al. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma. 1997;81(1-2):45-60.
- 12. El-Ashry M, Seyfert-Margolis V. Uncertainty should be powerful motivator on climate, expert says. Science. 2010;328(5978):586.
- 13. Linquist BA, Adviento-Borbe MA, Pittelkow CM, Van Kessel C, Van Groenigen KJ. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crop Res. 2012;135:10-21.
- 14. Eitelberg DA, Van Vliet J, Verburg, PH. A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob Chang Biol. 2015;21(3):1236-48.
- 15. Akhter R, Acharya R. Changes in cropping pattern in Jammu and Kashmir. Int J Adv Res Educ Technol. 2015;2(4):88-91.
- 16. Skiba U, Rees B. Nitrous oxide, climate change and agriculture. CAB Rev. 2014;9(010):1-7.
- 17. Swamy M, Bhattacharya S. Budgeting anthropogenic greenhouse gas emission from Indian livestock using country-specific emission coefficients. Curr Sci. 2006;91(10):1340-53.
- 18. Bouwman AF. Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst. 1996;46(1):53-70.
- 19. Wang SY, Huang DJ. Assessment of greenhouse gas emissions from poultry enteric fermentation. Asian-Australas J Anim Sci. 2005;18(6):873-78.
- 20. Pathak H, Saharawat YS, Gathala M, Ladha JK. Impact of resource-conserving technologies on productivity and greenhouse gas emission in rice-wheat system. Greenh Gas Sci Technol. 2011;1(3):261-77.
- 21. Akagi SK, Yokelson RJ, Wiedinmyer J, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys. 2011; 11(9):4039–72.
- 22. Moeletsi ME, Tongwan, MI. 2004 methane and nitrous oxide emissions from manure management in South Africa. Animals(Basel). 2015.5(2):193-205.
- 23. Colls JJ. Exchange of trace gases between terrestrial ecosystem and the atmosphere. Weather. 1990;45(11):416.
- 24. Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC guidelines for national greenhouse gas inventories [Internet]. Geneva: IPCC; 1996 [Cited 2017 Mar 19]. Available from: https://www.ipcc-nggip.iges.or.jp/public/gl/

- invs1.html.
- Metay A, Oliver R, Scopel E, Douzet JM, Moreira JAA, Maraux F, et al. N₂O and CH₄ emissions from soils under conventional and no-till management practices in Goiânia (Cerrados, Brazil). Geoderma. 2007;141(1-2):78–88.
- 26. Ministry of New and Renewable Energy. Annual report 2008-09 [Internet]. New Delhi: MNRE; 2009 [Cited 2017 Feb 11]. Available from: https://mnre.gov.in/file-manager/annual-report/2008-2009/EN/overview.htm.
- 27. Williams JW, Jackson, ST. Novel climates, noanalog communities, and ecological surprises. Front Ecol Environ. 2007;5(9):475-82.
- 28. Morgan JA, Derner JD, Milchunas DG, Pendall E. Management implications of global change for great plains rangelands. Rangelands. 2008;30(3):18-22.
- 29. Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009;323(5911):240-4.
- 30. Toet S, Ineson P, Peacock S, Ashmore M. Elevated ozone reduces methane emissions from peatland mesocosms. Glob Chang Biol. 2011;17(1):288-96.
- 31. Karasov WH, del Rio CM, Caviedes-Vidal E, Ecological physiology of diet and digestive systems. Annu Rev Physiol. 2011;73:69–93.
- 32. Robinson JA, Smolenski WJ, Ogilvie ML, Peters JP. In vitro total gas, CH4, H2, volatile fatty acid and lactate kinetics studies on luminal contents from the small intestine, cecum and colon of the pig. Appl Environ Microbiol. 1989;55(10):2460-7.
- 33. Cao M, Dent JB, Heal OW. Modeling methane emissions from rice paddies. Glob Biogeochem

- Cycles. 1995;9(2):183-95.
- 34. Pathak H, Li C, Wassmann R. Greenhouse gas emissions from Indian rice fields: Calibration and upscaling using the DNDC model. Biogeosciences. 2005;2:113-23.
- 35. Bhatia A, Pathak H, Aggarwal PK. Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Curr Sci. 2004;87(3):317-24.
- 36. Kusin FM, Mat Akhir N, Mohamat-Yusuff F, Awang M. The impact of nitrogen fertilizer use on greenhouse gas emissions in an oil palm plantation associated with land use change. Atmósfera. 2015;28(4):243-50.
- 37. Eichner MJ. Nitrous oxide emissions from fertilized soils: Summary of available data. J Environ Qual. 1990;19(2):272-80.
- 38. Van Groenigen KJ, Osenberg CW, Hungate BA. Increased soil emissions of potent greenhouse gases under increased atmospheric CO₂. Nature. 2011;475:214-16.
- 39. Cassman KG, Dobermann A, Walters DT. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio. 2002;31(2):132-40.
- 40. Shcherbak I, Millar N, Robertson GP. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci U S A. 2014;111(25):9199-204.
- 41. Badarinath KVS, Kiran Chand TR, Krishna Prasad V. Agriculture crop residue burning in the indo-gangetic plains: A study using IRS-P6 AWiFS satellite data. Curr Sci. 2006;91(8):1085-9.