Effect of Pre-Sowing Seed Treatments on Germination Traits and Early Seedling Growth of Eldar Pine

Zeinab Javanmard¹, Masoud Tabari Kouchaksaraei²*

¹M.Sc. Student of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
²Professor of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran

*Corresponding author: Professor of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran, Fax: +98 122 625 3499, Tel:+98 911 224 6250, E-mail: mtabari@modares.ac.ir

Received: 25 June 2017 / Accepted: 5 September 2017 / Published Online: 31 December 2017

Background: Seed energy and seed vigour are the most important qualitative attributes influencing plant’s growth and establishment that can be improved by techniques generally known as seed priming, which enhances the percentage, speed and uniformity of germination. Effect of various priming techniques was conducted on seed germination and seedling’s early growth of elder pine (*Pinus eldarica* Medw.) in Seed Technology Lab of Natural Resources Faculty, Tarbiat Modares University, Iran.

Materials and Methods: Seeds were treated through hydropriming with distilled water, halopriming with NaCl at -4 and -8 bar concentrations, osmopriming with polyethylene glycol 6000 (PEG 6000) at -4 and -8 bar concentrations and hormonopriming with salicylic acid (SA) at 1 and 2 mM solutions for 48 h. Un-primed dry seeds were taken as control. The seeds were kept in germinator at 20 ± 0.5 °C, 65% relative humidity and 16.8 h light/dark photoperiod for 42 days.

Results: The highest germination percentage (92%) and germination speed (5.13 seeds/day) were obtained with hydropriming. The best results to improve germination energy, time to 50% germination, seedling length, seedling dry weight and seedling vigour index were achieved with hydropriming and hormonalpriming 1 and 2 mM. Osmopriming and halopriming -8 bar compared to control in most mentioned traits showed poor performance.

Conclusions: Hydropriming and hormonalpriming can be suitable techniques to support nursery practices of elder pine seed in order to improve germination percentage, emergence and early seedling growth.

Keywords: *Pinus eldarica*, Priming, Seed germination, Vigour index

1. **Background**

 Despite the genus *Pinus* is one of the most widely distributed around the world (1), elder pine (*P. eldarica* Medw.) is found in a much smaller biogeographic region from 200 - 600 meter elevations in the semi-arid steppe region in Georgia (2). However, its distribution area has been extended, via plantations, to numerous countries in Europe, Middle East and Asia, as well as Central America, Africa and Australia (3). This tree is highly valued for establishment of windbreak, reclamation, reforestation, biomass and energy, landscape and soil conservation. It shows potential to provide chemical extractives, or for the manufacture of particle board and paper pulp, too (3, 4). In developing countries, it is valued principally for its benefits as a short-rotation wood and fuelwood crop, and for establishing windbreaks (5). It is also used as ornamental tree in the
southwestern United States (6). In reality, these benefits make this species important for landscape planning and multipurpose forestry. As a consequence, the interests for landscape designers, forest managers, growers and researchers in the ecology of elder pine have increased. Germination is a critical stage in the life cycle of plants and often controls population dynamics (7). It must be explained that although potential of the seed for germination is high, it is often variable in speed and capacity. Therefore, improvements in germination and establishment would help growers meet local seeding demands.

To ensure successful seed germination and stand establishment, particularly under unfavourable environmental conditions, high seed and seedlings vigour are required as they are the most important qualitative attributes affecting the plant growth (8). The seed vigour can be improved by an easy, low-cost and low-risk technique called seed priming (9), which improves seed invigoration, germination rate and germination percentage, reduces germination time, suites germination uniformity and seedling growth under both normal (10, 11, 12) and stressful conditions (13, 14). During priming, seeds are partially hydrated so that pre-germinative metabolic activities start, but radicle emergence is prevented; then the seed is dried back to the original moisture level (15, 16).

Several seed priming methods have been examined, including halopriming, osmopriming, hydopriming, thermopriming, solid medium priming, hormonopriming and biopriming (13), each of which may have different effects, which is dependent on plant species, growing phase, concentration/dose of priming agent and incubation period. Mechanism of priming seed may be not completely understood, however it’s physiological and biochemical advantages is expectable (17, 18).

Various works on seed priming and germination characteristics have been conducted on various pine trees (19, 20, 21, 22, 23, 24), but no reported work on eldar pine seed was available.

2. Objective
Because the osmopriming and halopriming are applied as effective strategies for increasing the growth and survival of seedlings in drought and saline conditions, therefore the present investigation for the first time was carried out to assess the effect of various priming treatments on germination and seedling early growth in eldar pine.

3. Materials and Methods
The study was conducted in Seed Technology Lab of Faculty of Natural Resources, Tarbiat Modares University, Iran. The elder seeds of equal size and weight were collected from the Caspian Seed Center of Amol, Mazandaran province, northern Iran. Some traits of the seeds are listed in Table 1.

3.1. Seed priming
Seed treatments included soaking in distilled water (hydopriming), soaking in -4 and -8 bar solutions of polyethylene glycol 6000 PEG (osmopriming), soaking in -4 and -8 bar solutions of NaCl (halopriming) and soaking in 1 and 2 mM solutions of salicylic acid SA (hormonopriming). Likewise, some un-primed dry seeds were taken as control. All priming treatments were conducted in room temperature (25 ± 1°C) for 48 h; this period was chosen for being the best treatment compared to other periods (24, 72 and 96 and 120 hours) in the pretest. After treating, the solutions were decanted and seeds rinsed for 2 min. with distilled water to remove the chemical traces, then dried at room temperature for 4 days at ambient room conditions (25 ± 1°C) in order to bring the seeds to their approximate original moisture content.
3.2. Germination test

Germination test was conducted using distilled water. Three replications of 25 seeds of primed and un-primed (control) seeds were kept in 9 cm petridishes at 20 ± 0.5°C, 65% relative humidity and 16/8 hours light/dark photoperiod for 42 days (25). The required moisture for the seeds was provided by adding 5 ml distilled water to each petridish. Seed germination was recorded daily after the commencement of the experiment. Seeds were considered germinated when root length reached 2 mm. Test germination was terminated when no further germination occurred. Then some traits were calculated according to listed equations in Table 2.

To determine the seedling shoot length and root length, 7 seedlings were selected randomly from each petridish, their lengths measured using 1 mm scale ruler. Seedling dry weight was measured using 0.0001 gr digital scale, after drying root and shoot at 103°C for 17 h in an air oven.

3.3. Data analysis

The statistical analysis was performed in a completely randomized design (CRD), with three replications (25 seeds per replicate) and 8 treatments: control (unprimed seeds), soaking in distilled water (hydropriming), soaking in -4 and -8 bar solutions of PEG 6000 (osmopriming), soaking in -4 and -8 bar solutions of NaCl (halopriming) and soaking in 1 and 2 mM solutions of SA (hormonopriming). Data were statistically analyzed using SPSS software program (Ver. 19 for Windows). Distribution was tested for normality by Kolmogorov-Smirnov test. Homogeneity of variances was tested by Levene’s test. The data were analyzed through ANOVA and the mean comparisons was done using Duncan’s Multiple Range and Dunnet’ T3 tests. Excel software was used to draw figures.

<table>
<thead>
<tr>
<th>Table 1 Some quantitative traits of elder pine seeds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed provenance</td>
<td>Viability (%)</td>
</tr>
<tr>
<td>Khorasan</td>
<td>93%</td>
</tr>
</tbody>
</table>

| Table 2 Germination indices calculation equations |
|--|---------|

<table>
<thead>
<tr>
<th>Studied trait</th>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germination Percentage</td>
<td>(\text{GP} = \frac{n}{N} \times 100)</td>
<td>(25)</td>
</tr>
<tr>
<td>Germination Speed</td>
<td>(\text{GS} = \sum \left(\frac{n_i}{t_i} \right))</td>
<td>(26)</td>
</tr>
<tr>
<td>The time to 50% germination (T50)</td>
<td>(\text{G}_{50} = \frac{N}{2} - \frac{n_i}{n_j} \left(t_j - t_i \right))</td>
<td>(27)</td>
</tr>
<tr>
<td>Germination Energy</td>
<td>(\text{GE} = \frac{\text{Mcgr}}{N} \times 100)</td>
<td>(28)</td>
</tr>
<tr>
<td>Seedling Vigour Index</td>
<td>(\text{SVI} = \text{GP} \times \left(\frac{\text{SL} + \text{RL}}{100} \right))</td>
<td>(29)</td>
</tr>
</tbody>
</table>

\(n \) = total number of germinated seeds during the germination test, \(N \) = number of seeds initiated, \(n_i \) = number of germinated seeds on day \(t_i \), \(t_i \) = number of days during the germination period (between 0 and 42 days), \(\text{Mcgr} \) = maximum of cumulative percentage germination, SL = shoot length, RL = root length
4. Results

Significant differences \((p< 0.01)\) were observed among priming treatments for all characters examined (Table 3).

Maximum germination percentage were obtained at treatments of hydropriming, osmopriming -4 bar, hormonopriming 1 mM and 2 mM; the lowest trait was observed in osmopriming -8 bar followed by control and halopriming at -8 bar (Figure 1). All priming treatments (except halopriming -8 bar) enhanced the germination energy significantly \((p< 0.01)\) compared to the unprimed seeds. The best result of germination energy was obtained in 1 mM SA primed seeds (Figure 2). Except osmopriming and halopriming treatments with -8 bar concentrations, other treatments improved germination speed (Figure 3). In contrast, the highest average time to 50% germination was recorded in both listed treatments; however, there was no significant difference among the control and osmopriming -8 bar. The lowest G50 was observed with hydropriming and hormonopriming 1 and 2 mM (Figure 4).

![Figure 1](https://ecopersia.modares.ac.ir)
Figure 1 Effect of different treatments on the germination percentage of elder pine seeds

\[\text{cont}= \text{control}; \text{hydro}= \text{hydropriming}; \text{osmo} -4\text{ bar}= \text{osmopriming} -4\text{ bar}; \text{osmo} -8\text{ bar}= \text{osmopriming} -8\text{ bar}; \text{hormonal} 1\text{ mM}= \text{hormonalpriming} 1\text{ mM}; \text{hormonal} 2\text{ mM}= \text{hormonalpriming} 2\text{ mM}; \text{halo} -4\text{ bar}= \text{halopriming} -4\text{ bar}; \text{halo} -8\text{ bar}= \text{halopriming} -8\text{ bar} \]

Table 3 Analysis of variance of the seed germination traits and early seedling growth in elder pine in response to priming treatment

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>GP</th>
<th>GE</th>
<th>GS</th>
<th>G50</th>
<th>SL</th>
<th>SDW</th>
<th>SVI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>22.83</td>
<td>343.31</td>
<td>1585.86</td>
<td>105.35</td>
<td>120.49</td>
<td>93.51</td>
</tr>
<tr>
<td>Sum of Squares</td>
<td>2446.23</td>
<td>8252.48</td>
<td>72.96</td>
<td>270.36</td>
<td>10760.55</td>
<td>0.009</td>
<td>17324.46</td>
</tr>
<tr>
<td>Priming treatment</td>
<td></td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

Significant at \(p< 0.01)\.

Downloaded from ecopersia.modares.ac.ir at 15:23 IRST on Saturday March 14th 2020
Figure 2 Effect of different treatments on the germination energy of elder pine seeds
cont= control; hydro= hydropriming, osmo -4 bar= osmopriming -4 bar, osmo -8 bar= osmopriming -8 bar, hormonal 1 mM= hormonalpriming 1 mM, hormonal 2 mM= hormonalpriming 2 mM, halo -4 bar= halopriming -4 bar, halo -8 bar= halopriming -8 bar

Figure 3 Effect of different treatments on the germination speed of elder pine seeds
cont= control; hydro= hydropriming, osmo -4 bar= osmopriming -4 bar, osmo -8 bar= osmopriming -8 bar, hormonal 1 mM= hormonalpriming 1 mM, hormonal 2 mM= hormonalpriming 2 mM, halo -4 bar= halopriming -4 bar, halo -8 bar= halopriming -8 bar
The response of seedlings hydroprimed and hormonal primed with 1 mM were statistically greater in seedling length compared to other treatments. Control and halopriming with -8 bar had the lowest seedling length (Figure 5).

Figure 4 Effect of different treatments on the average time to 50% germination of elder pine seeds
- cont= control; hydro= hydropriming, osmo -4 bar= osmopriming -4 bar, osmo -8 bar= osmopriming -8 bar,
- hormonal 1 mM= hormonalpriming 1 mM, hormonal 2 mM= hormonalpriming 2 mM, halo -4 bar= halopriming -4 bar, halo -8 bar= halopriming -8 bar

Figure 5 Effect of different treatments on seedling length of elder pine seeds
- cont= control; hydro= hydropriming, osmo -4 bar= osmopriming -4 bar, osmo -8 bar= osmopriming -8 bar,
- hormonal 1 mM= hormonalpriming 1 mM, hormonal 2 mM= hormonalpriming 2 mM, halo -4 bar= halopriming -4 bar, halo -8 bar= halopriming -8 bar
All priming treatments (except halopriming -8 bar) significantly increased seedlings’ dry weight, the maximum of which was obtained in hormonalpriming 1 and 2 mM, hydropriming and osmopriming -4 bar treatments (Figure 6). The highest seedling vigor index belonged to hydopriming and hormonalpriming 1 mM and the lowest values to halopriming -8 bar, control and osmopriming -8 bar (Figure 7).

Figure 6 Effect of different treatments on seedling dry weight of elder pine seeds
cont= control; hydro= hydopriming, osmo -4 bar= osmopriming -4 bar, osmo -8 bar= osmopriming -8 bar, hormonal 1 mM= hormonalpriming 1 mM, hormonal 2 mM= hormonalpriming 2 mM, halo -4 bar= halopriming -4 bar, halo -8 bar= halopriming -8 bar

Figure 7 Effect of different treatments on seedling vigor index of elder pine seeds
cont= control; hydro= hydopriming, osmo -4 bar= osmopriming -4 bar, osmo -8 bar= osmopriming -8 bar, hormonal 1 mM= hormonalpriming 1 mM, hormonal 2 mM= hormonalpriming 2 mM, halo -4 bar= halopriming -4 bar, halo -8 bar= halopriming -8 bar
5. Discussion

The present study revealed that germination percentage and energy significantly improved in most of the treatments as compared to the unprimed seeds, which was consistent with another finding (24) in which hydropriming and halopriming with -3, -6 and -12 bar KNO₃ had improved the germination percentage and energy of white-barked pine seed. The positive effect of priming treatments on germination may be due to induction a range of biochemical changes in seed that are required to initiate the germination process, hydrolysis or metabolism of inhibitors, inhibition and enzymes activation (31). In the present study, osmopriming and halopriming in -8 bar concentration resulted in lower germination percentage, which might be related to the inhibitory effect of the solutions low osmotic potential and/or to specific ion toxicity (32).

Germination speed is among the essential parameters in determining the quality of seeds, and normally, has direct relation to plant growth and amount of products. Also, the germination time is an index of seed germination speed (33). In our study, hydropriming, hormonalpriming 1 and 2 mM, osmopriming and halopriming -4 bar treatments resulted in improvement of speed germination and lower mean time taken to 50% germination, compared to the control, which were in line with those obtained by others researchers on brutia pine (6) and white-barked pine (24). The significantly less time taken to 50% germination could be the result of shortening of the lag phase during priming (34).

According to Mcdonald (35) when seeds are in the primed state, important pre-germination steps such as DNA and RNA synthesis are accomplished in the seed; hence, the seeds are physiologically close to germination and have fewer steps to complete than un-primed seed in order to accomplish germination. Moreover, increased germination rate due to seed priming may be due to increased rate of cell division in the root tips of seedlings from primed seeds (28, 34). Early reserve breakdown and mobilization might be the cause of significant reduction in G50 (24).

Seedlings’ length and dry weight were significantly influenced by seed priming treatments, which was in correspondence with the findings on brutia pine (6) and benguet pine (36). The higher performance of primed seedlings in comparison with un-primed seedlings can be attributed to earlier germination caused by priming (37) or to the increased cell division within the apical meristem of root that enhance seedling growth (38). Seedling vigor index as a function of seedling length and germination percentage is the power and ability of seed emergence in difficult conditions (39). In present study, the highest seedling vigor index obtained for hydropriming treatment that was not significantly different from hormonalpriming 1 mM treatment. The lowest values of this parameter belonged to halopriming -8 bar, control and osmopriming -8 bar. Halopriming levels with KNO₃ (1 and 3 %), SA levels (0.2 and 0.5 mM) and hydropriming improved seedling vigor index in the black cumin (33). It seems that higher water absorption during hydropriming leads to improved seedling vigor index as the result of mobilization of the reserved food material, activation and re-synthesis of some enzymes (40).

6. Conclusions

Osmopriming and halopriming in -8 bar concentration showed poor performance in most traits, but the best results in germination and seedling growth were achieved with hydropriming and hormonalpriming 1 and 2 mM. Therefore, treatments such as hydropriming and hormonalpriming on eldar pine seed can support nursery practices by improving the seed germination and early
growth performance. In reality, these treatments are economical, environmentally friendly and easily applicable by nursery workers and can encourage direct seeding where applicable.

Conflict of Interest
The authors have no conflict of interest.

Acknowledgement
The authors do acknowledge Dr. Fatemeh Ahmadlooo, Assistant Professor at Research Institute of Forests and Rangelands for the scientific cooperation.

Authors’ Contributions
First author is M.Sc. student, who conducted the Laboratory works and provided the initial draft of manuscript. Second author is supervisor of thesis, who planned the methodology of research, contributed technical points and modified the draft.

Funding/Support
The research was conducted as a part of M.Sc. Thesis and financially supported by Faculty of Natural Resources, Tarbiat Modares University, Iran.

References

1978

اثر پیش تیمارهای بذر بر صفات جوانه‌نی و رشد اولیه کاج تهران

Zeinab Javanmard, Masoud Tabari Kouchaksaraei _________________________ ECOPERSIA (2017) Vol. 5(4)
1980

مقدمه: قدرت و بهبودی بذر صفات کیفی مهم هستند که تاثیر مهمی روی رشد و استقرار گیاه دارند. پنیه بذر می‌تواند با واسطه تکنیک‌های موسم به پراپرایمهای بذر که درصد، سرعت و یکپارچگی جوانه‌زی را افزایش می‌دهد بهبود یابد. این تکنیک‌های مختلف در آزمایشگاه‌های بذر دانشگاه مخصوص طبیعی دانشگاه تربیت مدرس ایران انجام شد.

مواد و روش‌ها: پنیه بذر در بافت‌های بار، هالولیورایماگنک با ترکیب سدیم در غلظت‌های 6 و 8 تار و پراپرایماگنک هورمونی با اسید سالسیلیک در غلظت‌های 1 و 2 میلی‌مولار به مدت 2 و 8 ساعت تیمار شدند. بهترین نتایج در ضریب چهارم است. درجات نسبی، رطوبت نسبی و فنروربود 8 ساعت تاریکی و 16 ساعت روشنی به مدت 42 روز نگهداری شدند.

نتایج: بهترین نتایج 1:4 ضریب و سرعت جوانه‌زی (13/13) پنیه بذر در روز 10 درصد هالولیورایماگنک به‌دست آمد. پنیه بذر پراپرایماگنک درصد جوانه‌زی زمان رسیدن به 50 درصد جوانه‌زی بطور گیاهی و درصد سایر صفات مورد بررسی ضعیفی نشان دادند.

جمع‌نɒ: در کل می‌توان نتیجه گیری کرد که هالولیورایماگنک و پراپرایماگنک هورمونی می‌تواند تکنیک‌های مناسبی برای بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اقدامات بهبودی بذر بهبود درصد جوانه‌زی و رشد اولیه گیاهچه تهران در اق...