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INTRODUCTION

ABSTRACT Studying forest degradation through evaluation of soil nutrient concentrations,
which reveals soil functioning within the ecosystem, is necessary for sustainable management of
land resources. This research was conducted to understand the changes of soil nutrient, resulting
from exploitive management using some soil features and their spatial pattern. In the mid-summer
of 2014, two sites were selected consisting of an undisturbed forest site (FS) and a completely
deforested site (DS); both sites were in lowland part of Khanikan forests located in Mazandaran
Province, north of Iran. Within each site 50 soil samples were obtained from 0-30cm depth along
two sampling lines with 500 meter length thus resulting in 100 soil samples for each site. The
interval between samples along lines and also the distance between lines were selected 10 m. The
mean pH was lower at the DS (5.70) than FS (6.58). The mean of soil organic carbon (SOC) was
significantly higher at FS (2.78 %) when compared with DS (0.56 %). Total nitrogen (N) also
followed the same trend having significantly higher values at FS (0.28%) than DS (0.16%). Mean
available phosphorus (P) values were significantly higher at the FS (17.33 mg kg™) than at the DS
(7.24 mg kg™). The amounts of available potassium (K) were significantly higher at the FS (148.15
mg kg™) than DS (84.14 mg kg™). A geostatistical analysis revealed that deforestation changed the
spatial variability models and fractal dimension of soil features. As a conclusion, the spatial
variability of soil pH and SOC were more imposed by deforestation compared to the other soil
features. Our results suggest that deforestation should be regarded as an effective factor on
variability of soil nutrient that are tied to forest ecosystem management.

Key words: Forest degradation, Fractal dimension, Geostatistics, Soil chemistry

settlements and industries (Dinesh et al., 2003).

Forests around the world have undergone
severe disturbances due to anthropogenic
factors. An ever increasing human population
has migrated into forested zones and cleared the
forest to facilitate economic activities such as
farming, grazing, and establishment of

Destroying forest and rangelands and changing
them into agricultural and residential lands,
land-use change, have been very noticeable
particularly in the northern part of Iran because
of agricultural activities and development of
human societies. Land-use changes in Iran have
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been more rapid in the past 50 years than at any
time in Iran’s history and are expected to
continue or accelerate in the future. With a
rapidly increasing population and a strong rise
of the standard of living, the need to intensify
agricultural production increased; this situation
puts pressure on other resources. The natural
forests in Iran have been reduced from 19
million hectares in the 1950s to 12.4 million
hectares in the 1990s. During the past 50 years,
the amount of Iran’s cultivated land has grown
by more than five times, increasing from 2.6
million hectares to 24.5 million hectares
(Bahrami et al., 2010).

The growth process of urban societies has
been increased all over the world and it is
predicated that it will have been increased up to
60% by the year 2030 (McGee, 2001).
Deforestation can be generally defined as: the
reduction of the capacity of a forest to provide
goods and services (Miettinen et al., 2014).
However, this general definition can be
interpreted in numerous and potentially rather
contradicting ways. Depending on the scope of
the analysis, the evaluation of degradation in a
given forest site can be based on (1) biological
diversity; (2) forest health and vitality; (3)
productive functions of forest resources; (4)
protective functions of forest resources; and (5)
socio-economic functions of forests (Miettinen
et al., 2014). Deforestation has many significant
ecological consequences. The removal of
vegetation results in increased erosion of soil
sediments, which are many times deposited in
water bodies, consequently depositing soil
particles and nutrients. A decrease in vegetation
also corresponds with a decrease in nutrient
uptake in the soil, resulting in an increased rate
of nutrient leaching from the soil (Ketterings et
al., 2002; Page et al., 2005; Gassman et al.,
2006; Maloney et al., 2007; Huang et al.,
2007). The leached nutrients are often deposited
in water bodies. Both types of nutrient inputs
subsequently alter physical stream
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characteristics as well as rates of productivity
and ecological components of water bodies
affected by deforestation (Burnsa et al., 2005).
Deforestation is the most dynamic driving
factor of terrestrial carbon stock changes, soil
organic carbon (SOC) storage, and also an
important factor in future carbon sequestration
that cannot be ignored (Ussiri et al., 2006;
Poeplau and Don, 2013). The variability of
SOC amounts imposed by deforestation could
become crucial in terms of future policies to
mitigate the global greenhouse effect (IPCC,
2000; Wang and Fang, 2009). Therefore, it is
critical to understand how SOC varies in
response to forest degradation when evaluating
the role of terrestrial ecosystem processes in
altering the global carbon cycle and carbon
accumulation in the atmosphere (Jiao et al.,
2010; Mishra et al., 2010). Compared to other
soil nutrients, soil N, P and K are considered
essential nutrients that most frequently limit
soil productivity (Giesler et al., 2002; Huang et
al., 2007) and soil microbial activity (Liu et al.,
2010). Furthermore, soil N, P and K levels are
closely correlated with SOC cycles (Bronson et
al., 2004), which have dynamic effects on
greenhouse gas emissions that are linked to
global climate change (Lal, 2004). Thus, a
better knowledge of soil N, P and K levels and
their distributions is necessary when evaluating
current or potential soil productivity and
assessing potential environmental pollution, as
well as for a better understanding of climate
change and its feedbacks (Jennings et al.,
2009).

Spatial  heterogeneity is a common
characteristic of soils and the spatial variability
of the physical and chemical properties has
been a topic of major concern to soil scientists
(Wang et al.,, 2010; Chuai et al, 2011,
Tesfahunegn, 2014). Understanding the spatial
variability of soil features is the key to the
understanding of the landscape-scale processes
of soils (Corwin et al., 2006). There have been
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growing interests in the study of spatial
variation of soil features using geostatistics
since 1970s, as geostatistics were well
developed and successful in characterizing the
spatial variations of heavy metals (Yu et al.,
2001; Romic and Romic, 2003), soil nutrients
(Liu et al., 2004; Aishah et al., 2010; Jing et al.,
2014; Saglam and Dengiz, 2014) and other soil
characteristics (Lima et al., 2008; Gilbert and
Wayne, 2008; Liu et al., 2008; Siqueira et al.,
2014). The findings of Chen et al. (2006)
indicated that the spatial distribution pattern of
the SOM, total P and K had a longer range of
spatial dependency than in soil total N. Like
other soil properties, nutrient elements are
distributed heterogeneously in soils, and the
degree of variation is a function of the study
scale and/or its aspects (e.g. support, spacing,
and extent) (Wang et al., 2009). This spatial
heterogeneity is caused by various factors
(Jenny, 1941), which include climatic variables
(Patil et al., 2010), parent material (Lin et al.,
2009), topography (Rezaei and Gilkes, 2005),
vegetation types (Rodriguez et al., 2009), soil
texture (Gami et al., 2009) and deforestation
(Meersmans et al., 2008; Rodriguez et al.,
2009; Wang et al., 2010; da Rocha Junior et al.,
2014).

Thus, from the perspectives of ecosystem
research and environmental protection, it is
important to know the spatial variability of soil
nutrient as affected by deforestation in the
degraded site (Schoning et al., 2006; Wang et
al., 2009; Rodriguez et al., 2009) of northern
Iran. Therefore, the objectives of our study
were: (1) to investigate the current status and
spatial variability of soil nutrients in surface
soils across the degraded and adjacent intact
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forest in a lowland part; (2) to provide an
overview of the regional distributions of soil
nutrients and to calculate the fractal dimension
in a deforested site and adjacent intact forest
using a geostatistical method.

2 MATERIALS AND METHODS

2.1 Study site

This research was conducted in Khanikan
forests, with an site of 2807 ha, that is located
in the lowland and midland of Mazandaran
Province in north of Iran, between 36° 33 15"
N and 36° 37" 45" N latitudes and 51° 23" 45" E
and 51° 27" 45" E longitudes (Figure 1a). The
elevation of the forest site ranges between 50
and 1400 m above sea level (a.s.l.). Minimum
temperature in December (7.5°C) and the
highest temperature in June (24.6°C) are
recorded, respectively. Mean annual
precipitation of the study site were from 47.5
mm to 237.6 mm at the Noushahr city
metrological station, which is 10 km far from
the study site. The climate is temperate moist,
on based of Demarton classification, and the
dry months extend from May to September.
The soil is forest brown soil showing a texture
that ranges between sandy clay loam to clay
loam as showed in figure 2. (Mollaei-Darabi et
al., 2014). The soil order name is Alfisols. The
study site is on uniform terrain with 200-230 m
a.s.l., moderate slope (30-35%) and north
exposure. The dominant forest types included
Hornbeam (Carpinus betulus L.) and Persian
ironwood (Parrotia persica C. A. Meyer)
(Mollaei-Darabi et al., 2014). A lowland part of
these forests, almost 7 ha, were destroyed
because of extensive exploitation carried out by
local residents about 30 years ago (Figure 1b).
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2.2 Soil sampling and analysis

Two sites with about 300 m apart from each
other were selected consisting of an undisturbed
forest site (FS) and a completely deforested site
(DS). Within each site 50 soil samples were
obtained from 0-30 cm depth along two
sampling lines with 500 meter length thus
resulting in 100 soil samples for each site. The
interval between samples along lines and also
the distance between lines were selected 10 m
(Figure 1c). Soils were air-dried and passed
through 2-mm sieve (aggregates were broken to
pass through a 2 mm sieve). Active soil reaction
(pH) was determined using an Orion lonalyzer
Model 901 pH meter in a 1:2.5, soil: water
solution (Kooch et al., 2015). Organic C was
determined using the Walkey-Black technique
(Allison, 1975). Total N was determined using
the Kjeldhal method (Bremmer, 1960).
Available P was  determined  with
spectrophotometer by using Olsen method
(Homer and Pratt, 1961). Available K by
ammonium acetate extraction at pH 9 was
determined with Atomic absorption
Spectrophotometer (Bower et al., 1952).

2.3 Statistical and spatial analysis

Descriptive statistics for each soil variable was
computed by the software SPSS for Windows
Release 17.0. Prior to the geostatistical data
analysis, Kolomogorov-Smirnov test was used
for testing normality and Levene test for data
homogeneity testing. Independent sample t-test
was used to find differences in soil features
between the two sites. An experimental semi-
variogram was developed to determine the
spatial dependence of soil features using the
following equation (Trangmar et al., 1985):

1 Nm 2
2N () a [zx)-zx+h)] @

i=1

y(h)=
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Where vy (h) is the semi-variance; N (h) the
number of experimental pairs separated by a
distance; and z (x;) the measured sample value
at point x;.

The autocorrelation structure is depicted by
the variogram, the central tool of geostatistics.
The spatial structure of each variable has been
defined from the semi-variogram parameters,
i.e. nugget, sill (or total semi-variance) and
range. The nugget is the variance at the zero
distance and represents the experimental error;
sill is the semi-variance value at which the
semi-variogram reaches the upper boundary
after its initial increase (Cressie, 1993). This
variance is the maximum for this kind of semi-
variogram and represents the total semi-
variance of the study site; range is the value (x-
axis) at which one variable becomes spatially
independent, being the lag-distance at which the
semi-variogram flattens. The nugget to sill ratio
quantifies the importance of the random
component and provides a quantitative es-
timation of the spatial dependence (Isaaks and
Srivastava, 1989). The theoretical model
coefficients of the semi-variogram were
determined by the fitness of the mathematical
model to the y (k) values. The following models
were fitted to the data:

(a) spherical, y (h) = Cy + C; [1.5 (h/a)-0.5
(h/a)*], for 0 > h<a, and y (h) = Co + C, for h >
a; )

(b) exponential, y (h) = Cy + C; [1 — exp (-
3h/a)], for 0 <h<d, (3)

where Cy is the nugget effect, C, + C; is the sill,
a is the range and d is the maximal distance in
which the semi-variogram is defined. To
determine the spatial dependence, the semi
variogram was examined by using the program
Gs+ version 9 (Gamma Design Software, LLC,
Plain well, MI).
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Spatial class ratios (relative nugget) similar to
those presented by Cambardella et al. (1994) were
adopted to define distinctive classes of spatial
dependence. A variable is considered to have a
strong spatial dependency if the ratio is less than
25%, moderate spatial dependency if the ratio is
between 25-75% and weak spatial dependency if
the nugget/sill ratio is greater than 75% (or pure
nugget; i.e. when slopes of semi-variograms are
close to zero). Kriging is a procedure for
estimating regionalized variables at unsampled
points, based on initial data value. However,
ordinary kriging, the workhorse of geostatistics, is
the most common type of kriging in practice,
particularly in environmental sciences (Webster
and Oliver, 2000). It is given by:

Z(x))=§ 1,Z(x,)

i=1

(4)

where, A; is the weight associated with each
sample location value. To evaluate the results
of kriging usually, a Jack-knife cross-validation
approach is used. All the samples are excluded
one by one from the data set and estimated
again by kriging using the remaining samples.
Then measured data and estimated values are
compared to evaluate the kriging results
(Webster and Oliver, 2000). In this study, the

Table 1 Descriptive statis

accuracy of kriging is measured using Mean
Bias Error (MBE) and Mean Absolute Error
(MAE) as below:

a (Rs- Ry)
MBE = =1 (5)
n
é |Rs' Ro
MAE = =L (6)
n

where, rs is the estimated sample value at point;
Ro, is the measured sample value at point xi; n
is number of samples. The most accurate
prediction was indicated by the smallest MBE
and the MAE close to zero (Webster and
Oliver, 2000). Furthemore, the surface
variogram was employed for investigation of
isotrophic condition and Jack-Knife cross-
validation approach was used to evaluate the
results of kriging (Webster and Oliver, 2000).

3 RESULTS AND DISSCUSSION

The soil variability data in Table 1 show that all
the CVs were between 1.16% and 45.81%.
These outputs indicate that soil chemical
features in the study site were little to
moderately variable at the local scale according
to Nielsen and Bouma (1985).

tics for soil features in study site

H Organic carbon Total N Available P Available K
Variables P (%) (%) (mg kg™ (mg kg™

FS DS FS DS FS DS FS DS FS DS

N 100 100 100 100 100 100 100 100 100 100
Mean 6.6la 593b 2.78a 056b 0.28a 0.16b 17.33a 7.24b 148.15a 84.14b
Std deviation 0.37 0.48 0.46 0.25 0.06 0.07 2.53 151 32.64 20.64
Min. 5.88 4.96 1.09 0.17 0.01 0.05 11.56 4.50 59.09 37.49
Max. 7.12 6.90 3.78 1.09 0.39 0.32 2434 1145 17898 112.78
Skewness  -0.32 0.14 -0.98 0.57 -0.97 0.85 0.26 0.52 -0.84 -0.60
Kurtoisis  -1.17  -0.80 1.46 -0.95 1.77 -0.39 0.41 -0.32 -0.67 -0.80
CV (%) 5.62 8.20 16.58 4581 2411 44.09 14.60 1.16 22.03 24.53

* Contrasting letters a, b refer to significant differences between forest site (FS) and deforested site (DS)
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The soil reaction was slightly acidic at both the
sites. The mean pH was lower at the DS (5.70)
than FS (6.58) (Table 1). Higher acidity under
deforested systems might have favoured
solubilization and removal of cations in
leaching water. Low temperatures can limit
microbial decomposition of SOM (Karhu et al.,
2010), leading to accumulation of nutrient
elements in soils of FS (Leifeld et al., 2005)
than in DS. The differences between soil
fertility in FS and DS can be primarily
explained by a severe decrease of SOM input to
the litter once the forest is extracted from the
system. It is also important to highlight the
intensity of rainfall in this northern Iran region.
Precipitation in this region undeniably plays a
crucial role in fertility loss through nutrient
leaching. This phenomenon is well illustrated
by the nutrient elements decrease of up to more
in DS (Zheng, 2005). Soil texture is of extreme
importance as it has a great influence on the
chemical features of soil, so should be
considered when interpreting results (Ashman
and Puri, 2002; Brady and Weil, 2008). Soils
dominated by clay particles, and those which
contain high SOM content, FS in our study site
according to Mollaei-Darabi et al. (2014),
therefore have a higher cation exchange
capacity compared to sandier soils (those
collected from the FS), which comprise of little
negatively charged colloidal material (Brady
and Weil, 2008; Holden, 2008). This could
explain the significantly higher concentration of
exchangeable base cations observed at the FS,
compared to the DS.

As previously established, soil texture plays
a huge role in the loss of exchangeable base
cations from a soil. Soil collected from the DS,
consisting of a sandy clay loam (according to
Mollaei-Darabi et al., 2014 findings), would
pose larger pore spaces than that of the FS, thus
allowing rapid water movement through the
soil, and permitting dissolved exchangeable
base cations to be easily lost (Gerrard, 2000;
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Ashman and Puri, 2002). The decrease in
exchangeable cations could also be explained
by the increase in soil acidity. Exchangeable
base cation concentrations would decrease, as
exchangeable aluminum (Al) and exchangeable
hydrogen ions would likely dominate cation
exchange sites (Brady and Weil, 2008;
Berthrong et al., 2009). This was also found to
be true by Johnson and Lindberg (1989), who
concluded that a decrease in exchangeable base
cations and increase in soil acidity were caused
via acid deposition (Richter and Markewitz,
2001; Olszewska and Smal, 2008).

Soil pH is a master variable indicative of
many aspects of soil chemistry, and controls the
availability of nutrients for plant uptake
(Ludwig et al.,, 2001). Soil reaction was
significantly higher in FS compared to the DS.
This does, however, very much indicate that the
removal of trees has been an influential factor
in reducing soil acidity. Neal et al. (1992) also
observed that tree canopy removal in Wales led
to a decrease in soil pH, which they suggested
was due to a dramatic reduction in the capture
of acidic pollutants. Accordingly, Reiners et al.
(1994) reported the decrease in acidity after
conversion of tropical forest to pasture and
subsequent abandonment in the Atlantic Zone
of Costa Rica. Aluminum (Al) saturation on the
soil exchange complex declines following
forest degradation (Numata, 1999). Higher Al
under degraded site could also be attributed to
higher acidity and this was supported by the
strong negative correlation between Al and pH
(Adam et al., 2001; Chen et al., 2001).

The mean of SOC was significantly higher
at FS (2.78 %) when compared with DS (0.56
%) (Table 1). The SOC acts as an exchange
surface for cations and direct source of N, P,
and (S) through microbial carbon (C) and N-
immobilization/mineralization reactions (Rasiah
and Kay, 1999). The level of SOC is positively
correlated with the total SOM and various
formulas exist from which one can use SOC to
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estimate total SOM (Buol et al., 2003). SOC
and SOM are added to the soil primarily from
decomposing vegetative residues such as
leaves, litter, and roots and a decrease in these
inputs can lead to a decrease in SOC and SOM
(Bernoux et al., 1998). SOM accumulated in
forest floor can be reduced by erosion (Abbasi
and Rasool, 2005; Zheng et al., 2005). The
forest top soil (0-30 cm) had the highest amount
of SOC (2.78 %) compare to the DS at the same
depth (0.56 %). A comparison of soil profiles in
DS and FS showed that 30 cm of top soil have
eroded away in the DS. The SOM that currently
forms the A horizon in the DS originated from
the decomposition of grass litter and roots. In
contrast, the SOM in the upper layer of the
forest soils is the result of decomposition of
roots and litter fall from trees, shrubs and herbs.
The total SOC content in the forest ecosystems
is greater than in the DS due to higher carbon
concentrations and thicker A and B horizons.
Significant decrease in SOC storage of our
study site as a result of deforestation agrees
with Yimer et al. (2007); Nourbakhsh (2007);
Smal and Olszewska (2008) and Khresat et al.
(2008) results.

Total N also followed the same trend having
significantly higher values at FS (0.28%) than
DS (0.16%) (Table 1). Considering that soil N
directly originates from the plant litter, it might
be expected that soil N contents would not
show significant difference. However, soil N
contents of FS were significantly different from
the DS. Forest degradation brought significant
changes to total N. The loss of N from
deforestation sites appear to be particularly
important. DS at surface (0-30 cm) had at least
half as much as total N than forest soil. The
largest amount of total N (same as SOC) was
observed for the forest top soil (0-30 cm).
Patrick and Smith (1975) reported that total tree
harvesting caused the nutrient, including N, to
be removed up to three times compared to
conventional lodging. In addition to losses from
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biomass removal, nutrient can be lost from
deforested sites by increased soil nutrient
mobilization and leaching, when little
vegetation is present to take up (Mroz et al.,
1985). Rasmussen (1998) reported that all
deforestation may induce some N leaching
during a short period before revegetation by
herbs or trees.

The higher levels of total N in the FS
compared to the DS can be explained by the
higher amounts of SOM in the forest soils. In
addition, removing the overstory in the forest
site  caused probably increase of SOM
decomposition and N transformation rates
resulting in more N being leached out of the
soil (Khresat et al., 2008). Similar to the forest
N levels in this study, Mroz et al. (1985) found
total N to decrease following whole tree clear
cuts on three sites. In another study where
erosion was an important driver of site
characteristics. Zheng et al. (2005) reported that
erosion following deforestation resulted in a
46.7% decrease in total N. Similar to our
results, Abbasi et al. (2007) recorded total N
levels in degraded site to be nearly half those in
forest lands. Based on a study in Ethiopia,
Yimer et al. (2007) also found deforested
regions to have lower total N levels than native
forests. Many other studies have found the
opposite result. Glaser et al. (2000) and Savozzi
et al. (2001) reported grasslands and pastures to
have higher levels of N than forestland. The
disparity | these findings with regards to the
results found in this study are probably due in
part to the low levels of SOM in the pasture and
point to its overgrazed and degraded nature.

Mean available P values were significantly
higher at the FS (17.33 mg kg™) than at the DS
(7.24 mg kg') (Table 1). Phosphorus is
primarily introduced to a soil via organic matter
(Abbasi et al., 2007; Brady and Weil, 2008). As
would be expected, the FS, which had higher
levels of SOM than the DS, also had higher
levels of available P than the DS. Available P in
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soil decreased with the deforested that it could
be attributed to the erosion rate caused by per
unit of rainfall erosivity that increased with the
deforested. Weathering of primary minerals is
the main source of P to ecosystems, but in
highly acidic systems, P can be quickly
immobilized and made inaccessible by
complexation  with  organic or Fe-Al
compounds, creating local complex patterns.
Different studies have recorded various changes
in P levels due to deforestation and land cover
change. Similar to the relative values of the
forest, Zheng et al. (2005) found deforestation
and subsequent erosion to result in an 86.6%
loss of P. In contrast, Boyle et al. (1973)
reported no long term loss of P due to whole
tree clear cutting in Wisconsin but did note that
overall nutrient losses may have been greater if
the cut was on a steeper slope or if the
regeneration following the cut was suppressed.
Nearby, in the Upper Peninsula of Michigan,
Mroz et al. (1985) found no decrease in
available P one and a half years after a whole
tree clear cut.

The amounts of available K were
significantly higher at the FS (148.15 mg kg™)
than DS (84.14 mg kg™) (Table 1). Unlike P,
which usually enters a soil through organic
matter, K is most often found in the soil in
inorganic forms, usually resulting from the
mineral weathering of the rocks and parent
material in the soil (Brady and Weil, 2008).
Because it is often a mobile ion in soils, K
losses to leaching can be significant (Alfaro et
al., 2004 a; Alfaro et al., 2004 b; Khormali et
al., 2005). Clear cutting of the forest, DS, could
have increased both lateral and vertical
movement of water and resulted in leaching of
K from the upper levels of the soil (Pennock
and Kessel, 1997). Other studies report
dramatic decreases in K following deforestation
such as occurred in the unplanned and
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unregulated clear cut that resulted in the
coppice in this study. In their whole tree clear
cut study, Mroz et al. (1985) found K to
decrease on three sites, from 1483 kg ha™ to
508 kg ha*, 1230 kg ha® to 347 kg ha™, and
1396 kg ha™ to 282 kg ha™ respectively, a year
and a half after the cut. Bormann et al. (1968)
recorded a seven-fold rise in K levels found in
runoff in the Hubbard Brook watershed study
following a clear cut and regeneration
suppression. In their deforestation study in Iran,
Hajabbasi et al. (1997) found K levels to be
0.25 meq L™ in the natural forest and only 0.15
meq L? in DS under cultivation. As with P,
Boyle et al. (1973) found no decrease in long
term K levels following the whole tree clear
cut, but speculated that steeper slopes or
regeneration suppression could result in
significant nutrient losses. Eden et al. (1991)
recorded similar results to this study in regard
to the conversion of forest to pasture. In their
study, the conversion of evergreen forest in
Roraima, Brazil only resulted in a slight
decrease in soil K, from 0.11 meq per 100 g™ to
0.0911 meq per 100 g. In contrast, Abbasi et al.
(2007) observed lower values in available K,
from 69.911 meq per 100 g™ to 44.411 meq per
100 g*, when comparing natural forest and
grassland.

The surface variogram confirmed the
isotrophic condition for soil features in the FS
(Figure 3) and DS (Figures 4). The
semivariogram models (Figures 5 and 6) and
some of the geostatistical parameters of soil
chemical features are shown in Table 2.
Following deforestation the variogram model
for soil pH was changed from linear to
spherical (Table 2; Figures 5 and 6), the spatial
class was enhanced from weak to medium
spatial dependency (Table 2) and the fractal
dimension was reduced from 1.99 to 1.81
(Figure 7).
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Table 2 Parameters of semivariogram models for soil features in study forest (FS) and Deforested site (DS)

H Organic carbon Total N Available P Available K
Variable P (%) (%) (mgkg®)  (mgkg?)
Fs DS Fs DS Fs DS FS DS FS DS
Model L s L s E s E s E E
Spat(';o')pa” 2158 51228 5936 63953  57.142 57.1420.500 60.253 50.028 50.007
Spatial class W M W M M M M M M M
MBE : 0.003 : 0000  -0.000 0.000 0.013 -0.001 0.493 0.087
MAE : 0.301 : 0.174 0.056  0.054 2.057 1.162 28.683 18.114

Models: L = Linear; S = Spherical; E = Exponential, Spatial part given by the ratio (sill-nugget effect/sill) x 100, Spatial class: W
= Weak spatial dependency; M = Medium spatial dependency, MBE = Mean Bias Error and MAE = Mean Absolute Error

Quantifying the spatial relationships among soil (Yavitt et al., 2009). The observation that several
features and other component of ecosystems is models provide the best fit in our data indicates
essential to regional efforts for planning habitat different spatial patterns among the set of soil
preservation, zoning and land management and feature. According to our finding, the spatial
predicting the effects of deforestation from local variability of soil pH and SOC were more
to global ecosystems. The fundamental imposed by deforestation compared to the other
transformation of spatial pattern, from linear or soil characters that is correspond with Nael et al.
exponential model in the FS to spherical form in (2004) results. In FS, a linear model was fitted to
the DS of soil features due to forest land the semivariograms of pH and SOC (Table 2).
degradation, is unquestionably related to the This model indicates randomly distributed data
drastic removal of vegetation and its unavoidable pattern and suggests that the changes in
consequences. In our study, most of soil semivariance (y) with increasing lag distance are
characters are spatially independent with higher not significant and the total variance is found at all
fractal dimension at the studied scale of FS. This scales of sampling. In other words, there is no
is due to the heterogenized character of this spatial dependence in the data points (Nael et al.,
ecosystem, caused by biotic factors. 2004). For the DS, a spherical model provided a

In FS, different factors can be effective on significant fit to semivariograms of pH and SOC
variability of soil features such as different tree (Table 2 and Figure 6). This model suggests that
species, canopy gaps, log, snag, uprooted trees, these variables are spatially patterned and that the
etc. Thus, the variogram model tended to be linear semivariance (y) first rises and then levels off at the
or pur nugget effect form. But, when the sill, indicating the distance beyond which samples
vegetation is substantially removed, DS, the are independent. Other features of this model are
effective contribution of biotic factors to soil range and nugget; the former indicates the range
variables and their spatial variability is over which samples show spatial dependence and
diminished, thus the soil features will be the latter is the variance that exists at scales finer
homogenized and the soil variables can be than the field sampling which is found at zero lag
depended in more distance with lower fractal distance. The maps obtained by the kriging method
dimension (tending to exponential or spherical (Figure 8 and 9) showed that the spatial distribution
variogram model). The spherical models indicate of the soil nutrients showed a direct relation with
distinct patches of large (or small) concentrations the increasing of soil pH (low acidity).

in a matrix of less (or greater) concentrations
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As the same, after forest degradation the
variogram model for SOC was changed from
linear to spherical (Table 2; Figures 5 and 6),
the spatial class was enhanced from weak to
medium spatial dependency (Table 2) and the
fractal dimension was reduced from 1.99 to
1.85 (Figure 7). About total N, the variogram
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model was changed from exponential to
spherical (Table 2; Figures 5 and 6), the fractal
dimension was reduced from 1.97 to 1.93
(Figure 7) and the spatial class was non-change
as medium spatial dependency (Table 2) after
occurrence of deforestation. The variogram
model for soil available P was changed from
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exponential to spherical (Table 2; Figures 5 and
6), the fractal dimension was reduced from 1.97
to 1.90 (Figure 7) and the spatial class was non-
change as medium spatial dependency (Table 2)
after forest degradation.

The spatial varaiability of soil available K was
less imposed by deforestation as the variogram
model was detected as exponential and the spatial
class was found as medium spatial dependency
for both of FS and DS (Table 2; Figures 5 and 6).
Also, the fractal dimension was a little reduced
from 1.98 to 1.97 (Figure 7). A small, effective

Total N
4.046E+06
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range implies a distribution pattern composed of
small patches. In this study, the range of spatial
dependence for soil chemical features in the 0-30
cm depth of DS was smaller than FS that are
indicating a small patched distribution pattern
(Table 2). Regarding to non-linear of soil features
in FS (except for pH and SOC properties) and DS
the contour maps of soil features prepared by
ordinary kriging (Figures 8 and 9). The cross-
validation results (Figures 10 and 11) of MBE and
MAE are presented in Table 2.
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Figure 8 Contour maps of soil features prepared by ordinary kriging in the forest site (FS), lowland part of
Khanikan forests located in Mazandaran Province, north of Iran
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Figure 9 Contour maps of soil features prepared by ordinary kriging in the deforested site (DS), lowland part of
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Figure 11 Comparison between measured and estimated values for soil features in the deforested site (DS),
lowland part of Khanikan forests located in Mazandaran Province, north of Iran

4 CONCLUSION

In the current study, geostatistical method was
used to investigate the spatial heterogeneity of
soil nutrients features under an undisturbed
forest site (FS) and a completely deforested site
(DS) in lowland part of Khanikan forests
located in Mazandaran Province, north of Iran.
The results indicate that the soil nutrients
features in the study site were moderately
variable on the local scale. Deforestation was
followed by the decreasing of soil reaction,
organic carbon, total nitrogen, available
phosphourous and potassium. A geostatistical
analysis revealed that the deforestation changed
the spatial variability models and fractal
dimension of soil features. The spatial
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variability of soil pH and organic carbon
content were more imposed by deforestation
compared to the other soil features. Our results
suggest that deforestation should be regarded as
an effective factor on variability of soil
chemical that are tied to forest ecosystem
management.
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