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Background: Prediction of future climate change is based on output of global climate models (GCMs). 

However, because of coarse spatial resolution of GCMs (tens to hundreds of kilometers), there is a need to 

convert GCM outputs into local meteorological and hydrological variables using a downscaling approach. 

Downscaling technique is a method of converting the coarse spatial resolution of GCM outputs at the regional 

or local scale. This study proposed a novel hybrid downscaling method based on artificial neural network 

(ANN) and particle swarm optimization (PSO) algorithm. 

Materials and Methods: Downscaling technique is implemented to assess the effect of climate change on a 

basin. The current study aims to explore a hybrid model to downscale monthly precipitation in the Minab 

basin, Iran. The model was proposed to downscale large scale climatic variables, based on a feed-forward 

ANN optimized by PSO. This optimization algorithm was employed to decide the initial weights of the neural 

network. The National Center for Environmental Prediction and National Centre for Atmospheric Research 

reanalysis datasets were utilized to select the potential predictors. The performance of the artificial neural 

network-particle swarm optimization model was compared with artificial neural network model which is 

trained by Levenberg–Marquardt (LM) algorithm. The reliability of the models were evaluated by using root 

mean square error and coefficient of determination (R2). 

Results: The results showed the robustness and reliability of the ANN-PSO model for predicting the 

precipitation which it performed better than the ANN-LM. It was concluded that ANN-PSO is a better 

technique for statistically downscaling GCM outputs to monthly precipitation than ANN-LM. 

Discussion and Conclusions: This method can be employed effectively to downscale large-scale climatic 

variables to monthly precipitation at station scale. 

  

Keywords: Artificial neural network (ANN), Climate change, Multi-layer perceptron, Particle swarm 

optimization (PSO), Statistical downscaling 
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1. Background 

Human activities are considered as the 

main reasons for increasing the concentration 

of CO2 and other greenhouse gases in the 

atmosphere, which lead to a changing climate 

system (1, 2). Global climate models, which 

describe the climatic patterns by mathematical 

equations, are the most reliable and efficient 

tools for studying the effect of climate 

variation at coarse scale and predicting future 

climate change are based on the outputs 

extracted from these models. However, these 

models fail to represent the local climate 

variations that take place at finer scales, due to 

the coarse spatial resolution. During the last 

decade several downscaling methods have 

been developed for assessing the GCM large-

scale outputs at the local scale (3). Dynamic 

downscaling and statistical downscaling are 

considered as the two most common 

downscaling approaches (4, 5). However, 

statistical downscaling is one of the most 

widely used approaches in downscaling large-

scale atmospheric parameters to local scale. In 

general, these methods were developed to 

recognize quantitative relationship between 

large-scale climatic predictors and local 

parameters (4, 6, 7). Statistical downscaling 

approaches are cheap, easy to use and 

computationally efficient (7). The application 

of machine learning methods as statistical 

downscaling techniques has attracted more 

attention since the last decade (8, 9, 10). For 

example, Mendes and Marengo (2010) 

employed artificial neural network and 

autocorrelation techniques as a statistical 

downscaling model for downscaling GCM 

outputs in the Amazon basin that resulted in an 

accurate and consistent outcome regarding the 

reproduction of daily precipitation properties 

(11). In order to downscale the maximum and 

minimum daily temperature from GCM 

outputs to local scale, the accuracy of least-

square support vector machine (LS-SVM), 

multivariate multiple linear regression 

(MMLR) and multi-site multivariate statistical 

downscaling (MMSD) approaches were 

evaluated, the results of which indicated better 

performance of LS-SVM-based models, 

compared to other downscaling models (12). 

In order to predict monthly reservoir inflows, 

Okkan and Inan (2015) implemented feed 

forward neural network (FFNN), LSSVM and 

relevance vector machine (RVM), the result of 

which showed promising performance of the 

RVM (13). In addition, Okkan and Kirdemir 

(2016) utilized ANN and LSSVM, the  result 

of  which indicated a good agreement between 

the observed and predicted monthly 

precipitation values at meteorological stations 

(14). Several evolutionary algorithms like 

unified particle swarm optimization (UPSO) 

(15), imperialist competitive algorithm (ICA) 

(16), differential evolution (DE) (17), genetic 

algorithm (GA) (18), shuffled frog leaping 

algorithm (SFLA) (19) and pruning algorithm 

(PA) (20) have also been implemented in order 

to determine the network parameters such as 

connecting weights.  

Due to water scarcity in the Minab basin 

(Iran), detailed and accurate precipitation 

forecast can help water resource managers to 

utilize more effective and sustainable policies. 

The current work aims to develop effective 

and reliable hybrid downscaling model using 

ANN and particle swarm optimization (ANN-

PSO) for downscaling monthly precipitation in 

this basin by determining the relevant input 

parameters (predictors) using Pearson 

correlation analysis and compare its 

performance with MLP back-propagation 

neural network-based downscaling model. 

Reanalysis data from NCEP/NCAR were 

implemented as large-scale climatic 

parameters (predictors) to calibrate the 

approaches and validate the methods.  
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2. Materials and Methods 

2.1. Study area and data collection 

As the study location, Minab basin (56◦ 51' 

07'' to 57◦ 53' 00'' E and 26◦ 51' 31'' to 28◦ 30' 25'' 

N) covers an area of 10171 km2 in the 

Hormozgan province, Iran (Fig. 1). It has an 

arid and subhumid climate with an annual 

average rainfall of 185 mm, 80% of which 

pours during winter and autumn. The mean 

monthly maximum and minimum temperature 

of the region are 42◦C and 20◦C, respectively. 

As there was only one meteorological station in 

the study area, two nearest stations to this basin 

were also selected for further research support. 

Table 1 represents the monthly rainfall records 

of these stations based on the record of the 

Iranian Meteorological Organization. 

 

Table 1 Meteorological stations in the study area 

Station name Elevation  (m) Latitude (◦N) Longitude (◦E) 

Kahnooj 469.7 28◦ 03' 57◦ 75' 

Roudan 200 27◦ 44' 57◦ 17' 

Minab 29.6 27◦ 15' 57◦ 05' 

 

 
 

Figure 1 Location map of the study region in Hormozgan Province  
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2.2. Artificial Neural Network 

Based on the biological function of the 

neurons in human brain, artificial neural 

networks (ANNs) are an efficient mathematical 

structure that can capture the non-linearity of the 

process better than conventional regression 

approaches (21). Due to good generalization 

ability of ANNs, a relationship can be found 

between model inputs and outputs (22). 

Multilayer feed-forward perceptron (MLP) 

neural network is reported to be the most popular 

type of ANN that is utilized in different areas 

such as water resources and environmental 

problems. The process of determining the 

weights of ANN via a reliable algorithm is called 

training process. In this study, Levenberg–

Marquardt (LM) algorithm and particle swarm 

optimization were implemented to train the 

ANNs. The LM algorithm, as the modified 

version of the classic Newton approach for 

obtaining an optimum solution to the 

optimization problem, is an efficient learning 

approach for multi-layer feed-forward networks 

(23) has been successfully applied in different 

studies (24). In this method, an approximation to 

the Hessian matrix is used based on the Eq. 1. 
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Where, x is the neural network weights, J 

represents the performance criteria Jacobian 

matrix and  and e are regarded as a learning 

process parameter and a residual error vector, 

respectively. Figure 2 displays a typical MLP 

feed-forward network for this study with one 

hidden layer. The user defined parameters 

utilized in ANN model is presented in Table 2. 

 

 
 

Figure 2 A schematic architecture of the feed-forward three-layer ANN for the study area 

 

Table 2 The selected parameters for the proposed downscaling model 

Number of layers 3 

Neurons Inputs: 4 

 Hidden: 20 

 Output: 1 

Number of iteration 1000 

Activation function in hidden layer  

Activation function in output layer 

Tangent sigmoid  

Pure linear 

Learning rule Levenberg-Marquardt 
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2.3. Particle Swarm Optimization 

Particle swarm optimization (PSO) has been 

proposed by Eberhart and Kennedy (25) as a 

global optimization algorithm for the problems 

in which a point or surface represents the best 

solution in a multi-dimensional space. PSO is 

based on a set of random particles (potential 

solutions) with random velocities and positions. 

Particles are absorbed by the position of the 

best fitness historically obtained by their 

experience (local best) and by the best among 

the neighbors of each particle (global best) (26). 

Each particle is able to search based on both 

local and global best. New velocity of each 

particle is determined based on distance from 

personal best and global best position. In the 

next iteration, random weights are determined 

to personal best and global position velocities to 

create a new value for the particle velocity (26). 

PSO is regarded as an efficient algorithm to 

determine the global optimum with a large 

probability and high convergence rate (27). 

Therefore, this method was implemented to 

train the MLP models in the current study. 

 

2.4. Training using particle swarm 

optimization 

As already mentioned, PSO algorithm is 

utilized for training the network to obtain a set 

of weights which minimizes the training error 

and the fitness function should be the mean 

square error of the network with the training 

data set.  

Eqs. 2 and 3 were used to train the network by 

PSO: 
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Where, 
t

iV represents the velocity vector at 

iteration t, r1 and r2 indicate random numbers in 

the range from 0 to 1, 
1c and 

2c are regarded as 

learning factors and positive constants. Eq. 2 

was employed to calculate the new velocity of 

the particle based on its previous velocity and 

the distance of its current position from the best 

experiences both individually and as a group.

t

iP denotes the best position of particle i, and
t

gP  

represents the global best position in the swarm 

until iteration t, 
t

iX  refers to the position vector 

for the particle i and   represents the inertia 

weight. Figure 3 illustrates the basic PSO 

procedure in optimizing ANN. 

 

2.5. Evaluation criteria 

Coefficient determination (R2) and root 

mean square error (RMSE) were used to assess 

the performance of the two ANN models 

developed in this study. In order to obtain these 

two evaluation criteria, Eqs. 4 and 5 were used: 

 

1) Root-mean-square error (RMSE) 
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2) Coefficient of determination (R2) 
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(5) 

 

Where, Pi and Oi represnet the simulated and 

observed values,  respectively, and n indicates 

the total number of data. 
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Figure 3 A basis flowchart for PSO algorithm (28) 

 

3. Results  

In the current study, NCEP/NCAR 

reanalysis data set prepared by National Centers 

for Environmental Prediction was implemented 

to select the predictors (29). This data set have 

different time resolutions from hours to a month 

to represent climatic conditions at different 

levels of the atmosphere, which  are available 

from 1948 till now with a spatial resolution of 

2.5◦ * 2.5◦. NCEP/NCAR reanalysis data set 

archive has been utilized in several statistical 

downscaling studies (30, 31, 32). The selection 

of large-scale climatic variables (predictors) 

from the NCEP/NCAR data set is regarded as 

an important process. However, among the 

reanalysis data set for each station in National 

Center for Environmental Prediction and 

National Center for Atmospheric Research 

(NCEP/NCAR), the most relevant large scale 

atmospheric parameters were  selected via the 

Pearson correlation analysis (6, 33). The best 

set of predictors, which have good correlation 

coefficient are mean sea level pressure (slp), 

500 hPa geopotential height (hgt), 850 hPa 

geopotential (hgt), precipitation (prate), 500 

hPa relative humidity (rhum) and air 
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temperature (2m) with R = 0.692, 0.678, 0.661, 

0.639, 0.599 and 0.586, respectively. 

Table 3 represents the final optimum large 

scale atmospheric variables of the 

NCEP/NCAR dataset which were employed in 

the current study. For downscaling models in 

each station, some predictors such as Mean sea 

level pressure, 500 hPa specific humidity, 

precipitation, air temperature, 500 hPa and 850 

hPa geopotential heights were used in this study 

and the mean precipitation of the Minab basin 

was considered as the predictant (Table 3).  

Two soft-computing approaches were 

developed to build a model to downscale 

monthly precipitation in the Minab basin. Based 

on the first approach, ANN model was trained 

by LM algorithm. In this model, sigmoid and 

linear transfer functions are applied in the 

hidden and output layer, respectively. 

Regarding the second approach, PSO was 

utilized as a neural network optimization 

algorithm and the mean square error utilized as 

a cost function in this model. The main purpose 

of implementing PSO is to minimize the cost 

function. The first 80% of the predictor and 

observed precipitation data were implemented 

to calibrate the model and the rest of the 

obtained data was used for validating the 

model. The root mean square error (RMSE) and 

coefficient of determination (R2) were used to 

evaluate the model performances in calibration 

and validation. Further, trial and error process 

was implemented to determine the optimum 

structure of ANN-PSO and ANN-LM models 

including the number of hidden layers, the 

number of iterations and the number of the 

nodes in the hidden layers for gaining precise 

output (34, 35). Finally, the ANN-LM was 

utilized with the same data sets used in the 

ANN-PSO in order to assess the performance of 

the ANN-PSO model. 

 

Table 3 Optimal combination of large scale climatic predictors utilized in the ANN-PSO and ANN-LM 

models in each station with their respective elevations 

Station Large scale parameters  

Kahnooj Mean sea level pressure (hPa), 500 hPa geopotential, 850 hPa geopotential, 

precipitation (kgm-2) 

Roudan Mean sea level pressure (hPa), 500 hPa geopotential, 500 hPa relative humidity 

(%), precipitation (kgm-2) 

Minab Mean sea level pressure (hPa), 500 hPa geopotential, air temperature (2m) (°C), 

precipitation (kgm-2) 

 

 

Table 4 Statistical parameters of model performance metrics in terms of RMSE and R2 for the different 

soft-computing models tested in all the stations   

Stations  Methods Training phase Testing phase 

RMSE R2 RMSE R2 

Kahnooj ANN-PSO 22.3 0.719 14.3 0.704 

ANN-LM 23.5 0.683 15.6 0.654 

Roudan ANN-PSO 21.4 0.758 20.69 0.691 

ANN-LM 23.3 0.698 20.9 0.677 

Minab ANN-PSO 23.72 0.752 19.07 0.675 

ANN-LM 26.6 0.681 19.2 0.639 
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The values of R2 and RMSE at each station 

are presented in Table 4. The R2 for the ANN-

PSO model ranged from 0.719 to 0.758 for the 

training data set and from 0.675 to 0.704 for the 

testing data set. Similarly, RMSE ranged from 

21.4 mm to 23.72 mm for the training data set 

and from 14.3 mm to 20.69 mm for the testing 

data set. For the training data set, the R2 ranged 

from 0.681 to 0.698 for the ANN-LM model 

while it ranged from 0.639 to 0.677 for the 

testing data set. In addition, RMSE ranged from 

23.3 mm to 26.6 mm for the training data set 

while it ranged from 15.6 mm to 20.9 mm for 

the testing data set. The most appropriate ANN-

PSO models for Kahnooj, Roudan and Minab 

stations had a testing RMSE of 14.3 mm, 20.69 

mm and 19.07 mm, respectively (Table 4), 

which indicated the superiority of the best 

ANN-PSO model to the best ANN-LM model, 

which had a testing RMSE of 15.6 mm, 20.9 

mm and 19.2 mm for the mentioned stations. 

As shown in Table 4, the best ANN-PSO 

models had a testing R2 of 0.7049, 0.6914 and 

0.675 for Kahnooj, Roudan and Minab, 

respectively, which were more efficient, in 

comparison to  the best ANN-LM models, 

involving  a testing R2 of 0.654, 0.677 and 

0.639 for the mentioned stations. The higher R2 

value indicates that the ANN-PSO model is 

more precise, comapred to ANN-LM model. 

  

 
 

Figure 4 Comparison of the ANN-PSO estimated daily precipitation with the observed daily precipitation in the 

testing period at Kahnooj station 

 

 
 

Figure 5 Comparison of the ANN-PSO estimated daily precipitation with the observed daily precipitation in the 

testing period at Roudan station 
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Figure 6 Comparison of the ANN-PSO estimated daily precipitation with the observed daily precipitation in the 

testing period at Minab station 

 

 

 
 

Figure 7 Scatter plots of the observed and downscaled precipitation for training and testing phases at Kahnooj 

station 

 

 

 

0

50

100

150

200

250

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

p
re

c
ip

it
a

ti
o

n
 (

m
m

) 

Month

Observed Predicted

y = 0.6523x + 10.765

R² = 0.7191

0

50

100

150

200

250

300

0 50 100 150 200 250 300

P
re

d
ic

te
d

 p
re

ci
p

it
a
ti

o
n

 (
m

m
)

Observed precipitation (mm)

Kahnooj station (training period)

y = 0.679x + 5.5016

R² = 0.7049

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

P
re

d
ic

te
d

 p
re

ci
p

it
a
ti

o
n

 (
m

m
)

Observed precipitation (mm)

Kahnooj station (testing period)



Meysam Alizamir et al. _______________________________________________ ECOPERSIA (2017) Vol. 5(4) 

2000 

 
 

Figure 8 Scatter plots of the observed and downscaled precipitation for training and testing phases at Roudan 

station 

 

 
 

Figure 9 Scatter plots of the observed and downscaled precipitation for training and testing phases at Minab 

station 
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predicted precipitation are implemented as a 

useful visual aid to assess the accuracy of a 

model. The model is more efficient when the 

scatter points are closer to the line of the best 

fit. As shown in Table 4, the ANN-PSO model 

has scattered less around the best fit line, 

compared to the ANN-LM models for all 

stations. Comparison of model efficiency 

coefficient (R2) between the ANN-PSO model 

and the ANN-LM model, presented in Figures 7 

to 9, reveals that the ANN-PSO model has 

outperformed the ANN-LM model in both the 

training (calibration) period and in the testing 

(validation) period. In the validation period, the 

ANN-PSO model has higher efficiency than the 

ANN-LM model for all stations, which 

indicates a significant improvement over the 

ANN-LM model results.  In conclusion, the 

best ANN-PSO model provided more accurate 

results at three sites under study, in comparsion 

to the ANN-LM model for forecating 

precipitation. 

 

4. Discussion and Conclusion 

Various artificial intelligence methods have 

been used (e.g., ANN, SVM, GP) for 

downscaling GCM outputs (36, 37, 38, 39, 40, 

41). Fistikoglu and Okkan (4) applied ANN 

model in estimating monthly precipitation and 

they found R2 value as 0.64; Hashmi et al. (5) 

used gene expression programming for 

modeling watershed precipitation and they 

found R2 of 0.5 in the test period. Sachindra et 

al. (33) used SVM for modeling catchment 

stream flow and found R2 of 0.65 in the test 

period. It is clear from the Table 4 that the 

ANN-PSO and ANN-LM generally provided 

accurate results in modeling precipitation with 

respect to R2 criteria. For the ANN-PSO model, 

the R2 values are higher than 0.65 in the testing 

phase for all stations, showing better 

performance compared with the previous 

studies. It shows robustness and accuracy of the 

ANN-PSO-based model to downscaling GCM 

outputs to monthly precipitation. 

In the current study, a comparative statistical 

downscaling analysis was undertaken to 

evaluate the ANN-PSO based as a statistical 

downscaling tool. Monthly precipitation time 

series of the Minab basin in Iran were 

downscaled using ANN-PSO. The ANN-LM 

model results were utilized as a benchmark for 

analyzing the downscaled results of the ANN-

PSOmodel. A comparison was made between 

the estimates provided by the ANN-PSO model 

and the ANN-LM with respect to root mean 

square error, determination coefficient, time 

variation and scatter plot graphs. Based on the 

results, the training and the testing period of 

each station indicated that ANN-PSO can be 

utilized to downscale the NCEP/NCAR data set 

to station scale. Furthermore, ANN, coupled 

with PSO, consistently performed better, 

compared to ANN-LM model for downscaling 

coarse-scale climatic variables to monthly 

precipitation in the study area.  This method 

proved to be more reliable in regenerating 

monthly precipitation time series, especially for 

future climate change assessment at the basin 

scale. Therefore, this model can be 

implemented to identify the optimal strategies 

that can allow for the sustainable management 

of the water resources in the Minab basin under 

the future climate. 
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ANN Artificial Neural Network 

DE Differential Evolution 

FFNN Feedforward neural network 

GA Genetic algorithm 

GCM Global Climate Model 

hPa Hectopascal 

ICA Imperialist competitive algorithm 

LM Levenberg–Marquardt 

LS-SVM Least Square-Support Vector Machine 

MLP Multilayer perceptron 

NCAR National Center for Atmospheric Research 

NCEP National Center for Environmental  

Prediction 

PSO Particle swarm optimization 

PA Pruning algorithm 

RCM Regional climate model 

RMSE Root mean square error 

RVM Relevance vector machine 

R2 Coefficient of determination 

SDSM Statistical downscaling model 

SFLA Shuffled frog leaping algorithm 

SVM Support Vector Machine 

UPSO Unified particle swarm optimization 
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GRAPHICAL ABSTRACT 

 
 

  HIGHLIGHTS 

The ability of an optimized ANN based on PSO is investigated for downscaling monthly precipitation 

in the Minab basin. 

 

 The explanatory large-scale atmospheric variables (predictors) were selected among 

NCEP/NCAR reanalysis data set based on Pearson correlation analysis. 

 

 The ANN-PSO based downscaling model outperformed the ANN model with regard to 

precipitation downscaling for all stations. 

 

 The hybrid models increase the RMSE accuracy of the ANN model by 8.5% for Kahnooj 

station, 1.2% for Roudan station and 1.1% for Minab station. 
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نمایی آماری بارش در سازی ازدحام ذرات جهت ریزمقیاسمدل ترکیبی شبکه عصبی مصنوعی و الگوریتم بهینه

 ناحیه خشک 

 

 4پوراکبر شمسی، علی3منفرد، آرمان هاشمی2مقدم، مهدی اژدری*1ضمیرمیثم علی

 

 یستان و بلوچستان، زاهدان، ایران، دانشگاه سگروه مهندسی عمراندانشجوی دکتری،  -1

 یستان و بلوچستان، زاهدان، ایراندانشیار، گروه مهندسی عمران، دانشگاه س -2

 یستان و بلوچستان، زاهدان، ایراناستادیار، گروه مهندسی عمران، دانشگاه س -3

 ه جغرافیا، دانشگاه تهران، ایراندانشیار، دانشکد -4

 

  1331دی  11: تاریخ چاپ/  1331 مهر 21: تاریخ پذیرش/  1331تیر  11 :تاریخ دریافت

 

 هااین مدل باشد. با توجه به اینکههای جهانی اقلیمی میهای مدلهای آتی براساس خروجیبینی تغییر اقلیم در سالپیش مقدمه:

به متغیرهای هواشناسی و هیدرولوژیکی در مقیاس  گردانیهستند، نتایج آنها باید با استفاده از یک روش ریز مقیاس بزرگ مقیاس

های درشت مقیاس مدلهای جهانی اقلیمی در سطح برگرداندن خروجی برایروشی  ،گردانیتبدیل شوند. در واقع ریز مقیاس محلی

الگوریتم ازدحام  گردانی ترکیبی براساس شبکه عصبی مصنوعی ومقیاس باشد. در این تحقیق یک روش نوین ریزمحلی میای یا منطقه

 ذرات ارایه شده است.

گردانی مورد استفاده قرار گرفته است. هدف این تحقیق، مقیاس ریز فنارزیابی اثر تغییر اقلیم بر حوزه آبریز، یک  برای ها:مواد و روش

باشد. مدل پیشنهاد میناب در ایران می آبریز بارش ماهانه در حوزه آماری گردانیمقیاس ریز برایارزیابی عملکرد یک مدل ترکیبی 

گردانی متغیرهای بزرگ مقیاس جوی، براساس شبکه عصبی مصنوعی است که با استفاده از الگوریتم ازدحام مقیاس شده جهت ریز

گ مقیاس های بزرهای اولیه شبکه عصبی بکار گرفته شده است. دادهسازی گردیده است. این الگوریتم جهت تعیین وزنذرات، بهینه

جذر میانگین ها از جهت ارزیابی دقت مدلاند. ها انتخاب گردیدهبینی کننده، جهت انتخاب پیشNCEP/NCARجوی باز آنالیز شده 

مارکوات -عملکرد مدل ترکیبی با مدل شبکه عصبی که با استفاده از الگوریتم لونبرگ .شده استمربعات خطا و ضریب تبیین استفاده 

 آموزش دیده است، مقایسه گردید.

بینی بارش دقت و قابلیت اطمینان مدل ترکیبی شبکه عصبی و لگوریتم ازدحام ذرات در پیش نتایج این تحقیق حاکی از نتایج:

در نتیجه مدل ترکیبی، روشی کارآمد  باشد.مارکوات می-ل شبکه عصبی و الگوریتم لونبرگباشد که دارای عملکرد بهتری نسبت مدمی

 باشد.های جهانی اقلیمی به بارش ماهانه میخروجی مدل آماری مقیاس گردانی برای ریز

بزرگ مقیاس به بارش گردانی متغیرهای آب و هوایی مقیاس ثری در ریزوتوان به طور مروش ارایه شده را میگیری: بحث و نتیجه

 ماهانه در مقیاس ایستگاهی بکار گرفت.

 

 شبکه عصبی مصنوعیریزمقیاس گردانی آماری،  تغییر اقلیم،پرسپترون چندلایه،  ،سازی ازدحام ذراتبهینه کلمات کلیدی: 

  


