Effects of Grazing and Fire on Soil and Vegetation Properties in a Semi-Arid Rangeland

Davoud Akhzari¹*, Mohammad Pessarakli², Farnaz Mahmoodi³ and Behnoush Farokhzadeh¹

¹Assistant Professor, Department of Watershed and Rangeland Management, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
²Professor, School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721, USA
³Former M.Sc. Student of Environmental Management, Malayer University, Malayer, Iran

Received: 14 February 2015 / Accepted: 18 April 2015 / Published Online: 15 July 2015

ABSTRACT Livestock grazing and rangelands fire are important ecological disturbances influencing the vegetation and soil properties in rangelands ecosystem. This study was conducted to determine the effects of different burned treatments and distances from the water sources on some soil and vegetation properties of rangelands ecosystem. The experiment was conducted in Lashgar Dar Rangelands. Vegetation samplings were done based on the randomized systematic method across transects. Fifty randomized quadrats were sampled at each transect. One hundred soil samples per each transect were systematically taken by auger along each transect. The ANOVA and Duncan tests were employed for statistical analyses. The results indicated that the highest and the lowest above-ground biomass production (630 and 117 kg ha⁻¹), Shannon-Wiener diversity index (2.37 and 1.07), soil TOC (18.34 and 6.66 g kg⁻¹), soil gravimetric water content (16.4 and 6 %) and soil porosity (69.43 and 57.74 %) values were found in the unburned rangelands with 2000 m distance from the water source and the one year post burned rangelands with 10 m distance from the water source, respectively. Whereas, the maximum and the minimum values of soil bulk density and soil EC were seen in the one year post burn with 10 m distance from the water source and the unburned rangelands with 2000 m distance from the water source, respectively. There were no relations between the soil pH change trends and the different burned treatments or distances from the water source.

Key words: Burned rangelands diversity, Ecological disturbances, Soil management, Water resource

1 INTRODUCTION

Fire as an important disturbance factor alters properties of vegetation (Satterthwaite et al., 2002) in rangelands ecosystems. Several studies have shown that fire significantly increased (Brys et al., 2005) or decreased (Bennett et al., 2002) above-ground biomass production. It has been reported that rangelands plant community diversity may be affected by fire (Whelan, 1995). Vegetation diversity has been reported to increase due to rangelands fire (Safford and Harrison, 2004). Also, vegetation diversity increased by dormant-season fire and decreased by growing-season fire (Brockway et al., 2002). Several reports indicate that the soil bulk density values were higher in burned than in
unburned sites (Pierson et al., 2008; Wohlgemuth and Hubbert, 2008). So, above ground biomass production, plant community diversity and soil bulk density may positively or negatively change following by fire occurrence. Based on the literature review, several investigators have reported that surface soil water content may be affected (Pierson et al., 2001) or not altered (Soto and Diaz-Fierros, 1997; Vermeire et al., 2005) by fire. The soil moisture content was reduced after fire (Litton and Santelices, 2003; Wohlgemuth and Hubbert, 2008). It was reported that the soil porosity may be affected by fire (Eldiabani et al., 2014). Compared with preburn measurement, the soil porosity of post-burn sites reduced (Wells et al., 1979). Soil surface porosity decreased significantly after fire occurrence (Eldiabani et al., 2014). Therefore, fire occurrence can make some changes in surface soil water content and soil porosity. In noncalcareous soils, the soil pH increased (Ulery et al., 1996) ephemerally after the fire (Certini, 2005). However, within six months, soil pH in post-fire site returned to pre-fire levels (Boerner et al., 2000).

Literature review indicates that, burning caused a significant increase (Alauzis et al., 2004) or decrease (Dennis et al., 2013) in soil electrical conductivity (EC). Concentrations of total organic carbon (TOC) of soil may be altered (Medvedeff et al., 2013) or not affected (Dai et al., 2006) by fire. The mean soil organic carbon values were reduced (Ekinci, 2006) or increased (Scharenbroch et al., 2012) by burning.

The effects of livestock grazing on rangelands ecosystems were also assessed based on soil and vegetation conditions (Li et al., 2011). Vegetation and soil properties can be affected by grazing (Frank et al., 1995). A wide range of factors may characterize the rangelands changes direction (Bardgett and Wardle, 2003). Based on soil and vegetation conditions, livestock overgrazing may lead to rangelands degradation (Li et al., 2011).

Biomass production is maintained by compensatory growth in response to grazing (Stow et al., 2000). Compared with the heavily grazed rangelands, light or moderate grazing intensity improved biomass production in the rangeland (Frank et al., 2003). Generally, vegetation biomass is reduced as grazing intensity increased (Milchunas et al., 1988). However, there is some debate about positive (McNaughton, 1983) or negative (Li, 1997) effects of grazing on biomass production.

Defoliation, leaving excreta (Duncan, 2005) and transport of seeds (Olff and Ritchie, 1998) caused by livestock grazing can influence plant diversity. Animal grazing may cause decrease (Zhao et al., 2006) or increase (Proulx and Mazumder, 1998) in the vegetation diversity of the rangeland ecosystems. Light or moderate grazing may lead to increased plant diversity and altered species composition (Wu et al., 2009). However, heavy grazing has been documented by Zhao et al. (2006) to reduce vegetation diversity of the rangeland.

Soil bulk density was significantly higher in the grazed than that in the un-grazed rangelands (Laycock and Conrad, 1967). The study of Tollner et al. (1990) indicated that heavy grazing caused an increase in soil bulk density. Soil moisture content as a key indicator of rangelands health may be altered by livestock grazing (Weber and Gokhale, 2011). Soil water content was enhanced significantly by increased livestock grazing intensity (Li et al., 2011). While based on LeCain et al. (2000) and Olofsson et al. (2008) studies, soil moisture in exclosure livestock grazing was higher than that in the grazed rangelands. Livestock grazing lead to soil compaction which reduces soil porosity (Blackburn, 1984). Soil porosity
decreased significantly across increasing grazing intensity (Azarnivand et al., 2011).

It has been reported that soil pH as a main factor of soil chemical characteristics could be altered by livestock grazing (Ratliff, 1985; Firestone, 1995). Soil pH was higher in the low grazing intensity than that in the high grazing intensity (Yates et al., 2000). However, Milchunas and Lauenroth (1993) reported that there were no relationships between grazing and soil pH.

Soil EC in the high grazing intensity rangeland was significantly higher than that in the low grazing intensity (Shahriary et al., 2012). Livestock grazing alters the organic C supply of the soil in rangelands ecosystem (Wang et al., 2008). Some researchers reported that soil organic C increased by livestock grazing (Reeder and Schuman, 2002). While, other studies showed that soil organic C decreased (Ingram et al., 2008) or was not affected by livestock grazing (Milchunas and Lauenroth, 1993; Wang et al., 1998).

Livestock grazing and accidentally or intentionally fires are the main ecological disturbances which occurred in Lashgar Dar Rangelands. Based on Literature review, the numerical values of biomass production and vegetation diversity (which shows vegetation properties), bulk density, gravimetric water content, porosity, pH, EC and TOC (which shows soil properties) may positively or negatively change following by fire occurrence or grazing intensity.

Therefore, it seems necessity to evaluate and highlight the effect of grazing intensity and fire on soil and vegetation characteristics. So, the present research aimed at study the effect of different burned treatments and distances from the water sources on soil and vegetation properties.

2 MATERIALS AND METHODS
This study was carried out in Lashgar Dar Rangelands at 1750 to 2928 m a.s.l. with 364 mm average annual precipitation (N 34° 12’, E 48° 58’). This area is located near Malayer City in Hamedan Province, Iran (Figure 1).
Based on piosphere concept (Andrew, 1988), grazing intensity decreased exponentially with increasing distance from the water sources. According to Todd (2006) and Sasaki et al. (2012) reports the distance from the water source was surrogated as relative grazing intensity decreased.

So, in the present study 10, 100, 500, 1000, and 2000 m distances from the water source represent various grazing intensities.

One water source was selected in unburned rangelands where livestock grazing during the growing season occurred with no burning occurrence.

Three water sources were selected in one post burn, three and five years post burn in Lashgar Dar Rangelands where livestock grazing during the growing season occurred.

Vegetation samplings were conducted based on the randomized systematic method across 500 m length transects which were placed at 10, 100, 500, 1000, and 2000 m, running perpendicular to each water source in late May 2014.

Fifty randomly chosen quadrats (50 cm × 50 cm) were sampled at the phenological maturity (peak biomass) during the May 2014 in each transect for the above-ground biomass production and vegetation diversity in the study area.

In each quadrat, the plant species were identified and canopy cover of each species was determined in terms of the covered surface to the nearest 5%.

Species diversity in various fires and grazing intensity were calculated and compared using Shannon’s index (H) based on Ludwig and Reynolds (1988) method.

Biomass production was determined by cut and weight method. For that, the whole vegetation within each quadrat was cut at the soil surface and placed into paper bags. The aboveground green parts (stem and leaves) were brought to the lab, oven dried at 70 °C for 24 hours and weighed.

2.1 Soil sampling and Analyses

Soil samples were systematically taken by auger in late May 2013 from 0-15 cm depth every 5 m along each transect (100 soil samples per each transect).

Soil bulk density was determined by the core method for undisturbed soil described by Blake and Hartge (1986). The rock fragments greater than 2 mm were separated and discarded from the soil samples to achieve a correct bulk density value (Vincent and Chadwick, 1994).

\[
\text{Soil bulk density} = \frac{\text{mass of oven dry soil (g)}}{\text{total volume of soil (cm}^3)}
\]

Soil porosity was measured based on bulk density values assuming a particle density of 2.65 g cm\(^{-3}\) (Danielson and Sutherland, 1986).

Gravimetric water content measurements were conducted on soil samples which were taken at 0 to 15 cm depth as described by Gardner (1986) method. Air dried soil samples were sieved through a 2 mm sieve to remove any undesirable plant residues and rocks.

Soil pH and EC were measured with a 1:2.5 soil to solution ratio which was described by Okalebo et al. (2002). Soil samples were analyzed for total organic carbon (TOC) by the Walkley and Black (1934) method.

Effects of grazing and fire on soil and vegetation properties on soil and vegetation properties were statistically analyzed by analysis of variance (ANOVA) (at α = 0.05).
3 RESULTS
3.1 Effect of different burned treatments and distances from the water sources on the above-ground biomass production
The above-ground biomass production declined significantly along decreasing distances from the water sources in the unburned and various years of post-burned rangelands (Figure 2). There were significant differences found between the above-ground biomass productions (kg ha\(^{-1}\)) in the unburned and various years of post-burned rangelands (Figure 2). The highest and the lowest above-ground biomass production values were found in the unburned rangelands with 2000 m distance from the water source (630 kg ha\(^{-1}\)) and the one year post burned rangelands with 10 m distance from the water source (117 kg ha\(^{-1}\)), respectively (Figure 2).

3.2 Effect of different burned treatments and distances from the water sources on Shannon-Wiener diversity index
The Shannon-Wiener diversity index significantly increased with increased distance from the water sources. The Shannon-Wiener diversity index of vegetation was significantly altered in the unburned and in the one, three, and five years post burned rangelands.

The maximum value of Shannon-Wiener diversity index of vegetation was found in the unburned rangelands with 2000 m distance from the water source (2.43). The minimum value of diversity index was illustrated in the one year post-burn rangelands with 10 m distance from the water source (Figure 3).

Figure 2 Results of the analysis of variance (ANOVA) of the effects of different burned treatments and distances from the water sources (m) on the above-ground biomass production. Different letters on the bar graphs represent a significant difference (P<0.05) between the above-ground biomass production values in different treatments (P< 0.05).
3.3 Effect of different burned treatments and distances from the water source on bulk density, gravimetric water content and porosity of the soil

Bulk density of the soil differed significantly across the various burned treatments and distances from the water sources. Bulk density of the soil significantly increased with decreasing distances from the water sources. The highest bulk density values were seen in the one year post burned treatment. Compared with the one year post burned treatment, the unburned, three year, and five year post-burn treatments had lower bulk density values (Table 1). The bulk density values of the soil were the highest (1.12 g cm\(^{-3}\)) and the lowest (0.81 g cm\(^{-3}\)) in the one year post burned with 10 m distance from the water source and the unburned region with 2000 m distance from the water source treatments, respectively.

Table 1 shows the effects of different burned treatments and distances from the water source on gravimetric soil moisture content. Soil moisture (0–15 cm depth) content varied significantly between the various treatments. The unburned rangelands with 2000 m distance from the water source registered the highest (16.4 %) and the one year post burned rangelands with 10 m distance from the water source had the lowest (6%) gravimetric soil moisture content.

Soil porosity decreased significantly with decreasing distance from the water source (Table 1). The unburned rangelands with the most distance from the water source (2000 m) had the highest (69.43 %) soil porosity, while the soil porosity reduced significantly in the burned regions. The maximum (57.75 %) soil porosity value was seen in the one year post burned treatment with 10 m distance from the water source (Table 1).

3.4 Effect of different burned treatments and distances from the water sources on soil pH

Soil pH was not significantly affected by different burned treatments and distances from the water sources. There were no relationships between the soil pH change trends and different burned treatments or distances from the water sources (Figure 4).
Table 1

Results of the analysis of variance (ANOVA) of the effects of different burned treatments and distances from the water sources on bulk density, gravimetric water content and porosity of soil.

<table>
<thead>
<tr>
<th>Different burned treatments and distances (m) from the water sources</th>
<th>Bulk density (g cm-3)</th>
<th>Gravimetric soil water content (%)</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unburned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.07ab</td>
<td>7.40e</td>
<td>59.62e</td>
</tr>
<tr>
<td>100</td>
<td>0.99bc</td>
<td>9.80d</td>
<td>62.64cd</td>
</tr>
<tr>
<td>500</td>
<td>0.93cd</td>
<td>12.60bc</td>
<td>64.91bc</td>
</tr>
<tr>
<td>1000</td>
<td>0.84d</td>
<td>14.50ab</td>
<td>68.30ab</td>
</tr>
<tr>
<td>2000</td>
<td>0.81d</td>
<td>16.40a</td>
<td>69.43a</td>
</tr>
<tr>
<td>One year post burned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.12a</td>
<td>6e</td>
<td>57.74e</td>
</tr>
<tr>
<td>100</td>
<td>1.05ab</td>
<td>7.9e</td>
<td>60.38de</td>
</tr>
<tr>
<td>500</td>
<td>0.97c</td>
<td>10.4cd</td>
<td>63.40c</td>
</tr>
<tr>
<td>1000</td>
<td>0.93cd</td>
<td>13.1b</td>
<td>64.91bc</td>
</tr>
<tr>
<td>2000</td>
<td>0.84d</td>
<td>14.9e</td>
<td>68.30ab</td>
</tr>
<tr>
<td>Three year post burned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.11a</td>
<td>6.5e</td>
<td>58.11e</td>
</tr>
<tr>
<td>100</td>
<td>1.05ab</td>
<td>8.3de</td>
<td>60.38de</td>
</tr>
<tr>
<td>500</td>
<td>0.97c</td>
<td>10.9e</td>
<td>63.40c</td>
</tr>
<tr>
<td>1000</td>
<td>0.89cd</td>
<td>13.4b</td>
<td>64.42b</td>
</tr>
<tr>
<td>2000</td>
<td>0.83d</td>
<td>15.8a</td>
<td>68.68a</td>
</tr>
<tr>
<td>Five year post burned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.09ab</td>
<td>6.8e</td>
<td>58.87e</td>
</tr>
<tr>
<td>100</td>
<td>1.03ab</td>
<td>9.1d</td>
<td>61.13d</td>
</tr>
<tr>
<td>500</td>
<td>0.96c</td>
<td>11.8e</td>
<td>63.77c</td>
</tr>
<tr>
<td>1000</td>
<td>0.89cd</td>
<td>13.9b</td>
<td>66.42b</td>
</tr>
<tr>
<td>2000</td>
<td>0.81d</td>
<td>16.1a</td>
<td>69.43a</td>
</tr>
</tbody>
</table>

Different letters in the same column represent a significant difference (P<0.05) between bulk density, gravimetric water content and porosity values of soil in different treatments.

Figure 4 Results of the analysis of variance (ANOVA) of the effects of different burned treatments and distances from the water sources (m) on the soil pH. Different letters on the bar graphs represent a significant difference (P<0.05) between soil pH values in different treatments.
3.5 Effect of different burned treatments and distances from the water sources on soil EC

Based on the results of ANOVA (Figure 5), the soil EC increased significantly with decreasing distances from the water sources. Generally, the soil EC values were significantly higher in different years post burned treatments than those of the unburned treatment (Figure 5). The maximum soil EC values were recorded as 0.73 dS m$^{-1}$ for the one year post burn treatment with 10 m distance from the water source. The lowest soil EC values were seen as 0.30 dS m$^{-1}$ in the unburned treatment with 2000 m distance from the water source (Figure 5).

3.6 Effect of different burned treatments and distances from the water source on the soil TOC

The soil TOC significantly increased in the unburned treatment with 2000 m distance from the water source (18.34 g kg$^{-1}$) (the highest soil TOC values were seen in this treatment). There were significant differences found between the soil TOC in the unburned and all the burn treatments (Figure 6). The soil TOC values significantly increased with increasing distances from the water sources. The lowest TOC value (6.66 g kg$^{-1}$) was found in the one year post burned treatment with 10 m distance from the water source (Figure 6).

![Figure 5](image1.png)

Figure 5 Results of the analysis of variance (ANOVA) of the effects of different burned treatments and distances from the water sources (m) on the soil EC. Different letters on the bar graphs represent a significant difference (P<0.05) between soil EC values in different treatments.

![Figure 6](image2.png)

Figure 6 Results of the analysis of variance (ANOVA) of the effects of different burned treatments and distances from the water sources (m) on the soil TOC. Different letters on the bar graphs represent a significant difference (P<0.05) between soil TOC values in different treatments.
4 DISCUSSION

4.1 Effect of different burned treatments and distances from the water source on the above-ground biomass production

The above-ground biomass production values of the plants in the unburned rangelands were significantly higher than those of the burned rangelands. This agrees with the work done by Bennett et al. (2002), which reported decrease in the above-ground biomass production after the fire. In contrast, the inconsistent results were reported by Brys et al. (2005) who found fire significantly increased biomass production by the plants.

Similar results were reported by other researchers who reported fires could reduce vegetation productivity (Brockway et al., 2002) in semiarid environments where water availability is low (DeBano et al., 1998; Bennett et al., 2002) or nutrient elements are limited (Bennett and Adams, 2001) for plant growth. Fire releases nutrients that were immobilized in the soil organic matter (DeBano et al., 1998).

The above-ground biomass production declined significantly across the decreasing distances from the water sources. Similar results were reported by Milchunas et al. (1988) who found vegetation biomass was reduced as grazing intensity increased.

4.2 Effect of different burned treatments and distances from the water sources on Shannon-Wiener diversity index

As it were shown in Figure 3, Shannon-Wiener diversity index values were significantly higher in the unburned rangelands than those of the burned rangelands. In Lashgar Dar Rangelands, fires occur during the growing season. So, this is consistent with the study of Brockway et al. (2002) who stated vegetation diversity increased by dormant-season fire and decreased by growing-season fire. However, inconsistent results were reported by Safford and Harrison (2004) who found vegetation diversity increased by fire.

Shannon-Wiener diversity index values decreased significantly by decreasing distances from the water sources (Figure 3). This is in agreement with Wu et al. (2009) results that reported light or moderate grazing intensities may lead to increased plant diversity. The consistent results were also reported by Zhao et al. (2006) who stated heavy grazing reduced vegetation diversity of the rangelands.

4.3 Effect of different burned treatments and distances from the water sources on bulk density, gravimetric water content, and porosity of the soil

The results of this research indicated that the soil bulk density values were higher on the burned than on the unburned sites (Table 1). Similar results were reported by other researchers (Pierson et al., 2008; Wohlgemuth and Hubbert, 2008).

In all treatments, soil bulk density numerical values were significantly increased by decreasing distances from the water sources (Table 1). These results are consistent with the study of Tollner et al. (1990) which found that heavy grazing caused an increase in soil bulk density. The results of the present research are also in agreement with those of Laycock and Conrad (1967) who reported soil bulk density was significantly increased by livestock grazing.

Animal grazing and trampling break down soil aggregates and due to compaction, so soil bulk density significantly increased. The lower intensity livestock grazing have higher level of soil macropores than under heavy grazing intensity treatments. Soil macropores increment due to the increase in soil porosity and decrease in soil compaction. So, soils with higher porosity and lower bulk density have higher gravimetric water content.
Based on the results of this research, the unburned rangelands with 2000 m distance from the water source registered the highest (16.4 \%) and the one year post burn rangelands with 10 m distance from the water source was found the lowest (6 \%) gravimetric soil moisture content (Table 1).

In agreement with this research, Litton and Santelices (2003) and Wohlgemuth and Hubbert (2008) reported that soil moisture content reduced after burning. Fire remove litter from the soil surface and then the sun can evaporate more soil moisture and soil surface water content decreased. On the other hand, litter removal from the soil surface leading to increment of runoff and decrease of water infiltration rates. The consistent results were also reported by Pierson et al. (2001) who found surface soil water content may be affected by fire. In contrast, the inconsistent results were reported by Soto and Diaz-Fierros (1997) and Vermeire et al. (2005) who stated soil moisture content may not be altered by burning.

The results of this research indicate that soil water content was enhanced significantly by increasing distances from the water sources (Table 1). These results are consistent with those of other researchers (LeCain et al., 2000; Olofsson et al., 2008) who stated soil moisture content was reduced by animal grazing. However, inconsistent results were reported by Li et al. (2011) who found soil water content was enhanced significantly by increasing livestock grazing intensity.

The unburned rangelands with the most distance from the water source had the highest (69.43 \%) and the one year post burned treatment with 10 m distance from the water source had the lowest (57.75 \%) soil porosity values (Table 1). The results of the present research are in agreement with those of Eldiabani et al. (2014) who reported soil surface porosity decreased significantly after burning. The results of the present research are also consistent with the study of Eldiabani et al. (2014) who stated soil porosity may be affected by fire.

Soil porosity decreased significantly with decreasing distance from the water source (Table 1). Similar results were reported by Blackburn (1984) and Azarnivand et al. (2011) who stated that animal grazing led to reduce soil porosity. Generally, increased soil bulk density caused decreased soil porosity percentage from 2000 m distance from the water sources to those of the 10 m distance. Reduction in soil moisture content in the near distances from the water sources may have been caused by increase in livestock numbers. Animal trampling caused decrease in porosity and water infiltration into the soil which resulted in decreasing soil humidity moisture content (Azarnivand et al., 2011).

4.4 Effect of different burned treatments and distances from the water sources on soil pH

There were no relations between the soil pH change trends and the different burned treatments or distances from the water sources (Figure 4). Similar results were reported by Boerner et al. (2000) who found within six months, soil pH in post-fire site returned to pre-fire levels. This is consistent with the study of other researchers who stated soil pH was altered (Ulery et al., 1996) ephemerally after fire (Certini, 2005).

The results of this research are in agreement with Milchunas and Lauenroth (1993) who reported that there were no relationships between grazing and soil pH. However, inconsistent results were reported by Yates et al. (2000) who stated soil pH was higher in the low grazing intensity than that in the high grazing intensity site.
4.5 Effect of different burned treatments and distances from the water sources on soil EC

Based on the present research results, soil EC values were significantly higher in the different years post burn treatments than those of the unburned treatment (Figure 5). Similar results were found by other researchers (Alauzis et al., 2004) who reported EC values of the burnt regions were higher than that of the unburned ones. In contrast, the inconsistent results were reported by Dennis et al. (2013) who found burning caused a significant decrease in the EC of the rangeland soils. The results of the present research indicated that soil EC increased significantly with decreasing distances from the water sources (Figure 5).

4.6 Effect of different burned treatments and distances from the water sources on the soil TOC

The significant differences were seen between the soil TOC in the unburned and all burned treatments. The results of this research showed the soil TOC significantly increased in the unburned treatment with 2000 m distance from the water sources (18.34 g kg\(^{-1}\)) (Figure 6). These results are in agreement with those of Medvedeff et al. (2013) who reported that amount of the soil TOC was altered by burning. In contrast, the inconsistent results were reported by Dai et al. (2006) who found concentrations of the soil TOC were not affected by fire.

The results of this research also agree with the work done by Ekinci (2006) who reported that the mean soil organic carbon values were reduced by burning. In contrast, the inconsistent results were reported by Scharenbroch et al. (2012) who stated that soil organic carbon concentrations were reduced by fire.

Based on the results of the present research, the soil TOC values were significantly altered across distances from the water sources. The minimum value of the soil TOC (6.66 g kg\(^{-1}\)) was found in the one year post burned treatment with 10 m distance from the water sources (Figure 6). These results are in agreement with the results of other researchers (Wang et al., 2008) who stated animal grazing altered the organic C supply of the soil in rangelands ecosystem. The consistent results were also reported by Ingram et al. (2008) who found the soil organic C decreased by livestock grazing. In contrast, the inconsistent results were reported by Reeder and Schuman (2002) who found the soil organic C increased by livestock grazing. The inconsistent results were also reported by Wang et al. (1998) who reported that soil organic C may not be affected by animal grazing.

5 CONCLUSION

The results of this study have demonstrated that soil and vegetation properties of unburned rangelands with the maximum distance from the water sources is better than other burned and distances from the water sources treatments. Compared with other burned treatments, the worst and best condition of soil and vegetation properties were seen in the one year post burned and unburned rangelands, respectively.

6 REFERENCES

Azarnivand, H., Farajollahi, A., Bandak, E. and Pouzesh, H. Assessment of the effects of overgrazing on the soil physical characteristic and vegetation cover

Effects of Grazing and Fire on Soil and Vegetation Properties

Litton, C.M. and Santelices, R. Effect of wildfire on soil physical and chemical properties in a Nothofagus glauca forest, Chile. Rev Chil Hist Nat., 2003; 76: 529-542.

Olofsson, J., de., Mazancourt, C. and Crawley, M.J. Spatial heterogeneity and plant
species richness at different spatial scales under rabbit grazing. Oecologia, 2008; 156: 825-834.

Scharenbroch, B.C., Nix, K.A.B. and Bowles, M.L. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (quercus) forest. Geoderma 2012; 183:80-91.

اثر چرای دام و آتش سوزی بر خصوصیات خاک و پوشش گیاهی در مراتع نیمه خشک

د. اکرمی ۱، د. سرکیسی ۲، ف. ضیغمی ۳، ح. فرهادی ۴

۱-استادار گروه مرتع و ایکوزینت، دانشکده منابع طبیعی، دانشگاه ملا، ملایر، ایران
۲-استاد دانشگاه ارزونا
۳-دانشجویی گروه حیات زیست، دانشگاه ملا، ملایر، ایران

تاریخ دریافت: ۲۵ بهمن ۱۳۹۳ / تاریخ پذیرش: ۲۹ فروردین ۱۳۹۴ / تاریخ چپ: ۲۴ تیر ۱۳۹۴

چکیده
چرایی دام و آتش سوزی از مهم‌ترین نشانگن‌های اکولوژیکی هستند که سبب تغییر خصوصیات پوشش گیاهی و خاک مراتع می‌گردد. این تحقیق به منظور بررسی اثر تیمارهای مختلف آتش سوزی و فاصله از آتش خور بر خصوصیات خاک و پوشش گیاهی مراتع نیمه خشک انجام شد. تحقیق حاضر در مراتع "لنگردر" در استان همدان به مرحله اجرا رسید. نمونه‌برداری از پوشش گیاهی به پایه روش سیستماتیک-تصادفی در طول ترانسکت انجام گرفت. تعداد ۵۰ پیلات به صورت تصادفی در طول هر ترانسکت استقرار یافتند. با استفاده از استانداردهای مورد استفاده، نمونه‌برداری خاک و در طول هر ترانسکت، ۱۰۰ نمونه از خاک منطقه به‌صورت سیستماتیک تهیه شد. تجزیه و تحلیل آماری داده‌ها در سطح اختلافات ۰/۰۵ و ترانسکت نتایج نشان داد که بیشترین اثرات مبتنی بر تغییرات در سطح از پوشش گیاهی و خاک می‌گردد. نتایج نشان می‌دهد که اثرات آتش سوزی و فاصله از آتش خور بر خصوصیات خاک و پوشش گیاهی در مراتع نیمه خشک دارای یکسانی است.

کلمات کلیدی: اکشن‌ها اکولوژیکی، تنويع مراتع تحت تأثیر آتش‌سوزی، مدیریت خاک، منابع آب