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ABSTRACT The effects of different climatic, soil, geometric, and management factors on soil
organic carbon (SOC) degradation and sequestration potential was evaluated in the semi-arid zone
of Mereg watershed, west of Iran. Two nonparametric methods, viz. Classification and Regression
Tree (CART) and feed forward back propagation Artificial Neural Network (ANN) were
compared with parametric Multivariate Linear Regression (MLR) in estimation of SOC content.
Soil sampling was conducted using randomized systematic method in work unit map by overlying
soil, aspect and slope maps. Results indicated that linear models had higher prediction errors. The
CART with all variables (physical and management) and the ANN with 31-2-1 topology carried
the highest predictive capability, explaining 81% and 76% of SOC variability, respectively. ANN
models overestimated SOC content and showed a higher capability to detect the effects of
management factors on SOC variations. In all the methods, management factors dominantly

controlled SOC stock sequestration or degradation in different land use.
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1 INTRODUCTION

Soil is an important resource that fundamentally
supports the sustainability of life in ecosystems,
while also acting as a buffer to global climatic
change (Sparling et al., 2006; Attaeian, 2016).
Soil organic carbon (SOC) stock acts as a sink
or source of terrestrial C, affecting the
concentration of atmospheric CO, and playing
most important role to mitigate climate
changes. These roles can be managed through
proper land use activities (Tan and Lal, 2005;
Sharma et al., 2014). Soils in semiarid
conditions can be considered as more efficient
source to sequester atmospheric CO, and,

therefore, in mitigating climate change (Lal,
2008). Theoretically, SOC variability can be
controlled by climatic and geometrical factors
as well as soil type. In dry and sub-humid
conditions, Han et al. (2009) indicated that
SOC variability was mostly controlled by
geometric variables especially slope gradient
and aspect. Mismanagement and land use
change was found to decrease 49% of
rudimentary SOC in arid and semiarid
conditions (Evrendilek et al., 2009). Heshmati
et al. (2015) revealed that SOC spatial
variability was strongly influenced by land use
change and management agents as compared
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with physical factors. Therefore, it is important
to delineate and quantify the effects of different
physical (soil, geometric and climatic factors)
and management factors along with their
interactions on SOC variability, especially in
semiarid conditions.

Application of such statistical methods as
MLR to delineate the effects of physical and
management factors on SOC variability were
prevailed. To avoid some limitations of these
methods, including over simplification,
ignorance of complex nonlinear interactions,
such nonlinear systems as CART and ANN
that use nonparametric methods can be
employed (Zhang, 2004; Mc Cullagh, 2005).
The potential benefits of these methods are
greater reliability of prediction and solving
complex problems involving nonlinearity and
uncertainty (Spencer et al., 2006). They have
been  successfully applied to predict
pedotransfer functions (Amini et al., 2005;
Sarmadian et al., 2009), pedometric use (Mc
Bratney et al., 2002), as well as environmental
correlation of soil spatial variability (Park and
Vlek, 2002).

This study was conducted to quantify
relative importance of factors controlling SOC
variability leading to atmospheric carbon
sequestration in soil at watershed scale across
rainfed, forest and range lands in semiarid
environments of Iran. Applied methods
included MLR method as linear and
parametric approach along with ANN, and
CART methods as nonlinear nonparametric
approaches. Stepwise elimination (in MLR
algorithm) and sensitivity analysis (in ANN
method) on 31 exploratory variables were
carried out. These techniques were applied to
determine the relative importance of physical
and management variables for controlling SOC
stock variability in semiarid environments.
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2 MATERIALS AND METHODS

2.1 Site description

The study site was situated 693800,
694600E and 3769700-3770600N in the
Mereg watershed of Kermanshah province,
west of Iran (Figure 1), with an elevation
range of 1450 -1850 m, cold semi-arid and
mean annual precipitation of about 500 mm.
Soil temperature and moisture regimes are
Mesic and Xeric, respectively (APERI, 2004).
Soils texture ranges from clay to silt covered
with about 25-60% of fine to coarse gravel in
highlands. The pH varied between 7.3-7.9, EC
0.4 - 0.8 (ds m™), and 4-60% of lime content
in topsoil. The site covers about 14500 ha of
rainfed crop land, dominantly under wheat and
pea rotation (APERI, 2004).

2.2 Soil sampling and data set

A randomized systematic sampling design was
used on work unit map based on soil
classification, slope, and aspect maps. Finally,
245 strata were separated after preparing work
unit map and in total 199 soil samples were
taken from topsoil (0-30 cm) after elimination
of similar work unit in field work. Situation of
sampling points across the land cover map
plotted in Figure 1. Soil samples, collected in
the designated land uses (forest, range and
agriculture), were air dried before measuring
their organic carbon contents in laboratory.
Some other soil physicochemical properties
were also determined, including percentages of
total neutralizable value (TNV) by titration
with normal NaOH, sand, silt, and clay by
hydrometric methods, and saturation percent
(SP) (Nelson et al., 1996).
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Figure 1 Site position and sampling points across land cover map of Mereg watershed

Also, some climatic variables, including mean
annual temperature (MAT) and rainfall (MAR),
potential evapotranspiration (ETP), and climate
types (Ctype) were determined, using the
Amberger method (APERI, 2004). Topographic
variables, including elevation (Elev), slope (P),
and aspect of the sampling site terrain were also
determined. Such geometric factors as
curvature (Curv), and terrain parameter were
derived from 1:50000 Digital Elevation Model
(DEM), prepared as based upon digitized
contour line map of 20 meter vertical lag apart.
The transformed aspect (TA), which aligns the
index along a SW-NE axis, was calculated for
sampling points according to Beers et al.
(1966), using the following equation:

TA = cos(45 — aspect) (1)
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TAP parameter was calculated by multiplying
TA by the sine value of slope angle. This
parameter was employed to incorporate the
effects of slope on direct-beam radiation (Beers
et al. 1966). To investigate the management
effects, using collected data from field study, 13
raw quantified and three combined sets of
scenario indices, as management variables,
were defined. The 13 primary variables
included field size in ha, as ownership index
(Oh), mannuring (Mn), legume and cereal
frequency in rotations (L.F and C.F),
prevalence of winter fallow (Wf), crop residue
grazing (Gc), straw harvesting (Sh), burning of
straw (Sb), domestic density (Dd), machinery
energy consumption (E) (Mj ha™* year™), tillage
index (Tingex), plough direction (Pg;), and finally
accelerated soil degradation class (Er). Crop
residual related variables (Gc, Sh, and Sbh) were
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selected to define crop residue management
scenario (Ssen) variables by clustering them
through K-means clustering. Also tillage
management scenario index (Tsen) was defined
by classifying tillage related variables (E, Tingex,
and Pg) with K-means clustering. Third
management scenario variable was made by
combining rotation related variables (Wf, L.F, and
C.F) with K-means clustering. This variable is
defined as rotation management system (Rsen)
variable. Before processing the algorithm, the data
set was split into training set (60%), testing set
(20%) and cross validation set (20%).

2.3 Multiple Linear Regressions (MLR)

Two MLR equations were constructed using
XLSTAT software. The first model was linearly
developed by all 31 exploratory variables. In the
second model, Stepwise Regression (SR) was
applied to develop a regression model for
predicting SOC (Sarmadian et al., 2009). All the
data sets were randomly divided three series
including training, validation and test series.
Validation data set was used to validate the MLR
models, whereas test data set was applied to test
the performances of the MLR equations.

2.4 Development of ANNs

A typical ANN consists of interconnected
processing elements, including an input layer, one
or more hidden layers, and an output layer which
provides the answer to the presented pattern
(Demuth et al., 2009). The input layer contains
the input variables for the network while the
output layer containing the desired output system
and the hidden layer often consisting of a series of
neurons associated with transfer functions. The
total error at the output layer is distributed back to
the ANN and the connection weights being
adjusted. This  process of feed-forward
mechanism and back propagation (BP) of errors
and weight adjustment is repeated iteratively until
convergence in terms of an acceptable level of
error is achieved (Krenker et al., 2011). In this
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study, gradient descent with momentum (GDM)
algorithm was used for speeding up BP using
Neuralsolution software.

2.5 Classification Trees

(CART)

The CART represents a unification methodology
of all tree-based classification and prediction
methods. It transforms the regression tree models
in a conspicuous nonparametric alternative to the
classical methods of regression (Breiman et al.
1984). The CART algorithm creates a set of
guestions that consist of all possible questions
concerning the measured variables. Then splitting
criterion was done by maximum likelihood,
creating a tree with one node containing all the
training data using XLSTAT software. To avoid
overtraining, pruning the tree was made through
V-fold cross-validation (Spencer et al., 2006).

The best split is chosen to maximize a splitting
criterion. When the impurity measure for a node
can be defined, the splitting criterion corresponds
to a decrease in impurity. Least-square deviation
(R(t)) was used as the measure of impurity of a
node that is computed as:

and Regression

1
N, (t)

Where Nw (t) is the weighted number of cases in
node t; wi is the value of the weighting variable
for case i; fi is the value of the frequency variable;
yi is the value of the response variable; and y(t) is
the weighted mean for node t. Stopping rules
control was: if node becomes pure; that is, all
cases in a node have identical values of the
dependent variable, the node will not be split.

R(t) = Zwi fi(y; — Y1)

iet

)

2.6 Performance criteria and software

To evaluate the accuracy of the prediction models,
the performance of the models were evaluated by
set of test data using mean square error (MSE),
root mean square error (RMSE), coefficient of
determination (R on testing set, between the



Intelligent Approaches to Analysing the Importance of Land Use . . .

predicted values and the target (experimental)
values. In addition, the mean bias error (MBE)
and the correlation coefficient (o) were taken

into account. MBE is a measure of bias revealing
either the overestimation or underestimation .

To establish various ANN's, a software
package, NeuroSolutions (Version 5.02) was
used. The expression used to calculate MSE is
given by NeuroSolutions for Excel. CART
algorithm and MLR were carried out through
SPSS 16 along with XLSTAT pro-7.5 package.

3 RESULTS AND DISCUSSION

The SOC content varied from 0.34% for land with
abundant erosion (main kind of visible erosion,
including sheet, rill and gully erosion), to 3.72%
in the soils received manure in agricultural land
use. Prediction of soil carbon variation in
corresponding predicting soil, geometric, climatic
and management factors using different
simulating data mining methods explained in
following paragraphs.

3.1 SOC simulated through MLR and SR

ECOPERSIA (2017) Vol. 5(1)

The analysis of variance of the MLR model of
SOC indicated that both MLR and SR models
were highly significant (P<0.001, Table 1). The
MLR model, which explains all the exploratory
variables, and stepwise elimination involvement,
respectively, explained 64 and 49 percent of SOC
variations in the semiarid conditions (Table 1).
Spencer et al. (2006) findings revealed that MLR
model with physical combination in input
variables could predict utmost 29-54% of SOC
variability. Stepwise elimination model (Eg.3)
indicated that TNV among physical, and Burn,
Tindexs Er., and Mn. among the management
factors, linearly and significantly determined 49%
of SOC variability in the rainfed crop lands in the
semiarid conditions.

SOC =1.923-0.0ITNV +0.28Burn—0.71T,

index

—0.09Er. Q)

Table 1 Model summary, error index and analysis of variance of MLR model with all variables and after
stepwise elimination (SR)

Model RMSE R? Sum of Squares df Mean Square F Sig.
MLR 0.385 0.643 30.2884 12 2.52404 20.563 0.000
SR 0.418 0.632 29.7482 5 5.9496 49.362 0.000

MLR: Predictors: (Constant) all 31 physical and management variables, SR: Predictors: (Constant) TNV, Mn., Burn., Tingex,

Er. Dependent variable: SOC

Table 2 Evaluation indices of nonparametric models with different input variables combination

Input variables Nonparametric method RMSE MBE
All variables CART 0.056 0.000
ANN 0.026 0.025

Management variables CART 0.106 0.000
ANN 0.306 0.010

Physical variables CART 0.155 0.000
ANN 0.345 0.003

RMSE: root mean square of error, MBE: Mean bias error
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3.2 SOC estimation through CART algorithm
Three different combinations of exploratory
variables were applied for estimation of SOC
contents through the CART algorithm. The
CART model while using all the input variables
with an exploration of about 80% of SOC
variability had the highest efficiency in SOC
estimation (Figure 2). This model indicated that
management variables, as compared with physical
agents (soil, geometric and climatic factors), more
profoundly influenced SOC variability, and was
able to identify 63 percent of SOC variability
through a source of management factors.
Application of the CART algorithm did not reveal
any bias error in any combination of the
predicting variables. But error estimations stood
between 0.06 to 0.15% that can be neglected
considering SOC range (0.37 — 3.72%) (Table 2).
Therefore, CART algorithm could be considered
as a good method to estimate SOC contents and as
well to determine the management effects on it.
CART algorithm was predominantly applied in
estimating categorical soil variables while there
werescarce scientific references in using it in
continuous soil variables including SOC.

3.3 ANN's structure optimization

Theoretically, too many hidden units in training
process cause overfitting, on the other hand
reduced hidden units cause underfitting. Among
the different tested configurations, network

with 31-2-1 topology (31, 2 and 1 neurons in
input, hidden and output layer, respectively),
with tan-hyperbolic transfer function in hidden
layer exhibited highest accuracy and least error
on cross validation data set (MSE=0.0768)
(Table 3). Somaratne et al. (2009) findings
showed that tangent -sigmoid transfer function
in hidden layer was a more suitable one.

The above optimum feature has 31 variables
as input vector, 2 neurons in its hidden layer,
and 1 neuron as output vector as shown in
Figures 2 and 3. After evaluating the optimized
configuration with the test data set, the MSE of
0.107, 0.113 and 0.120 were obtained when
inputs included all, management, and physical
variables, respectively. The corresponding-
values were 0.88, 0.83, and 0.63. This input
combination was able to significantly increase
the predictive ability of ANN in comparison to
Spencer et al. (2006) findings (with=0.59). The
MSE values for the ANN's, with different nodes
in hidden layers and epoch's, showed that when
2 nodes were in hidden layer in validation data
sets, the model was not overtrained. Optimum
epochs in validation set were 46, 358, and 376
in models were run applying all, management,
and physical variables as input vector,
respectively (Table 3).

Table 3 ANNs performance indices with best architecture in train, test and cross validation data set

Inputs Train CcVv Test Network attributes Train cv
MSE 0.001 0.118 0.107 Hidden 1 PEs 9 2
All variables Epoch # 1000 46
P 0.860 0.862 0.883 Final MSE 0.001 0.043
. MSE 0.094 0.077 0.113 Hidden 1 PEs 10 2
Management variables Epoch # 5000 358
P 0.808 0.814 0.831 Final MSE 0.0018  0.0737
MSE 0.121 0.083 0.120 Hidden 1 PEs 9 2
Physical variables Epoch # 594 376
P 0.651 0.376 0.631 Final MSE 0.0123  0.0413

1704



Intelligent Approaches to Analysing the Importance of Land Use . . .

Predicted

Predicted

Predicted

ECOPERSIA (2017) Vol. 5(1)

3.50

3.00 A

2.50 A

2.00 -

1.50 1

1.00

0.50

(a)

*

R*=0.80

0.00

0.00

0.50

1.50

2.00 250
Observed

3.00

3.50 4.00

3.00

2,50 4

2.00 4

1.50 4

1.00 4

0.50 A

0.00

0.00

1.00

1.50 2.00 2.50
Observed

3.00

3.50

4.00

3.00

2.50 1

2.00

1.50 4

1.00 4

0.50

* "

0.00

0.00

T T

0.50 1.00

T T

1.50 2.00 250
Observed

3.00 350 4.00

Figure 2 Estimated vs. measured SOC by CART models with all (a), management (b) and physical (c) variables

as predictors

1705



Y. Parvizi et al.

ECOPERSIA (2017) Vol. 5(1)

1.7

1.5 1

1.3 1

1.1 1

Predicted

0.9 4

0.7 1

0.5

Test set{physical var.)

0.5

1.7

0.7

0.9 1.1
Observed

1.5 4

1.1 4

Predicted

0.9 4

0.5

*e

Test set{management var.)

0.5

1.7

1 1.3 2

Observed

Test set{all var.)

1.5 1

1.3

14 A

Predicted

0.9 4

0.7 1

0.5

0.5

1 1.5 2 2.5
Observed

Figure 3 The scatter plot of the measured vs. estimated SOC using the ANNSs with different inputs combination

1706



Intelligent Approaches to Analysing the Importance of Land Use . . .

The scatter plot of the measured against
predicted SOC, in the test data set, is given in
Figure 3 for the ANN models, which was
identified as being the best model for predicting
soil organic carbon.

4 CONCLUSIONS

Higher estimation error of parametric linear
methods is the disadvantage of these methods
comparing  with  nonparametric  nonlinear
methods. Findings of this research indicated that
newly developed ANN could detect management
agent effects on SOC stock variability more
efficiently than the CART models. But, CART
models could explore nonlinearity and
interaction between variables more accurately
than ANNs. Management factors especially
tillage and crop residue scenario parameters, and
also  rotation  parameters,  predominantly
determined SOC stock variability in rainfed land
use in the semiarid conditions of the experiment.
The nonparametric tested models (CART and
ANN), using physically based variables
including TAP, TNV, gravel, SP, MAT and AR,
could account for only up to 40-45% of the
variation of SOC stock in the study area.

For prioritizing the importance of variables to
determine SOC stock variation, sensitivity
analysis results revealed adding more other
physical variables could slightly improve the
prediction. But, no significant improving was
evident in the modeling results of soil carbon
stock and sequestration potential. It is
recommended that in the future research,
management factors especially tillage, rotation,
straw, and grazing management could be more
attentively taken into account, as it could
improve the predictability power of our research
methods.
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