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Background: Prediction of future climate change is based on output of global climate models (GCMs).
However, because of coarse spatial resolution of GCMs (tens to hundreds of kilometers), there is a need to
convert GCM outputs into local meteorological and hydrological variables using a downscaling approach.
Downscaling technique is a method of converting the coarse spatial resolution of GCM outputs at the regional
or local scale. This study proposed a novel hybrid downscaling method based on artificial neural network
(ANN) and particle swarm optimization (PSO) algorithm.

Materials and Methods: Downscaling technique is implemented to assess the effect of climate change on a
basin. The current study aims to explore a hybrid model to downscale monthly precipitation in the Minab
basin, Iran. The model was proposed to downscale large scale climatic variables, based on a feed-forward
ANN optimized by PSO. This optimization algorithm was employed to decide the initial weights of the neural
network. The National Center for Environmental Prediction and National Centre for Atmospheric Research
reanalysis datasets were utilized to select the potential predictors. The performance of the artificial neural
network-particle swarm optimization model was compared with artificial neural network model which is
trained by Levenberg—Marquardt (LM) algorithm. The reliability of the models were evaluated by using root
mean square error and coefficient of determination (R?).

Results: The results showed the robustness and reliability of the ANN-PSO model for predicting the
precipitation which it performed better than the ANN-LM. It was concluded that ANN-PSO is a better
technique for statistically downscaling GCM outputs to monthly precipitation than ANN-LM.

Discussion and Conclusions: This method can be employed effectively to downscale large-scale climatic
variables to monthly precipitation at station scale.

Keywords: Artificial neural network (ANN), Climate change, Multi-layer perceptron, Particle swarm
optimization (PSO), Statistical downscaling
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1. Background

Human activities are considered as the
main reasons for increasing the concentration
of CO;, and other greenhouse gases in the
atmosphere, which lead to a changing climate
system (1, 2). Global climate models, which
describe the climatic patterns by mathematical
equations, are the most reliable and efficient
tools for studying the effect of climate
variation at coarse scale and predicting future
climate change are based on the outputs
extracted from these models. However, these
models fail to represent the local climate
variations that take place at finer scales, due to
the coarse spatial resolution. During the last
decade several downscaling methods have
been developed for assessing the GCM large-
scale outputs at the local scale (3). Dynamic
downscaling and statistical downscaling are
considered as the two most common
downscaling approaches (4, 5). However,
statistical downscaling is one of the most
widely used approaches in downscaling large-
scale atmospheric parameters to local scale. In
general, these methods were developed to
recognize quantitative relationship between
large-scale climatic predictors and local
parameters (4, 6, 7). Statistical downscaling
approaches are cheap, easy to use and
computationally efficient (7). The application
of machine learning methods as statistical
downscaling techniques has attracted more
attention since the last decade (8, 9, 10). For
example, Mendes and Marengo (2010)
employed artificial neural network and
autocorrelation techniques as a statistical
downscaling model for downscaling GCM
outputs in the Amazon basin that resulted in an
accurate and consistent outcome regarding the
reproduction of daily precipitation properties
(11). In order to downscale the maximum and
minimum daily temperature from GCM
outputs to local scale, the accuracy of least-
square support vector machine (LS-SVM),

1992

multivariate  multiple  linear  regression
(MMLR) and multi-site multivariate statistical
downscaling (MMSD) approaches were

evaluated, the results of which indicated better
performance of LS-SVM-based models,
compared to other downscaling models (12).
In order to predict monthly reservoir inflows,
Okkan and Inan (2015) implemented feed
forward neural network (FFNN), LSSVM and
relevance vector machine (RVM), the result of
which showed promising performance of the
RVM (13). In addition, Okkan and Kirdemir
(2016) utilized ANN and LSSVM, the result
of which indicated a good agreement between
the observed and predicted monthly
precipitation values at meteorological stations
(14). Several evolutionary algorithms like
unified particle swarm optimization (UPSO)
(15), imperialist competitive algorithm (ICA)
(16), differential evolution (DE) (17), genetic
algorithm (GA) (18), shuffled frog leaping
algorithm (SFLA) (19) and pruning algorithm
(PA) (20) have also been implemented in order
to determine the network parameters such as
connecting weights.

Due to water scarcity in the Minab basin
(Iran), detailed and accurate precipitation
forecast can help water resource managers to
utilize more effective and sustainable policies.
The current work aims to develop effective
and reliable hybrid downscaling model using
ANN and particle swarm optimization (ANN-
PSO) for downscaling monthly precipitation in
this basin by determining the relevant input
parameters  (predictors) using  Pearson
correlation analysis and compare its
performance with MLP back-propagation
neural network-based downscaling model.
Reanalysis data from NCEP/NCAR were
implemented as large-scale  climatic
parameters (predictors) to calibrate the
approaches and validate the methods.
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2. Materials and Methods
2.1. Study area and data collection

As the study location, Minab basin (56° 51'
07"to 57°53'00" E and 26°51' 31" to 28° 30" 25"
N) covers an area of 10171 km? in the
Hormozgan province, Iran (Fig. 1). It has an
arid and subhumid climate with an annual
average rainfall of 185 mm, 80% of which
pours during winter and autumn. The mean
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monthly maximum and minimum temperature
of the region are 42°C and 20°C, respectively.
As there was only one meteorological station in
the study area, two nearest stations to this basin
were also selected for further research support.
Table 1 represents the monthly rainfall records
of these stations based on the record of the
Iranian Meteorological Organization.

Table 1 Meteorological stations in the study area

Station name Elevation (m) Latitude ("N) Longitude (E)
Kahnooj 469.7 28°03' 57° 75'
Roudan 200 27° 44 5717
Minab 29.6 27°15' 57° 05'
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Figure 1 Location map of the study region in Hormozgan Province
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2.2. Artificial Neural Network

Based on the biological function of the
neurons in human brain, artificial neural
networks (ANNS) are an efficient mathematical
structure that can capture the non-linearity of the
process better than conventional regression
approaches (21). Due to good generalization
ability of ANNSs, a relationship can be found
between model inputs and outputs (22).
Multilayer feed-forward perceptron (MLP)
neural network is reported to be the most popular
type of ANN that is utilized in different areas
such as water resources and environmental
problems. The process of determining the
weights of ANN via a reliable algorithm is called
training process. In this study, Levenberg—
Marquardt (LM) algorithm and particle swarm
optimization were implemented to train the
ANNs. The LM algorithm, as the modified
version of the classic Newton approach for

obtaining an optimum solution to the
optimization problem, is an efficient learning
approach for multi-layer feed-forward networks
(23) has been successfully applied in different
studies (24). In this method, an approximation to
the Hessian matrix is used based on the Eq. 1.

Xy =X —[JTI+]" e )

Where, x is the neural network weights, J
represents the performance criteria Jacobian
matrix and £ and e are regarded as a learning

process parameter and a residual error vector,
respectively. Figure 2 displays a typical MLP
feed-forward network for this study with one
hidden layer. The user defined parameters
utilized in ANN model is presented in Table 2.

Input Layer

Hidden Layer

Output Layer

Input variable 1

N
Input variable 2 ‘4%

Input variable n ‘

6%/%\6

* Output

Figure 2 A schematic architecture of the feed-forward three-layer ANN for the study area

Table 2 The selected parameters for the proposed downscaling model

Number of layers
Neurons

Number of iteration

Activation function in hidden layer
Activation function in output layer
Learning rule

3
Inputs: 4
Hidden: 20
Output: 1
1000
Tangent sigmoid
Pure linear
Levenberg-Marquardt
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2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) has been
proposed by Eberhart and Kennedy (25) as a
global optimization algorithm for the problems
in which a point or surface represents the best
solution in a multi-dimensional space. PSO is
based on a set of random particles (potential
solutions) with random velocities and positions.
Particles are absorbed by the position of the
best fitness historically obtained by their
experience (local best) and by the best among
the neighbors of each particle (global best) (26).
Each particle is able to search based on both
local and global best. New velocity of each
particle is determined based on distance from
personal best and global best position. In the
next iteration, random weights are determined
to personal best and global position velocities to
create a new value for the particle velocity (26).
PSO is regarded as an efficient algorithm to
determine the global optimum with a large
probability and high convergence rate (27).
Therefore, this method was implemented to
train the MLP models in the current study.

2.4. Training
optimization
As already mentioned, PSO algorithm is

utilized for training the network to obtain a set
of weights which minimizes the training error
and the fitness function should be the mean
square error of the network with the training
data set.

Egs. 2 and 3 were used to train the network by

PSO:

using particle swarm

Vit =V +on (R =X+, (P -X) ()

Xit+l — Xlt +Vit+l (3)

1995
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Where, Vit represents the velocity vector at

iteration t, ry and r, indicate random numbers in
the range from 0 to 1, ¢, and c, are regarded as

learning factors and positive constants. Eqg. 2
was employed to calculate the new velocity of
the particle based on its previous velocity and
the distance of its current position from the best
experiences both individually and as a group.

P' denotes the best position of particle i, and P,
represents the global best position in the swarm
until iteration t, Xit refers to the position vector

for the particle i and @ represents the inertia
weight. Figure 3 illustrates the basic PSO
procedure in optimizing ANN.

2.5. Evaluation criteria

Coefficient determination (R?) and root
mean square error (RMSE) were used to assess
the performance of the two ANN models
developed in this study. In order to obtain these
two evaluation criteria, Egs. 4 and 5 were used:

1) Root-mean-square error (RMSE)

2. (R-0)’
RMSE = {(12 ()
n
2) Coefficient of determination (R?)
(0,-0) (7.7
L ) o

Where, Piand O; represnet the simulated and
observed values, respectively, and n indicates
the total number of data.
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%
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A
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fitness, Update particle best
A
Update particle velocity
A
Update particle position
Figure 3 A basis flowchart for PSO algorithm (28)
3. Results from the NCEP/NCAR data set is regarded as
In the current study, NCEP/NCAR an important process. However, among the

reanalysis data set prepared by National Centers
for Environmental Prediction was implemented
to select the predictors (29). This data set have
different time resolutions from hours to a month
to represent climatic conditions at different
levels of the atmosphere, which are available
from 1948 till now with a spatial resolution of
2.5 * 2.5. NCEP/NCAR reanalysis data set
archive has been utilized in several statistical
downscaling studies (30, 31, 32). The selection
of large-scale climatic variables (predictors)

1996

reanalysis data set for each station in National
Center for Environmental Prediction and
National Center for Atmospheric Research
(NCEP/NCAR), the most relevant large scale
atmospheric parameters were selected via the
Pearson correlation analysis (6, 33). The best
set of predictors, which have good correlation
coefficient are mean sea level pressure (slp),
500 hPa geopotential height (hgt), 850 hPa
geopotential (hgt), precipitation (prate), 500
hPa relative humidity (rhum) and air
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temperature (2m) with R = 0.692, 0.678, 0.661,
0.639, 0.599 and 0.586, respectively.

Table 3 represents the final optimum large
scale  atmospheric  variables of  the
NCEP/NCAR dataset which were employed in
the current study. For downscaling models in
each station, some predictors such as Mean sea
level pressure, 500 hPa specific humidity,
precipitation, air temperature, 500 hPa and 850
hPa geopotential heights were used in this study
and the mean precipitation of the Minab basin
was considered as the predictant (Table 3).

Two soft-computing approaches were
developed to build a model to downscale
monthly precipitation in the Minab basin. Based
on the first approach, ANN model was trained
by LM algorithm. In this model, sigmoid and
linear transfer functions are applied in the
hidden and output layer, respectively.
Regarding the second approach, PSO was
utilized as a neural network optimization

ECOPERSIA (2017) Vol. 5(4)

algorithm and the mean square error utilized as
a cost function in this model. The main purpose
of implementing PSO is to minimize the cost
function. The first 80% of the predictor and
observed precipitation data were implemented
to calibrate the model and the rest of the
obtained data was used for validating the
model. The root mean square error (RMSE) and
coefficient of determination (R?) were used to
evaluate the model performances in calibration
and validation. Further, trial and error process
was implemented to determine the optimum
structure of ANN-PSO and ANN-LM models
including the number of hidden layers, the
number of iterations and the number of the
nodes in the hidden layers for gaining precise
output (34, 35). Finally, the ANN-LM was
utilized with the same data sets used in the
ANN-PSO in order to assess the performance of
the ANN-PSO model.

Table 3 Optimal combination of large scale climatic predictors utilized in the ANN-PSO and ANN-LM
models in each station with their respective elevations

Station Large scale parameters
Kahnooj

precipitation (kgm?)
Roudan

(%), precipitation (kgm2)
Minab

precipitation (kgm-)

Mean sea level pressure (hPa), 500 hPa geopotential, 850 hPa geopotential,
Mean sea level pressure (hPa), 500 hPa geopotential, 500 hPa relative humidity

Mean sea level pressure (hPa), 500 hPa geopotential, air temperature (2m) (°C),

Table 4 Statistical parameters of model performance metrics in terms of RMSE and R? for the different

soft-computing models tested in all the stations

Stations Methods Training phase Testing phase
RMSE R? RMSE R?

Kahnooj ANN-PSO 22.3 0.719 14.3 0.704
ANN-LM 235 0.683 15.6 0.654
Roudan ANN-PSO 21.4 0.758 20.69 0.691
ANN-LM 23.3 0.698 20.9 0.677
Minab ANN-PSO 23.72 0.752 19.07 0.675
ANN-LM 26.6 0.681 19.2 0.639

1997
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The values of R? and RMSE at each station
are presented in Table 4. The R? for the ANN-
PSO model ranged from 0.719 to 0.758 for the
training data set and from 0.675 to 0.704 for the
testing data set. Similarly, RMSE ranged from
21.4 mm to 23.72 mm for the training data set
and from 14.3 mm to 20.69 mm for the testing
data set. For the training data set, the R? ranged
from 0.681 to 0.698 for the ANN-LM model
while it ranged from 0.639 to 0.677 for the
testing data set. In addition, RMSE ranged from
23.3 mm to 26.6 mm for the training data set
while it ranged from 15.6 mm to 20.9 mm for
the testing data set. The most appropriate ANN-
PSO models for Kahnooj, Roudan and Minab

140

stations had a testing RMSE of 14.3 mm, 20.69
mm and 19.07 mm, respectively (Table 4),
which indicated the superiority of the best
ANN-PSO model to the best ANN-LM model,
which had a testing RMSE of 15.6 mm, 20.9
mm and 19.2 mm for the mentioned stations.
As shown in Table 4, the best ANN-PSO
models had a testing R? of 0.7049, 0.6914 and
0.675 for Kahnooj, Roudan and Minab,
respectively, which were more efficient, in
comparison to the best ANN-LM models,
involving a testing R? of 0.654, 0.677 and
0.639 for the mentioned stations. The higher R?
value indicates that the ANN-PSO model is
more precise, comapred to ANN-LM model.
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Figure 4 Comparison of the ANN-PSO estimated daily precipitation with the observed daily precipitation in the
testing period at Kahnooj station
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Figure 5 Comparison of the ANN-PSO estimated daily precipitation with the observed daily precipitation in the
testing period at Roudan station
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Figure 6 Comparison of the ANN-PSO estimated daily precipitation with the observed daily precipitation in the
testing period at Minab station
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Figure 7 Scatter plots of the observed and downscaled precipitation for training and testing phases at Kahnooj
station
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Figure 8 Scatter plots of the observed and downscaled precipitation for training and testing phases at Roudan
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Figure 9 Scatter plots of the observed and downscaled precipitation for training and testing phases at Minab

Figures 4 to 6 illustrate the observed and
downscaled precipitation for the three stations
during the testing period for ANN-PSO models.
Regarding the results of these figures and Table
4, the model performance was superior for the
ANN-PSO model, as indicated by greater R?

station

2000

and lower RMSE values, compared with those
for the ANN-LM model. Figures 7 to 9 display
scatter plots of the predicted and observed data
during the training and testing periods phase at
the Kahnooj, Roudan and Minab for ANN-PSO
model. Scatter plots between the observed and
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predicted precipitation are implemented as a
useful visual aid to assess the accuracy of a
model. The model is more efficient when the
scatter points are closer to the line of the best
fit. As shown in Table 4, the ANN-PSO model
has scattered less around the best fit line,
compared to the ANN-LM models for all
stations. Comparison of model efficiency
coefficient (R?) between the ANN-PSO model
and the ANN-LM maodel, presented in Figures 7
to 9, reveals that the ANN-PSO model has
outperformed the ANN-LM model in both the
training (calibration) period and in the testing
(validation) period. In the validation period, the
ANN-PSO model has higher efficiency than the
ANN-LM model for all stations, which
indicates a significant improvement over the
ANN-LM model results. In conclusion, the
best ANN-PSO model provided more accurate
results at three sites under study, in comparsion
to the ANN-LM model for forecating
precipitation.

4. Discussion and Conclusion

Various artificial intelligence methods have
been wused (e.g., ANN, SVM, GP) for
downscaling GCM outputs (36, 37, 38, 39, 40,
41). Fistikoglu and Okkan (4) applied ANN
model in estimating monthly precipitation and
they found R? value as 0.64; Hashmi et al. (5)
used gene expression programming for
modeling watershed precipitation and they
found R? of 0.5 in the test period. Sachindra et
al. (33) used SVM for modeling catchment
stream flow and found R? of 0.65 in the test
period. It is clear from the Table 4 that the
ANN-PSO and ANN-LM generally provided
accurate results in modeling precipitation with
respect to R? criteria. For the ANN-PSO model,
the R? values are higher than 0.65 in the testing
phase for all stations, showing better
performance compared with the previous
studies. It shows robustness and accuracy of the

2001
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ANN-PSO-based model to downscaling GCM
outputs to monthly precipitation.

In the current study, a comparative statistical
downscaling analysis was undertaken to
evaluate the ANN-PSO based as a statistical
downscaling tool. Monthly precipitation time
series of the Minab basin in Iran were
downscaled using ANN-PSO. The ANN-LM
model results were utilized as a benchmark for
analyzing the downscaled results of the ANN-
PSOmodel. A comparison was made between
the estimates provided by the ANN-PSO model
and the ANN-LM with respect to root mean
square error, determination coefficient, time
variation and scatter plot graphs. Based on the
results, the training and the testing period of
each station indicated that ANN-PSO can be
utilized to downscale the NCEP/NCAR data set
to station scale. Furthermore, ANN, coupled
with PSO, consistently performed better,
compared to ANN-LM model for downscaling
coarse-scale climatic variables to monthly
precipitation in the study area. This method
proved to be more reliable in regenerating
monthly precipitation time series, especially for
future climate change assessment at the basin
scale. Therefore, this model can be
implemented to identify the optimal strategies
that can allow for the sustainable management
of the water resources in the Minab basin under
the future climate.

Conflict of Interest

The authors declare that there is no conflict
of interests regarding the publication of this
manuscript.

Acknowledgement

The authors express their thanks to the
Iranian  Meteorological  Organization for
providing the precipitation data to conduct the
study.



Meysam Alizamir et al.

ECOPERSIA (2017) Vol. 5(4)

Authors’ Contributions
All authors were involved in all stages of the
article.

Funding/Support
The authors would like to thank of Sistan

and

Baluchestan University for its financial

supports for the research project.

ABBREVIATIONS

ANN Artificial Neural Network

DE Differential Evolution

FENN Feedforward neural network

GA Genetic algorithm

GCM Global Climate Model

hPa Hectopascal

ICA Imperialist competitive algorithm

LM Levenberg—Marquardt

LS-SVM Least Square-Support Vector Machine

MLP Multilayer perceptron

NCAR National Center for Atmospheric Research

NCEP National Center for Environmental
Prediction

PSO Particle swarm optimization

PA Pruning algorithm

RCM Regional climate model

RMSE Root mean square error

RVM Relevance vector machine

R? Coefficient of determination

SDSM Statistical downscaling model

SFLA Shuffled frog leaping algorithm

SVM Support Vector Machine

UPSO Unified particle swarm optimization
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GRAPHICAL ABSTRACT
Global Climate Model Statistical Observations Spatial Target station
~100-250 km downscaling Precipitation time series transfer e.g. Minab station

HIGHLIGHTS
The ability of an optimized ANN based on PSO is investigated for downscaling monthly precipitation
in the Minab basin.

> The explanatory large-scale atmospheric variables (predictors) were selected among
NCEP/NCAR reanalysis data set based on Pearson correlation analysis.

> The ANN-PSO based downscaling model outperformed the ANN model with regard to
precipitation downscaling for all stations.

> The hybrid models increase the RMSE accuracy of the ANN model by 8.5% for Kahnooj
station, 1.2% for Roudan station and 1.1% for Minab station.
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