ECOPERSIA

2014, 2 (1), 455-469

Application of Several Data-Driven Techniques for Rainfall-Runoff
Modeling

Mehdi Vafakhah', Saeid Janizadeh? and Saeid Khosrobeigi Bozchaloei®

! Associate Professor, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
2 Former Master Student, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

Received: 7 September 2013 / Accepted: 12 June 2014 / Published Online: 24 December 2014

ABSTRACT In this study, several data-driven techniques including system identification,
adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and wavelet-
artificial neural network (Wavelet-ANN) models were applied to model rainfall-runoff (RR)
relationship. For this purpose, the daily stream flow time series of hydrometric station of
Hajighoshan on Gorgan River and the daily rainfall time series belonging to five meteorological
stations (Houtan, Maravehtapeh, Tamar, Cheshmehkhan and Tangrah climatologic stations) were
used for period of 1983-2007. Root mean square error (RMSE) and correlation coefficient (r)
statistics were employed to evaluate the performance of the ANN, ANFIS, ARX and ARMAX
models for rainfall-runoff modeling. The results showed that ANFIS models outperformed the
system identification, ANN and Wavelet-ANN models. ANFIS model in which preprocessed data
using fuzzy interface system was used as input for ANN which could cope with non-linear nature

of time series and performed better than others.

Key words: ANFIS, ANN, System identification, Wavelet-ANN, Rainfall-Runoff modeling

1 INTRODUCTION

Rainfall-runoff (RR) analysis is quite difficult
due to presence of complex nonlinear
relationships in the transformation of rainfall
into runoff. However runoff analysis is very
important for the prediction of natural disasters
like floods and droughts. It also plays a very
important role in the design and operation of
various components of water resources projects
like barrages, dams, water supply schemes, etc
(Aqil et al., 2007). Runoff analysis is also
needed in water resources planning,
development and flood mitigations. Due to the
lack of stream gauges and the obligatory of

stream flow observations in Iran, it is necessary
to predict the stream flow by using simple
approaches. Various types of modeling tools
had been used to estimate runoff. These
techniques consist of lumped conceptual
models, distributed physically based models,
deterministic models and black box (time
series) models (Lohani et al., 2006).

During the past decades, major progress has
been made in the two techniques, the ANFIS
and the ANNSs. Due to the abilities of the ANN
and the ANFIS models in modeling complex
nonlinear systems, successful applications of
these methods in hydrology modeling have
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been widely reported, including flood
forecasting (Campolo et al., 1999; Xiong et al.,
2001; Campolo et al., 2003; Bruen and Yang,
2005; Vafakhah, 2012; Yurekli et al., 2012),
stage-discharge relationship (Lohani et al.,
2006), sediment prediction (Cigizoglu, 2004;
Bhattacharya and Solomatine, 2006; Vafakhah,
2013), groundwater level prediction
(Daliakopoulos et al., 2005; Mohammadi 2008;
Shirmohammadi et al., 2013; Moosavi et al.,
2013) and rainfall-runoff modeling (Melching
et al,, 1991; Hsu et al., 1995; Shamseldin,
1997; Sajikumar and Thandaveswara, 1999;
Tokar and Johnson, 1999; Tokar and Markus,
2000; Dibike and Solomatine, 2001; Anctil et
al., 2003; Rajurkar et al., 2004; Khan and
Coulibaly, 2006; Jain and Srinivasulu, 2006).
Recently, wavelet transform analysis has
become a popular analysis tool due to its ability
to elucidate simultaneously both spectral and
temporal information within the signal. This
overcomes the basic shortcoming of Fourier
analysis, which is that the Fourier spectrum
contains only globally averaged information.
Therefore, a data pre-processing can be done by
time  series  decomposition into its
subcomponents  using wavelet transform
analysis. This technique is largely applied to
times series analysis of non-stationary signals
(Nason and Von Sachs, 1999). As an example,
Zhou et al. (2009) developed a wavelet
predictor-corrector model for prediction of
monthly discharge time series and showed that
the model has higher prediction accuracy than
ARIMA and seasonal ARIMA. ANN-wavelet
conjunction model was firstly presented by
Aussem et al. (1998) for financial time series
forecasting. Wang and Ding (2003) applied
wavelet-network model to forecast shallow
groundwater level and daily discharge. Cannas
et al. (2006) investigated the effects of data pre-
processing on the ANN model performance
using continuous and discrete  wavelet
transforms; the results showed that networks
trained with pre-processed data, performed
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better than networks trained on undecomposed,
noisy raw signals. Anctil and Tape (2004)
decomposed time series by wavelet into three
sub-series  depicting  the rainfall-runoff
processes: short, intermediate and long wavelet
periods, then multi-layer artificial networks
were trained for each wavelet sub-series.
Results showed that the short wavelet period
fluctuations are thus the key to any further
improvement  in ANN rainfall-runoff
forecasting models. Partal and Cigizoglu (2004)
used neurowavelet technique for forecasting
river daily suspended sediment load.

In system theory, the definition of a suitable
mathematical-physical representation of a
dynamic system through transfer functions is
called system identification (Erdogan and
Gulal, 2009). System identification is an
iterative process, where models are identified
with different structures from data and the
models performances are compared. The
procedure is started by estimating the
parameters of simple model structures. If the
model performance is poor, the complexity of
the model structure could be increased.
Ultimately, the simplest model that describes
the dynamics of the system well is chosen. A
number of researches have been conducted
using these models. Baratti et al. (2003)
forecasted monthly discharge in one of the
rivers of Italy by using auto-regressive moving
average with exogenous inputs (ARMAX) and
ANN with Levenberg— Marquart (LM)
algorithm. The comparison results showed that
the ANN models are more accurate than the
ARMAX models. Castellano-Méndez et al.
(2004) modeled the monthly and daily
behaviors of the runoff of the Xallas river using
Box— Jenkins and neural networks methods.
The performance of the ANN was an
improvement on the Box-Jenkins results.
Nayak et al. (2004) applied ANFIS to model
the daily discharge of the Baitarani River, India,
with a catchment size of 14 218 km’ and
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compared their model results with the results
from the ANN and auto-regressive moving
average (ARMA) models. They developed six
different models varying the number of
antecedent discharge from 1 to 6 in the input
vectors, to find the optimum number of inputs.
The ANFIS model with two inputs was found
to be the best compared to the other five
models. The best performing ANFIS model was
reported to outperform ARMA but was similar
in performance with an ANN model with two
neurons in the hidden layer, although ANFIS
was much better in peak estimation compared
to ANN. Agil et al. (2007) conducted a
comparative study of ANN and ANFIS in
modeling the daily and hourly runoff behavior
for the Cilalawi River in Java, Indonesia. Their
results showed that the ANFIS model
outperformed the other two models. Shiri and
Kisi (2010) compared the application of single
neuro-fuzzy (NF) and wavelet-neuro-fuzzy
(WNF) models in Derecikviran Station on the
Filyos River for daily, monthly and yearly
stream flows forecasting. It was found that the
WNF model increase the accuracy of the single
NF models especially in forecasting yearly
stream flows. Talei et al. (2010a) investigated
the effect of inputs used on event-based runoff
forecasting by ANFIS. Fifteen ANFIS models
were compared, differentiated by the choice of
rainfall and/or discharge inputs used. It was
found that models wusing only rainfall
antecedents as inputs performed better in term
of goodness-of-fit for discharge at larger lead
times (up to eight time steps ahead) while
models which included Q(t-1) as input were
better in forecasts at shorter lead times (up to
two time steps ahead). Talei et al. (2010b)
compared an application of an ANFIS and
Storm Water Management Model (SWMM) in
event-based RR modeling in order to evaluate
the capabilities of these methods for a sub-
catchment of Kranji basin in Singapore. The
results of this study show that the selected
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ANFIS is comparable to SWMM in event-
based R—R modeling. In addition, ANFIS is
found to be better at peak flow estimation
compared to SWMM. Dorum et al. (2010)
compared ANN, ANFIS and Multi-regression
(MR) models at rainfall-runoff relationship on
seven streams in Susurluk Basin. Except some
stations, acceptable results such as decisiveness
coefficient (R?) value for ANN model and R?
value for ANFIS model were obtained as
0.7587 and 0.8005, respectively. The high
values of predicted errors, belonging to peak
values at stations where multi variable flow is
seen, affected R2 and RMSE values negatively.
Nourani et al. (2011) used the SARIMAX
(Seasonal Auto Regressive Integrated Moving
Average with exogenous input)-ANN and the
wavelet-ANFIS models for rainfall-runoff
modeling. The obtained results of the models
applications for the rainfall-runoff modeling of
two watersheds (located in Azerbaijan, Iran)
show that, although the proposed models can
predict both short and long terms runoff
discharges by considering seasonality effects,
the wavelet-ANFIS model is relatively more
appropriate because it uses the multi-scale time
series of rainfall and runoff data in the ANFIS
input layer. Nayak et al. (2013) modeled
Rainfall-runoff for Malaprabha basin in India
by using conceptual, data driven and wavelet
based computing approach. The results of this
study indicate that the WNN model performs
better compared to an ANN and NAM model in
estimating the hydrograph characteristics such
as flow duration curve effectively. Asadi et al.
(2013) applied a hybrid intelligent model for
rainfall-runoff modeling at the Aghchai
watershed. They used data pre-processing
methods such as data transformation, input
variables selection and data clustering for
improving the accuracy of the model. The
results show that this approach is able to predict
runoff more accurately than ANN and ANFIS
models. Kisi et al. (2013) used ANN, ANFIS
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and gene expression programming (GEP) for
modeling rainfall-runoff process. The study
provides evidence that GEP is a viable
alternative to other applied artificial intelligence
and multi linear regression time-series methods.
Based on a review of the literature, it appears
that the use of all wavelet decomposed sub-
series as inputs to the ANN models needs to be
explored since averaging or optimizing the
selection of only certain sub-series (as has been
done in most of the studies to date in the
literature) can be viewed as a potentially
diminutive approach since all sub-series
coefficients are equally important and contain
information about the original time series and
the use of system identification models in semi-
arid watersheds with intermittent flows needs to
be explored. The aim of this paper is to

compare the accuracy of ARX, ARMAX, ANN,
Wavelet-ANN, and ANFIS techniques in
modeling rainfall-runoff process.

2 MATERIALS AND METHODS

2.1 Study River

The time series of daily stream flow data
collected from Hajighoshan station (station no:
12-063, 55°21' E, 37°24' N) on the Gorgan
River operated by Iranian Water Research
Institute was used in this study. Stream flow or
discharge measurement normally involves (1)
obtaining a continuous record of stage, (2)
establishing the relationship between stage and
discharge (rating curve) (3) transforming the
record of stage into a record stage. The location
of Hajighoshan station is shown in Figure 1.
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Figure 1 Location of Hajighoshan station in Gorgan River, Mazandaran province, Iran
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The used data spans a period of 26 years from
1982 to 2008 (9497 days) for the mentioned
station. The rainfall data were comprised the
observations belonging to five meteorological
stations (Houtan, Maravehtapeh, Tamar,
Cheshmehkhan and Tangrah climatologic
stations). The average rainfall of Hajighoshan
watershed was computed using Thiessen
polygon. Table 1 shows Characteristics and
effective area different stations in rainfall
Hajighoshan watershed.

In the modeling process, the data sets of
stream flow and rainfall were scaled to the
range between 0.1 and 0.9 for ANN and ANFIS
models as follow:

J+O.1

where N, is the normalized value, X;is the

Xi — Xnin

N, =O.8><[ (1)

X

max — Xmin

original data and X

the minimum and maximum of stream flow and
rainfall. The 19 year rainfall and stream flow
data are used to train the ANFIS and ANN
models and the remaining 7 year records are
used for testing. For the Hajighoshan station,
the daily flow statistics of training, test and
entire data set are presented in Table 2.

X are, respectively,

min ?

It can be seen from table that the rainfall and
stream flow data show significantly high
skewed distribution.

2.2 ARX model (Autoregressive exogenous
inputs)

In the ARX model structure, the output at a

specific time is considered to be linear

combinations of the previous outputs and inputs

and the current input. A discrete-time

designation of the ARX model is:

y(t) +ayt-1) +..+ an, (t-na) =bju(t-1)

)
+...+bnbu(t-nk -Ny +1) +e(t)

Where t represents integer time step, e(t)
denotes the modeling error, Yy is the output, u is
the input, ei and bj are model parameters to be

estimated using the data and na,nb and nkare
the orders of the output, input and input—output
delay, respectively (Celik and Ertugrul, 2010).
In order to build ARX model, daily total
precipitation data were used as input for day, 1-
day and 2-day-ahead precipitation forecasts. In
this study, linear parametric model was used as
estimation model. Several delay orders were
tested using trial and error procedure. The
parameters ofna, nband nkvary from 0 to 9
(Talei et al., 2010a).

Table 1 Characteristics and effective area different stations in rainfall Hajighoshan watershed

Geographic coordinates ) Annual Effective area
. Elevation L

Station name ) ) Precipitation

Longitude Latitude (m) Hectare Percent

(mm)

Houtan 55°28° 53" 37°56° 23" 107 275.3 144.14 6.1
Maravehtapeh 55°57°19"  37°54 31" 216 355 352.09 14.9
Tamar 55°30" 7" 37°29" 31" 190 537.8 1127.15 47.4
Cheshmehkhan  56° 7" 02" 37° 17 48" 1174 232.5 54.35 2.3
Tangrah 55°26°00"  37°15 51" 438 717.23 675.27 29
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Table 2 The statistical characteristics of the daily rainfall and streamflow data

Numbers of

Standard

Variable Data set Average .. Maximum  Minimum Skewness
data deviation
Rainfall Training 6940 1.44 412 53.37 0 4.78
(mm) Te_st 2557 1.69 4.79 46.04 0 4.60
Entire 9497 1.51 431 5.37 0 4,75
Streamflow Training 6940 1.94 6.64 248 0 17.78
(mP sY) Te_st 2557 2.12 8.74 267 0 19.13
Entire 9497 1.99 7.27 267 0 18.89
2.3 ARMAX Model (Autoregressive Moving 2.4 ANFIS

average exogenous inputs)
All of the modeling steps in ARMAX are
similar to ARX but for the delay orders. The
ARMAX model is defined as follows:

yt)+a,yt-+---+a, y(t—na)=
bu(t —nk) +....+b, u(t—nk —nb+1) +(3)
~-+ce(t-1)+..+c,e(t—nc)+e(t)

where Yy (t) is the output at time t, ai’s and bj’s
are model parameters to be estimated using the
data, na is the number poles of the system, nb is
the number of the zeros of the system, Nnc is the
number of previous error terms on which the
current output depends and nk is the number of
input samples that occur before the inputs affect
the current output (Celik and Ertugrul, 2010). The
zeros and the poles are equivalent ways of
describing the coefficients of the model. The
poles relate to the “output-side” and the zeros
relate to the “input-side” of this equation. The
number of poles (zeros) is equal to number of
sampling intervals between the most and least
delayed output-input (Ljung, 1995). Similar to
ARX model in order to build ARMAX model,
daily total precipitation data were used as input to
day, 1-day and 2-day ahead groundwater level
forecasts. Also linear parametric model was
employed as estimation model. Several delay
orders were tested using a trial and error
procedure. The parameters of na, nb, nc and
nk vary from 0 to 9 (Talei et al., 2010a).
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The ANFIS used in the study is a fuzzy
inference model of Sugeno type, and is a
composition of ANN and fuzzy logic
approaches (Jang, 1993). The model identifies a
set of parameters through a hybrid learning rule
combining the back propagation gradient
descent and a least-squares method. It can be
used as a basis for constructing a set of fuzzy
If-Then rules with appropriate membership
functions to generate the previously stipulated
input-output pairs. The Sugeno fuzzy inference
system is computationally efficient and works
well with linear techniques, optimization and
adaptive techniques (Jang 1993).
Characteristics of the ANFIS model have been
presented in Table 3.

2.5 ANN

The neural network structure in this study
possessed a three-layer learning network
consisting of an input layer, a hidden layer, and
an output layer. The methodology used for
adjusting the weights of the ANN model was
LM because this technique is more powerful
than conventional gradient descent techniques
(Hagan and Menhaj, 1994). Sigmoid and
hyperbolic tangent activation functions were
used for the hidden and linear activation was
used for output node(s). The hidden layer node
numbers of each model were determined after
trying various network structures. The ANN
training was stopped after 1000 iterations.
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Table 3 The training parameters of the ANFIS

Parameter Method
AND method Prod
Or method Maximum
Imp. method Prod
Aggr. method Maximum
Defuzzification method wtaver

2.6 Wavelet-ANN

In order to build the hybrid Wavelet-ANN
model, sub-series elements which are derived
from the use of the discrete wavelet transform
on the original time series data have been used
as inputs for neural network models. Each sub-
series element plays a unique role in the
original time series and the performance of each
sub-series is distinct. In the first step, the
original data (i.e. daily average discharge and
daily precipitation) was decomposed into a
series of details using a discrete wavelet
transformation. Then the decomposition process
was iterated with successive approximation
signals being decomposed in turn, so that the
original time series was broken down into many
lower resolution components (Adamowski and
Chan, 2011). All of the mentioned variables
were decomposed to 1, 2, 3 and 10 levels by
eleven different kinds of wavelets i.e. Haar
wavelet as a simple wavelet, Daubechies-2
(db2) wavelet as the most popular wavelet
(Mallat, 1989), and some irregular wavelets
such as db, sym, bior, rboi, and coif wavelets.

2.7 Performance evaluation

The 80 and 20 percent of whole data set was
used randomly for training and testing,
respectively. Coefficient of correlation (r) and
root mean square error (RMSE) were used to
evaluate the performances of models and select
the best one. In brief, the models predictions are
optimum if r and RMSE are found to be close
to 1 and O respectively. The higher the R value
(with 1 being the maximum value) and he lower
the RMSE values (with O being the minimum
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value) the better is the performance of the
model.

n

(Z (Qo _QAve)(QE _QAve—E ))2
r= | (13)

> Q0 (30 ~Qurce

LN A2
RMSE = /n;(QO Q:)

where Q,, Qg, n, Qpe and Qu.g are
observed stream flow, estimated stream flow,
number of data, mean observed stream flow and
mean estimated stream flow.

(14)

3 RESULTS AND DISCUSSION

3.1 System identification

In this study, several ARX and ARMAX as system
identification models were tested to forecast stream
flow. Table 1 shows the best models of ARX and
ARMAX chosen in this research. Table 4 shows R
and RMSE for different system identification
models with the best orders for forecast stream
flow for test data set.

3.2 ANN

Table 5 shows the results obtained from
employing ANN models with the LM algorithm
and best iteration (i.e. 1000) for forecast stream
flow.

3.3 ANFIS Model

Table 6 shows the results obtained from
employing ANFIS models with the best number
of membership functions (i.e. 2 MFs), for the
best iteration (i.e. 3,000), and the forecast
stream flow for validation data set. As shown in
this table, the best membership type selected is
bell-shaped.
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3.4 Wavelet-ANN

In this part 252 Wavelet-ANN models have
been tested for case study. The best ANN
model was selected to make hybrid Wavelet-

ANN models. Table 7 shows the results of
Wavelet-ANN  models  with  the  best
combination of inputs and the best network (i.e.
LM) for test data set.

Table 4 Results of system identification (test data set)

. Test period
Model inputs Structure —
r RMSE (m’s™)
Q= f(Py) 441 0.87 4.88
ARX Q=f(Py, Py.1) 6[33][11] 0.36 9.71
Q=f(Py, Py, Pyn) 4[6 6]3 [4 4] 0.21 9.56
Q= f(Py) 7371 0.8 6.31
ARMAX Q=f(Py, Pr1) 9[777]2[444] 0.34 9.95
Q=f(Py, Py, Py) 7[666]4[333] 0.26 10.9
Table 5 Results of ANN (test data set)
] Test period
Model inputs ANN structure e
r RMSE (m°s™)
Q= f(Py 1-14-1 0.36 9.50
Q=f(Py, P1) 2-9-1 0.40 9.69
Q=f(Py, Pry, Pro) 3-11-1 0.21 10.1

Table 6 Results of ANFIS models (test data set)

Model inputs
Membership Function Q= f(Py Q=f(Py, Pi1) Q=f(Py, Pi1, Pio)
r RMSE (m*s™) r RMSE (m°s™) r RMSE (m°s™)
MFgauss 0.87 4.88 0.38 4.77 0.30 10.16
MFgbell 0.93 3.46 0.88 3.92 0.64 9.35
MFpi 0.86 5.17 0.37 4.75 0.30 10.17
MFtri 0.76 4.94 0.37 4.90 0.29 10.16

Figure 3 demonstrates the stream flow forecasts
of the ARX, ARMAX, ANN, ANFIS and
Wavelet-ANN models in the test period for the
Hajighoshan station. The predictions of the
ANFIS models are closer to the exact line than
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those of the ARX, ARMAX, Wavelet-ANN and
ANN models. In general, ANFIS performs
more efficiently than ARX, ARMAX and ANN
and Wavelet-ANN models.
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Table 7 Results of Wavelet-ANN models (test data set)

Model inputs Models ANN structure Test period
r RMSE (m®s™)
Bior 9 1-4-1 0.36 6
Coif 4 1-9-1 0.34 5.18
Db 8 1-9-1 0.35 5.97
Q=f(P) Dmey 6 1-5-1 0.4 5.52
Haar 9 1-3-1 0.37 5.97
Rbio 9 1-6-1 0.37 5.99
Sym5 1-8-1 0.42 5.25
Bior 2 2-9-1 0.46 5.26
Coif 9 2-9-1 0.47 4.88
Db 2 2-4-1 0.45 5.27
Q=f (Py, Pe.1) Dmey 9 2-9-1 0.44 5.62
Haar 2 2-2-1 0.46 5.26
Rbio 2 2-4-1 0.45 5.27
Sym 3 2-5-1 0.41 6.25
Bior 6 3-9-1 0.47 4.84
Coif 4 3-3-1 0.51 4.39
Db 6 3-10-1 0.46 4.86
Q=f (P, Pe1, Pr2) Dmey 12 3-5-1 0.6 5.69
Haar 6 3-5-1 0.45 491
Rbio 6 3-7-1 0.46 4.87
Sym5 3-8-1 0.36 5.69
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Figure 3 The best models predictions for stream flow (test data set)
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4 CONCLUSIONS

In this study, several data-driven techniques
including, system identification, ANFIS, ANN
and Wavelet-ANN models were tested and
evaluated in order to rainfall-runoff modeling on
the basis of performance criteria. The obtained
results also showed that ANFIS outperformed all
other models. It may be related to the combined
effect of fuzzification of the input through
membership functions and the ability of ANN.
Because the data were first fuzzified and then fed
to the ANN model and neural network modeling
have been performed on the fuzzified data so, the
ability of these modeling advance have been
improved (Shirmohammadi et al. 2013). These
results are in accordance with Nayak et al. (2004),
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Lohani et al. (2006), Aqil et al. (2007) and
Dorum et al. (2010).

Nayak et al. (2004), Lohani et al. (2006), Aqil
et al. (2007) and Dorum et al. (2010) reported
slightly better performance of ANFIS than
ANN in modeling the daily and hourly runoff
behavior. The ANN and Wavelet-ANN seem to
be the worst at forecasting peak flows. It may
be noted that the ANN and Wavelet-ANN
models were built on non-transformed data, and
it follows that the transformation of data into
the normal domain prior to model development
also helps improve peak flow estimation
(Vafakhah, 2012). It can be implied that, in
general, the ANFIS model provides a superior
alternative to system identification, ANN and
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Wavelet-ANN models for developing input—
output simulations and for rainfall-runoff
modeling. The results of the study are highly
encouraging and suggest that an ANFIS
approach is viable for rainfall-runoff modeling.
An important direction for future work is the
use of wavelet-system identification and
wavelet-ANFIS models in order to improve the
ability of these methods.
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